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Preface
The discovery of Giant Magnetoresistance (GMR) in 1988 laid the foundation to a whole new
and very active research field – Spinelectronics or Spintronics – which strives to exploit the
electron spin and electron spin currents as the basic carriers for the device functionality and
information transfer in electronic devices. The pioneering work of Peter Grünberg (IFF) and
Albert Fert (Université Paris-Sud), changed our view of the role of the electron spin in electrical
transport and has been honored by the 2007 Nobel Prize in Physics, partly also because of its
enormous technological and economical impact. Only 10 years after the discovery of the effect
in the laboratory, GMR-based hard disk read heads hit the market as first generation spintronic
devices and revolutionized the magnetic mass storage industry. Since its advent 20 years ago,
Spintronics continues to provide us with a wide variety of spin-dependent transport and transfer
processes, novel materials, phenomena and concepts, and many open questions and challenges.
The emphasis in current spintronics research is threefold:

• First, it aims to achieve a control of and the ability to manipulate spin transport on very
small length scales down to the level of single spins, which will open a pathway to quan-
tum information applications. This control also includes the active switching of the mag-
netization by means of spin-polarized currents.

• Second, in order to obtain the best of both worlds spinelectronics may be combined with
advanced semiconductor nanoelectronics. A crucial step in this direction is the realization
of an efficient electrical spin-injection into semiconductors.

• Third, the next generation of spintronic devices should combine passive and active func-
tionalities, thereby enabling magnetologic circuits and even magnetoprocessors.

On the way to meet these challenges many fundamental questions have to be solved and many
new materals and materials combinations will be developed and explored. Among others this
concerns the microscopic interactions and mechanisms leading to spin dephasing, the manipu-
lation of spins by spin-orbit interactions, the understanding of spin transfer torque mechanisms,
and the utilization of the spin Hall effect. On the material side, dilute magnetic semiconductors,
highly spin-polarized oxides and half-metals, but also graphene and multiferroics are currently
in the focus of interest.

The present course continues a series of Spring Schools in thin film magnetism and nano-
magnetism taking place in the years 1993, 1999, and 2005, and particularly addresses the new
developments in the field of spintronics. The lectures will first build a basis for the under-
standing of the major fundamental phenomena and aspects in magnetism and spin-dependent
transport. This includes new theoretical concepts as well as the theoretical framework for a
quantitative description. The School will then advance to contemporary aspects of the anoma-
lous, spin and quantum spin Hall effect, and of spin transfer processes at interfaces and in
nanostructures down to the quantum level. Exchange interactions and spin effects in highly
correlated materials are another important topic covered by the lectures. Finally, we will also
discuss current and future technological applications of spintronics concepts.



The topics of the lectures cover:

• Fundamentals of Magnetism
• Spin-dependent Interactions
• Quantum Transport
• Spin Transport Phenomena
• Spin Injection and Coherence
• Spin Transfer Torque
• Electronic Correlations
• Magnetization and Spin Dynamics
• Multiferroics
• Spin Hall Effect
• Magnetic Storage, Memory and Logics
• Quantum Information Processing

For the first time, this year the IFF Spring School takes place under the umbrella of the Jülich-
Aachen Research Alliance (JARA). JARA combines complementing expertise at the RWTH
Aachen University and the Forschungszentrum Jülich to address research fields identified at
an international level in a targeted manner. The research and education activities in the area
of “Fundamentals of Future Information Technology” are bundled in the section JARA-FIT.
Furthermore, the school has been organized in collaboration with the Universities of Cologne
and Duisburg-Essen and is integrated in the curricula of these universities.

We are grateful to all contributors from the Institut für Festkörperforschung (IFF), the In-
stitut für Bio- und Nanosysteme (IBN), and the Institute for Advanced Simulation (IAS) in the
Forschungszentrum Jülich, as well as the Institut für Experimentalphysik of the RWTH Aachen
University for the time and effort they spent to prepare the manuscripts and the lectures, and for
their spontaneous help and support of this spring school:

Dr. B. Beschoten (RWTH) Prof. P. Bechthold (IFF-9)
Dr. G. Bihlmayer (IFF-1 & IAS) Dr. A. Bringer (IFF-1)
Prof. P. A. Grünberg (IFF-9) PD Dr. R. Hertel (IFF-9)
Dr. M. Ležaić (IFF-1 & IAS) Dr. A. Liebsch (IFF-1)
Dr. Ph. Mavropoulos (IFF-1& IAS) Dr. C. Meyer (IFF-9)
Dr. Y. Mokrousov (IFF-1 & IAS) Dr. M. Müller (IFF-9)
Dr. M. Richter (IAS-JSC) Dr. Th. Schäpers (IBN-1)
JunProf. M. Wegewijs (IFF-3) Dr. D. Wortmann (IFF-1 & IAS)
Dr. R. Zeller (IFF-3)

A large number of courses is offered during the school. We are grateful to our colleagues from
the Research Centre Jülich and the RWTH Aachen University for their willingness to conduct
these courses. The Jülich and Aachen divisions involved in the lectures are: IFF-1: Quantum
Theory of Materials, IFF-3: Theory of Structure Formation, IFF-6: Electronic Materials, IFF-9:
Electronic Properties, IBN-1: Semiconductor Nanoelectronics, IAS-JSC: Jülich Supercomput-
ing Centre, and RWTH: II. Institute of Physics A & B.



We are very glad that several colleagues from external universities and (industry) research lab-
oratories have agreed to contribute to the program of the school:

Dr. A. Berger CIC Nanogune, Donostia, Spain
Prof. M. Brandt Walter-Schottky-Institut, Technische Universität München
Prof. H. Buhmann Physikalisches Institut EP-3, Universität Würzburg
Prof. M.-C. Chang Department of Physics, National Taiwan Normal University,

Taiwan
Prof. S. Demokritov Institut für Angewandte Physik, Universität Münster
Prof. J. Fabian Institut für Theoretische Physik, Universität Regensburg
Prof. A. Fert Unité Mixte de Physique CNRS/THALES, Orsay, France
Prof. F. Ishii Department of Computational Science, Kanazawa University,

Japan
Dr. S. S. P. Parkin IBM Research Laboratories, Almaden, USA
Prof. T. Rasing Inst. f. Molecules and Materials, Radboud University Nijmegen,

The Netherlands
Prof. G. Reiss Physik Department, Universität Bielefeld

Without the participation of all these colleagues, the program would not be as interesting, versa-
tile, and attractive. We would like to express our thanks to all of them for the effort and enthusi-
asm which they have put into the preparation and presentation of their lectures and manuscripts.
We are very grateful to the board of directors of the Forschungszentrum Jülich for the continu-
ous organizational and financial support, which we have received for the realization of the IFF
Spring School and the production of this book of lecture notes. Finally, our special thanks go
to Dipl.-Ing. R. Hölzle for the general management, to Mrs. A. Wenzik for taking care of the
public relation issues, and to Mrs. L. Snyders for her help in compiling the Lecture Notes.

C. M. Schneider, D. E. Bürgler, S. Blügel, R. Waser, M. Morgenstern

February 2009
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Contents
1 The Phenomenon Magnetism 2

2 Currents: Electrons and Spins 3

3 The Discovery of Giant Magnetoresistance (GMR) 5

4 Beyond GMR – the Age of Spintronics 7
4.1 Spin transport effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1.1 Tunneling Magnetoresistance . . . . . . . . . . . . . . . . . . . . . . 7
4.1.2 Spin Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.3 Spin Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.4 Spin transfer effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.1 Halfmetallic ferromagnets . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.2 Dilute magnetic semiconductors . . . . . . . . . . . . . . . . . . . . . 12
4.2.3 Multiferroics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.4 Carbon-Based Materials . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Future developments 15



I.2 Claus M. Schneider

Having its roots in magnetism – or more specifically – thin film magnetism, over the last two
decades spinelectronics has matured into a research field in its own right. Nowadays it includes
aspects not only from basically all areas of condensed matter physics, but also from electrical
engineering, chemistry, and even biology. Spintronics features a wealth of spin-based effects
and involves an extremely broad material basis. In this situation the Spring School has to limit
itself to a selection of topics only. The purpose of this introduction is therefore to give some
historical background and provide an overview of the main phenomena and material classes.

1 The Phenomenon Magnetism
Magnetism poses an intriguing phenomenon which is known to mankind already for a long
time. It was noted more than 2000 years ago that iron is attracted to pieces of a certain mineral
– the loadstone or lodestone. The loadstone contains a mixture of different iron oxides, one
of them being the ferrimagnet Magnetite, Fe3O4 (Fig. 1). The name goes back to the Greek
region Magnisia, where this mineral was found. The large remanent magnetization of natu-
rally occuring loadstone is attributed to the strong magnetic fields, which surround lightning
bolts striking the ground. These fields align the magnetic moments in the material causing a
permanent magnetic behavior.

!"# !$#

Fig. 1: Lumps of Magnetite rocks attracting Iron filings and paper clips (a) and natural Mag-
netite (Fe3O4) single crystals (b).

The first rudimentary application of magnetism dates back already to the 12th century when
a compass device was reported to be used by Chinese military (Fig. 2). It took up to the 15th

century for the first truly scientific study of magnetism to be conducted, described by W. Gilbert
in his book “De Magnete” [1]. With this growing knowledge of quantitative interrelations in
physics and the development of accompanying mathematical tools, the interpretation of mag-
netic phenomena shifted slowly from metaphysical to a more analytical reasoning.
Maxwell’s equations represent an important milestone in this course and opened the pathway
to treat magnetic phenomena in the framework of classical electrodynamics [2]. The concept
of magnetic fields interacting with matter, thereby producing mechanical forces and electrical
fields, forms the basis of our modern technology and laid the foundation for a phenomenologi-
cal description of the various types of magnetic order. The microscopic mechanisms leading to
magnetism as a solid state property, however, became only accessible after the advent of quan-
tum mechanics, which introduced a very important property of the electron – the spin. Mag-
netism is a many-electron phenomenon involving interactions on very different length scales
between spins, spins and lattice, or spins and external magnetic fields. Therefore, magnetic
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Fig. 2: Replica of a chinese compass. The
handle of the spoon always facing to the
south, this device was called “zhi-nan-
zhen”, which means “south pointer”.

systems develop a wealth of magnetization and spin structures covering length scales of more
than eight orders of magnitude down to atomic dimensions.
Particularly in the last century, magnetism and magnetic materials have exerted an enormous
impact on the technological development in very different areas. Electrical motors and gen-
erators form the fundament of our electrical power engineering and many other areas, such as
automation, automotion, etc. Magnetic resonance imaging (MRI) has become an indispensible
tool in medical diagnostics, and bioassays with magnetic labeling schemes are currently being
developed for lab-on-chip analytics in chemistry, biology, and biochemistry.
Above all, the entire field of information technology would be unthinkable without mass data
storage devices, which exploit various facets of magnetism. In fact, the first magnetic recording
device dates back to 1898, when V. Poulsen developed the “telegraphone” [3] (Fig. 3). The
telegraphone recorded analogue data (sound) onto a magnetic wire, which was moved in front
of a read/write head. Due to the unreliability of the wire spools, however, the telegraphone found
only limited use. At the beginning of the 1930’s recording on magnetic tape was introduced.
This principle was in widespread use for audio recordings for more than 70 years. In the 1950’s
magnetic tapes were first used by IBM to store digital data in order to replace punch cards.
In 1956 IBM introduced the first random access system (RAMAC) in an effort to improve the
data access time. This hard disk principle features a rotating disk coated with a magnetic film
into which data are stored as small magnetic domains (“bits”). It is still successfully employed
today, but features a more than eight orders of magnitude higher recording density than in 1950,
presently approaching 1 Tbit/in2. This breathtaking evolution has been and still is made possible
by the fundamental research in nanomagnetism and spintronics.

2 Currents: Electrons and Spins
The applications discussed above are making extensive use of the static and dynamic magnetic
properties, such as spontaneous magnetization, anisotropy, magnetic order, exchange coupling,
etc., occurring in specific materials. The microscopic origin of these properties in a solid rests
on quantum mechanical principles and is nowadays understood as a particular consequence
of spin-dependent interactions between Fermions in a many-electron system. These interac-
tions are provided by the exchange and spin-orbit coupling. In a closer view, we find that the
most important contribution to the magnetism comes from the electrons in the vicinity of the
Fermi level, i.e. the same electrons which are also responsible for the fundamental electrical
and optical properties of matter. This immediately leads to the interesting question: Is there
an “interference” between the magnetically ordered state of matter and its electrical or optical
behavior?
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Read/Write
Head

Storage Medium

Fig. 3: More than 100 years of magnetic recording. Left: Magnetic wire recorder developed by
V. Poulsen in 1898. The wire is wound on the drum, with the read/write head being guided by
the thread rod. Right: High-capacity hard disk drive from 2008. Vital components, such as the
read/write head and the storage medium are based on nanomagnetism and spintronics.

The question was answered – at least in a phenomenological manner – already more than 150
years ago. An interaction between light and magnetically ordered systems was first noted by
Michael Faraday in 1846 [4]. The Faraday effect describes the rotation of the polarization plane
of linearly polarized light, which passes through a magnetized crystal. Most importantly, the
rotation depends on the remanent state of the crystal and occurs also in the absence of any ex-
ternal magnetic fields. About 10 years later (1856) William Thomson, later to become Lord
Kelvin, observed a magnetic effect on the electrical conductivity [5]. The phenomenon mag-
netoresistance caused the electrical conductivity of a ferromagnetic material to depend on the
orientation of the remanent magnetization with respect to the direction of the flowing current.
A first microscopic explanation of the ordinary magnetoresistance was given by Sir Nevill Mott
in 1936 [6]. In his two-current model he considered the electrical current to consist of two
contributions, which are scattered differently – a spin-up and a spin-down contribution. The
main scattering channel involves s − d scattering, which becomes different for spin-up and
spin-down electrons due to the exchange splitting of the d-states. In this way Mott pointed out
the importance of the quantum mechanical property spin in electrical transport effects and cre-
ated a strong connection between electrical phenomena and magnetism. This concept was later
confirmed by Fert and Campbell [7], who also pointed out the importance of spin-flip scatter-
ing processes. Of technological importance is the anisotropic magnetoresistance (AMR). The
microscopic mechanism behind the AMR is spin-orbit scattering of the spin-polarized charge
carriers, which results in an anisotropic angular dependence of the current density~j with respect
to the magnetization ~M [8]. The maximum AMR signal is defined as

∆R

R
=
R(~j|| ~M)−R(~j ⊥ ~M)

R(~j ⊥ ~M)
(1)

Compared to the exchange interaction, spin-orbit coupling is relatively weak, which renders
AMR a small effect, reaching a resistance change ∆R/R0 of a few percent in certain Ni-based
alloys at best. With respect to technical applications the relatively small effect magnitude was
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certainly a drawback. Nevertheless, in order to maintain and push the areal density growth rate
in magnetic data storage, the inductive read heads were replaced by magnetoresistive sensors
exploiting the AMR effect at the beginning of the 1990s [9]. At that time, AMR already looked
back to more than hundred years of research. It is also important to note that this progress in
magnetic recording technology was made possible by the strong scientific interest in magnetism
in reduced dimensions leading to a new and extremely fruitful research field – thin film and
surface magnetism.

3 The Discovery of Giant Magnetoresistance (GMR)
The study of thin film magnetism went hand in hand with a breathtaking improvement of the
preparation methods. By transferring first the technique of molecular beam epitaxy from semi-
conductors to metallic systems, magnetic layers and even their surfaces and interfaces could be
controlled down to an atomic level. In this way it became possible to realize artificial magnetic
systems composed of ferromagnetic films separated by ultrathin nonmagnetic layers. Also sput-
tering deposition techniques have been perfected to permit the fabrication of such nanomagnetic
systems on an industrial scale.
The confinement of the individual layer thicknesses in the nanometer regime gives rise to novel
quantum effects, affecting the magnetic properties, such as the magnetic moment or the ordering
temperature. A first breakthrough was marked by the discovery of the interlayer exchange
coupling (IEC) in 1986 [10]. This coupling mechanism forms between two ferromagnetic layers
separated by a nonferromagnetic interlayer and is mediated through spin-polarized quantum-
well states developing in the metallic interlayer. As a characteristic property, both the coupling
strength and sign vary strongly in a damped oscillatory manner with the interlayer thickness
tNM . A very specific feature of this coupling is the antiparallel orientation (AP) of the layer
magnetizations forming at selected values of tNM . These antiparallel configurations represent
magnetic ground states, which are very useful for magnetotransport experiments. In particular
material combinations, for example, Co/Ru, the interlayer coupling may be extremely strong
[11]. This property is widely employed nowadays to define a stable reference magnetization
direction via a synthetic antiferromagnet (SAF), which is a Co/Ru/Co trilayer in the first AP
coupling maximum at around tRu ≈ 0.8 nm.

!"# !$#

Fig. 4: Schematic picture of the spatial distribution of scattering centers (marked by stars) in
AMR (a) and GMR (b).

The statistical distribution of the scattering centers and their strong coupling to the magnetic ma-
trix in AMR materials excludes a separate optimization of the spin-polarized scattering mech-
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anisms and the magnetic properties (Fig. 4). The layered geometry in heteromagnetic thin film
stacks, however, offers a chance to modify the spin-dependent scattering effects independently
of the magnetic properties of the layer stack. This hypothesis was impressively proven by the
discovery of the giant magnetoresistance (GMR) in Fe/Cr multilayers by Albert Fert’s group
[12] and in Fe/Cr/Fe trilayers by Grünberg’s group [13]. In both cases a strong change in resis-
tivity R was observed when switching the magnetization of the layer stack from the antiparallel
(AP) configuration at zero magnetic field to the parallel (P) configuration in the applied satura-
tion field HS . The magnetoresistance is then defined as

∆R

R
=
R(H = 0)−R(HS)

R(HS)
(2)

The finding of GMR initiated a broad research activity on the magnetotransport in many dif-
ferent magnetic layer systems. From these studies the Cobalt-Copper material combination
emerged as among the most interesting ones for transport applications. It combines a strong
magnetoresistive response with moderate interlayer coupling strength and favorable growth be-
havior. In multilayers a GMR ratio exceeding 60% at room temperature and 110% at cryogenic
temperatures can be achieved (Fig. 5).

0 1 2 3 4
tCu [nm]

0
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100

G
M

R[
%
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     T=4.2 K
!   RT
•

Fig. 5: Giant magnetoresistance mea-
sured in the current-in-plane geometry in
Co-Cu multilayer structures. The GMR
signal takes a maximum for the antiparal-
lel magnetization configuration obtained
at Cu interlayer thicknesses tCu at around
1 nm, 2 nm, and 3.5 nm.

The reason for this strong effect in Co/Cu structures is threefold: (i) the spin-dependent scat-
tering of the charge carriers is caused by the exchange interaction, rather than the spin-orbit
coupling, (ii) the major spin-scattering contribution stems from the interfaces of the layer struc-
ture, and (iii) the Cu Fermi surface is very similar to that of the Co spin-up electrons (electronic
matching), but considerably different from the Co spin-down electrons. This unique combina-
tion of effective spin-dependent scattering and pronounced spin-dependent confinement is the
key to a high magnetoresistance ratio.
The first generation GMR-based hard disk read heads which were introduced in 1999 employed
the current-in-plane (CIP) geometry. At present they have already been replaced by sensors
based on tunneling magnetoresistance. The further increase in storage density and the transition
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to perpendicular magnetic recording may eventually lead to a revival of the GMR read head,
however, involving a current-perpendicular-to-plane (CPP) configuration.

4 Beyond GMR – the Age of Spintronics
In order to perceive the impact that the discovery of GMR had on science and technology, we
have to recall the situation in 1988: AMR was already known for more than 100 years and was
subject to intense research since the 1960’s. Despite some improvement particularly in thin
films, however, the AMR effect magnitude remained in the region of a few percent. The hard
disk industry had already decided to introduce thin film AMR read heads to meet the demands
for higher storage densities – they finally entered the market around 1990. The finding of the
giant magnetoresistance came therefore very unexpected and started a revolution in the hard
disk business. Largely based on the thin film technology originally developed for AMR read
heads, GMR read heads were developed to marketability in a period of only ten years after the
first observation of this effect.
Even more important than its economic impact were the ramifications of GMR on the research
field magnetism. GMR considerably changed our understanding of spin-dependent transport
processes – not only in magnetic systems. In this way it opened an avenue from magnetism to
microelectronics and initiated a new research area – spinelectronics or spintronics.

4.1 Spin transport effects
One of the central concepts in spintronics is the spin-scattering length λs, i.e. the distance a
spin-polarized electron can travel, before its spin direction is changed by a scattering process.
It can vary from a few nanometers in transition metals to micrometers in semiconductors. The
dimension of the functional component, i.e. the thickness of the nonmagnetic interlayer in GMR
systems, must be adapted to λs in order to observe sizable spin transport effects.

4.1.1 Tunneling Magnetoresistance

The tunneling magnetoresistance (TMR) is another important effect, which illustrates this con-
cept. TMR describes the magnetization dependence of the current through an insulating tunnel-
ing barrier and was first observed by Jullière in 1975 at low temperatures [14]. The first TMR
experiments at room temperature were successfully performed in 1995 [15, 16] and employed
Al2O3 barriers. The thickness of the tunneling barrier is a compromise between structural per-
fection and sufficient conductivity and lies typically in the 1−3 nm regime. The studies of TMR
effects have not only improved our understanding of the electronic properties of ferromagnets,
but also stimulated the search for new magnetic materials. The reason is the strong dependence
of the TMR signal on the spin polarization of the charge carriers, which for the simplest case is
expressed by the Jullière formula

∆R

R
=
RAP −RP

RP

=
2 · P1P2

1− P1P2

(3)

with P1 and P2 denoting the spin polarization of the electrons at the Fermi level for the two mag-
netic electrodes. Implementing materials with a high spin polarization into magnetic tunneling
junctions may thus offer TMR values exceeding 100 %.
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The other element that may strongly affect the TMR signal is the insulating barrier itself. This
was pointed out by theoretical treatments which predicted extremely high TMR values, if se-
lected electronic states in the barrier match one of the spin states in the electrodes [17]. This
concept was impressively confirmed by experiment for the Fe/MgO/Fe system [18, 19]. Further
development of materials and layer structures has produced TMR values exceeding 600% at
room temperature up to now [20].

4.1.2 Spin Injection

The present microelectronics technology rests on charge-based device concepts, which are re-
alized by means of semiconductors, mostly silicon. In addition, semiconductors also strongly
interact with light and thus provide optical functionalities (optoelectronics). Combining inde-
pendent spin and charge control in a single device promises a wide range of new phenomena
and applications [21]. To successfully incorporate spins into existing semiconductor technol-
ogy, however, one has to resolve several issues such as the efficient injection, transport, control
and manipulation, and detection of spin-polarized currents. Despite recent successes, the all-
electrical spin injection and detection still remains the holy grail of spin electronics [22].

Fig. 6: Rotation of the spin po-
larization in a field-effect type
device due to the Rashba effect
(taken from [23]).

Realizing new functionalities in spintronic devices requires the spin control and manipulation
of the charge carriers passing through the semiconductor. This manipulation can be achieved,
for example, by the Rashba effect [24]. This effect is due to a spin-orbit like interaction, which
is generated by an electric field in a system with broken inversion symmetry (Fig. 6). It rotates
the spin quantization axis of the charge carriers traversing the electric field. A simple device
following the field-effect transistor (FET) scheme was proposed by Datta and Das [25]. This
proposal has stimulated a broad research activity, leading to a variety of competing device
concepts, for example, based on bipolar circuit schemes [26].

4.1.3 Spin Hall Effect

In 1971 Dyakonov and Perel predicted a spin transport phenomenon in semiconductors, which
was later termed Spin Hall Effect (SHE) [27]. If we assume a slab-like geometry as sketched in
Fig. 7, the SHE generates a spin accumulation on the long sides of a current-carrying sample.



Introduction I.9

The sign of the spin direction is opposite for the opposing boundaries. A reversal of the current
direction reverses also the spin polarization at the boundaries. This behavior bears some simi-
larity to the classical Hall effect, where an applied magnetic field exerts a Lorentz force on the
moving charge carriers and separates carriers of opposite sign to opposite sides of the slab. In
contrast to the classical Hall effect, however, a magnetic field is detrimental in the case of SHE.
The magnetic field causes the spins at the boundaries to precess, thereby destroying the spin
polarization. The microscopic origin of the SHE is the spin-orbit interaction. It couples spin
and charge currents in a peculiar manner: an electrical current induces a transverse spin current
(a flow of spins) and vice versa. The SHE has been confirmed experimentally only recently
by magnetooptical techniques [28]. The opposite effect of a spin current causing an electrical
current is also known (inverse spin Hall effect). The spin Hall effect may be seen as another
means to manipulate spins electrically.

electron
flow
direction

spin current

Fig. 7: Principle of the spin Hall
effect: electrons with opposite
spin are separated into opposite
directions.

The Quantum Hall Effect (QHE) describes a Hall conductance quantization in a two-dimensional
electron gas (2DEG). It originates from two main ingredients, namely the Landau quantization
of the electronic levels and some disorder in the system. Of particular importance are the elec-
tronic states at the boundary of the 2DEG, the socalled edge states. These edge states provide
one-dimensional conduction paths with peculiar properties: (i) all electrons on one sample edge
move in the same direction, with electrons on the opposite sample edge moving in the oppo-
site direction, and (ii) there is no backscattering, i.e. the elastic mean free path of the electrons
approaches infinity. In particular, there is no scattering of charge carriers from one edge to the
other, which leads to the quantization of conductance levels. This picture has been extended
recently extended to spins [29], predicting a Quantum Spin Hall Effect (QSHE) to occur in cer-
tain very thin insulating layers. It involves spin-up electrons conducting along one edge of the
insulator, with spin-down electrons conducting along the other side. Despite being insulators in
the bulk, conduction is allowed at the edges because the interaction between the spin and orbital
angular momentum of the electrons reduces the energy gap between the valence and conduction
bands to zero for spin-polarized electrons. The QSHE was experimentally realized in mercury
(II) telluride (HgTe) semiconductors [30]. In a simple picture it may be considered as edge
currents of opposite spins flowing in opposite directions (Fig. 8).

4.1.4 Spin transfer effects

The effects discussed in Sects. 4.1.1 to 4.1.3 have in common that the (magnetic) state and
configuration of the sample determines the magnitude and direction of the spin current. In
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Fig. 8: The Quantum Spin Hall
Effect: In a two-dimensional in-
sulator edge currents of opposite
spin run in opposite directions.

particular, the spin transport is manipulated through the sample and the magnetization ~M can
be considered a stable quantity. However, in 1996 Berger and Slonczewski independently raised
the question, whether there may be a retroaction of the spin current on the magnetization [31,
32]. The microscopic mechanism for such a retroaction is basically the same spin-dependent
scattering process in the magnetic layers that leads to GMR and TMR. During the scattering
event, there is a transfer of angular momentum (spin) ~S to the magnetic layer, which must
be compensated by the magnetization ~M . Berger and Slonczewski predicted that the angular
momentum or spin transfer should lead to an excitation of the magnetization, which is then
dissipated via spin waves.
The magnitude of the spin transfer depends mainly on the current density~j and the spin scatter-
ing asymmetry β. Provided that the current density is sufficiently high (j = 108...109 A/cm2),
the spin transfer may be strong enough to even reverse the magnetization direction. This has
been demonstrated for the first time in Co/Cu/Co nanocontacts in 1999 [34]. Subsequent theo-
retical and experimental investigations established close links between the spin transfer process
and the magnetization dynamics described by the Landau-Lifshitz-Gilbert equation. In the mi-
crosopic picture, the electrical current through the magnetic layer system causes a continuous
spin transfer to the magnetic layer, which in turn acts like a torque onto ~M . This torque drives
the magnetization vector into a large-angle precessional motion, which may result into a mag-
netization reversal. Even a multi-level switching of the magnetization vector becomes possible
in this way [33].

Fig. 9: Multi-level current-
induced magnetic switching in
an epitaxial Fe/Ag/Fe nanopil-
lar. Inset: Device structure
and SEM micrograph of the free-
standing nanopillar prior to ap-
plication of the insulation and
top electrode layer [33].

The spin transfer effects offer a very exciting alternative to a magnetization reversal driven
by external magnetic fields. Particularly in nanoscale magnetic elements, the current-induced
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magnetization reversal becomes much more effective than field-induced magnetization reversal.
This is a crucial issue in the realization of magnetic random access memories (MRAM). Another
manifestation of the spin transfer processes is found in the current-driven domain wall motion
[35]. This phenomenon forms the functional basis for novel magnetic logic and memory devices
[36, 37, 38].

4.2 Materials
Spin-dependent transport phenomena are often linked to specific material systems and classes.
Consequently, the wealth of spin effects which have emerged during the last twenty years has
been closely accompanied by a strong efforts in materials synthesis and an enormous broaden-
ing of the materials basis. Nowadays it covers the full range from metals to insulators, from
ferromagnets to antiferromagnets, and from thin films to molecules.

4.2.1 Halfmetallic ferromagnets

The spin polarization of the charge carriers in the vicinity of the Fermi level P (EF ) is a central
quantity in spintronics, as it often decides about the efficiency of spin transport and transfer
processes and the effect magnitude, which can be obtained. This can be directly seen, for
example, in the simple Jullière model of the tunneling magnetoresistance, the quantitative form
of which is given in Eq. 3. If we increase the spin polarization of the electrode materials from,
say Pi = 0.4 (a typical value for Co) to Pi = 0.8, the TMR ratio will rise by almost a factor
of 10 from ∆R/R = 38% to ∆R/R = 356%. Another illustrative example is found in spin
injection from metal electrodes into semiconductors. Due to the large conductivity mismatch
at the metal-semiconductor interface, electrons injected from a metallic ferromagnet into the
semiconductor will be depolarized. In diffusive transport, the ferromagnet must provide a spin
polarization of close to 100% in order to provide a sizable spin injection effect [39] or the
resistivity mismatch must be bypassed by means of a tunneling barrier inserted at the interface
[40].

Fig. 10: Diversity of materials
with half-metallic properties dis-
cussed in the context of spin-
tronics applications (taken from
[41]).

In order to obtain a pure spin state at the Fermi level, the electronic structure of the respec-
tive material has to have a gap around EF in either the spin-up or spin-down subbands. This
property of half-metallicity has been found by now in a number of different material classes [42]
(Fig. 10). The formation of the gap relates to specific hybridization phenomena in the electronic
structure. Well-known half-metallic ferromagnets are the half Heusler (XYZ) and full Heusler
alloys (X2YZ), the latter class providing some members with high Curie temperatures. Typical
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representatives are NiMnSb and Co2MnGe, with the gap being ascribed to Ni-Mn interactions
in the first, and to symmetry-split Co minority spin states in the second material [43]. The gap in
full-Heusler alloys is smaller than in half-Heuslers, i.e. the half-metallic state is more sensitive
to chemical disorder and the formation of surface or interface electronic states.
Several classes of oxides also are exhibiting half-metallic properties. A strongly magnetic half-
metal is CrO2, its magnetic properties resulting from a combination of ferromagnetic superex-
change and double-exchange mechanisms. The origin of the half metallicity rests in a gap in the
minority spin bands forming between the occupied oxygen 2p states and empty chromium 3d
states. The half-metallic character of CrO2 depends mainly on the chromium valence and the
crystal field splitting, and is thus considered to be relatively robust. The double-exchange mech-
anisms also determine the magnetic properties in perovskites, for example, La1−xSrxMnO3

(LSMO). These materials have been important in the context of colossal magnetoresistance
[44]. Being an antiferromagnetic insulator for x = 1, a reduction to x = 0.3 leads to a fer-
romagnetic metallic state with half-metallic character, which manganese assuming a high-spin
state. The crystal field splits the electronic levels into t2g and eg manifolds. The half-metallic
character is caused by an interplay of exchange- and crystal-field splitting. The majority-spin
t2g state is rather localized and filled. The majority spin eg state is more spread out and partially
occupied, whereas the more localized minority spin t2g states are positioned at higher energy,
thus being unoccupied.
An example for a material with a majority spin gap is provided by Magnetite (see Sect. 1).
Fe3O4 is a weakly ferromagnetic (ferrimagnetic) half metal with narrow bands and strong cor-
relation effects. The half-metallic state is attributed to a single 3dminority spin electron hopping
among the 3dmajority spin cores on octahedral sites. A majority spin gap appears also in double
perovskites, with Sr2FeMoO6 being one of the first examples investigated in spintronics con-
text. As in the perovskites, the interplay of exchange- and crystal-field splitting is responsible
for the half-metallic gap. In contrast to the perovskites, however, in the double perovskites the
majority t2g and eg manifolds a fully occupied, while the minority t2g states are partially filled.
As a further difference, the Curie temperature may be significantly higher than in conventional
perovskites.

4.2.2 Dilute magnetic semiconductors

A very interesting problem in spintronics is the simultaneous control of charge and spin in
the same system, i.e. the combination of semiconducting and ferromagnetic properties in the
same material. This combination provides two fascinating perspectives. First, assuming that
the ferromagnetism in the material is directly related to the density of the charge carriers
(carrier-induced ferromagnetism), the magnetic state may be easily manipulated by an elec-
tric field ~E acting on the charge density. Second, the semiconducting property is related to
small band gaps and provides a direct pathway to interactions with photons, which may lead
to spin-optoelectronics or optically induced magnetism. These opportunities to create multi-
functional materials drive the research on dilute magnetic semiconductors (DMS). DMS are
nonmagnetic semiconductors, which have been doped with transition metal atoms carrying a
high atomic magnetic moment, typically chromium or manganese. The probably most intensely
studied DMS and one of the very few proven examples for carrier-induced ferromagnetism is
{Ga,Mn}As [45, 46]. The drawback of this material, however, is its low Curie temperature.
The origin of ferromagnetism in magnetic semiconductors is attributed to a Zener exchange
mechanism. Mean-field theoretical treatments within the Zener picture have predicted partic-
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(a)

(b)

(c)

{Ga,Cr}N: 30% Cr

Fig. 11: Curie temperatures of {Ga,Mn}As (a) and {Ga,Mn}N (b) calculated within the mean-
field approximation (MFA) and by Monte-Carlo simulations (MCS). (c) Calculated spinodal
nano-decomposition in {Ga,Mn(30%)}N, leading to T calc

C = 700 K (purple dots mark Cr
atoms). Taken from [48].

ular III-V and II-VI compound semiconductors, namely GaN and ZnO to exhibit Curie tem-
peratures well above 300 K [47]. These predictions have initiated a large materials research
activity on DMS. Although a high Curie temperature has been observed for very high doping
(in the range of several percent of the magnetic element), the origin of ferromagnetism in these
systems is far from being understood, and frequently may be attributed to the formation of in-
homogeneities and magnetic clusters. More elaborate theoretical models show the exchange
interactions to be very short-ranged, which inhibits a magnetic percolation and results in very
low Curie temperatures for a homogeneous spatial distribution of the magnetic dopant atoms
[48] (Fig. 11a, b) – in contrast to the predictions from mean-field approximations. In order to
explain the higher TC-values observed in some experiments, for example, spinodal decomposi-
tion mechanisms have been proposed leading to the enrichment of nanosized regions with the
magnetic dopant and thereby enabling a magnetic percolation in one (Konbu phase) or three
dimensions (Dairiseki phase) [48].

4.2.3 Multiferroics

Multifunctionality is found also in other material classes. Of particular interest for spintronics is
the phenomenon of multiferroicity, which describes the simultaneous presence of ferroic prop-
erties, such as ferromagnetism, ferroelectricity and ferroelasticity [49]. This situation involves
a complex interplay of a spontaneous magnetization ~M with a spontaneous electric polarization
~P and ferroelastic lattice distortions ~ε (Fig. 12). This coupling of physical parameters gives
rise to fascinating effects, such as the magnetoelectric effect, which creates a magnetization ~M
through an electric field ~E. Vice versa an electric polarization ~P may be created by subjecting
the material to a magnetic field ~H . We may thus think about entirely new device paradigms,
for example, electric field controlled magnetic data storage based on multifunctional tunneling
contacts [50]. However, attempts to design multiferroics that combine ferromagnetism and fer-
roelectricity in the same phase have proved unexpectedly difficult, as either the ferromagnetic or
ferroelectric Curie temperature TM

C or TE
C is usually well below room temperature. Exemplary

materials, which have been experimentally addressed show a coexistence of antiferromagnetism
and ferroelectricity, such as HoMnO3 (TM

N = 72 K, TE
C = 875 K) or BiFeO3 (TM

N = 640 K,
TE

C = 1100 K). In BiFeO3 a clear influence of electric fields on the antiferromagnetism has
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been shown already [51].
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Fig. 12: Interplay of elastic,
electric and magnetic interac-
tions in a multiferroic material,
leading to interdependencies of
the spontaneous magnetization
~M , the spontaneous electric po-

larization ~P and the strain ~ε.

The recent advances in the preparation and characterization of well-defined thin oxide films
have enabled to a new research strategy in the field of multiferroicity, building upon layer
stacks of ferromagnetic and ferroelectric thin films [52]. This approach promises an indepen-
dent optimization of the ferroelectric and ferromagnetic properties and thus a chance to taylor
the functionality of the thin film stack within a broader range of the physical parameters.

4.2.4 Carbon-Based Materials

Carbon as an element is a particularly interesting substance for spintronics, mainly because
of two reasons. First, it provides a wide variety of allotropes (fullerenes, nanotubes, graphite,
diamond), all of which have already been studied to some extent with respect to magnetism
and spin-dependent transport. Second, carbon has a low nuclear number, rendering it a material
with small spin-orbit coupling and therefore potentially good spin-transport properties. In fact,
an efficient spin-injection into carbon nanotubes and spin transport through tubes of several
100 nm length has been successfully demonstrated already [53, 54]. This also includes the
electric field control of the spin transport by means of electrical gates [55]. Carbon nanotubes
can also be employed to define quantum dots and are therefore predestined to study the interplay
of quantum and spin transport.
The allotrope graphite has a peculiar structure, as it is composed of graphene layers, which
are only weakly bound to each other by v. d. Waals forces. Graphene consists of a monatomic
planar sheet of carbon atoms, which are arranged in a hexagonal lattice. Representing a two-
dimensional electronic system, graphene has a very unique electronic structure with the Fermi
surface consisting of Dirac points [56]. Electrons which are excited into the conduction band
close to the Fermi level thus behave like massless Dirac fermions. First studies on the spin
transport through single graphene layers have recently revealed extremely large spin relaxation
lengths in the µm range even at room temperature [57]. This finding makes graphene an ex-
tremely compelling system for spintronics applications.
Carbon is also the basis of all organic chemistry, which is employed to synthesize new molec-
ular entities. Organic thin films have already found major applications in microelectronics, for
example, in organic light-emitting diodes (OLED) used in modern displays [58]. Another area
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Fig. 13: Present status and potential future developments in the field of spintronics.

of current research concerns molecular electronics, in which the charge transport through single
molecules is investigated [58]. On the other hand, the field of molecular magnetism would be
unthinkable without metallorganic chemistry [59]. However, spin-dependent transport through
organic layers and molecules is just moving into the focus now. There are considerable im-
provements in the theoretical understanding of spin transport phenomena through molecules
[60]. Despite some successful observations of magnetoresistance effects in certain systems
[61], however, the experimental realizations are still lagging behind. This is mainly due to the
structural and chemical complexity of the interfaces in such organic layer systems and contacts,
which often impairs the sample quality. Careful in-depth characterization of these interfaces
will be needed to arrive at well-defined and reproducible synthesis procedures [62].

5 Future developments

Today, both giant and tunneling magnetoresistance have reached the market. The second gener-
ation of spintronics-based hard disk read heads is already based on magnetic tunnel junctions.
Strong efforts are directed towards the development of MRAMs (Fig. 13). The future evolu-
tion of spintronics aims at improving the degree of spin control with a long-term perspective
towards quantum information processing. On this pathway, there are four major topics to be
dealt with. First, the reduction of lateral and vertical dimensions of the magnetic elements re-
quires the investigation of fundamental questions of magnetism on the nanoscale. Second, the
microscopic mechanisms of spin transport and transfer processes and particularly the issue of
spin coherence needs to be explored. Third, the dynamical behavior of magnetic and spin sys-
tems must be understood in order to overcome the limitations of magnetic switching processes.
Fourth, the area of nanoferronics addresses the microscopic mechanisms of multiferroicity and
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the implementation of multifunctional components into spin transport devices. Of course, these
four topics are strongly interrelated and will be cross-fertilizing each other.
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1 Introduction

Since the word “spintronics” comprises both the spin and its carrier, the electron, in a word that
promises application – like electronics – it is natural to start a series of lectures on spintronics
with a general introduction on the electronic states in solids. In a periodic crystal these states
are characterized by their momentum, their spin, and one additional quantum number (the band
index) which set the playground for important effects in spintronics, like magnetoresistance or
spin-flip scattering, and constitute the materials to build spin-filters, spin-valves, spin-FETs etc.
In the last forty years “band-theory” became an indispensable tool for the description and char-
acterization for many states of condensed matter, be it (band) insulators, semiconductors or
metals. Also in so-called strongly correlated electron systems, where a subset of states shows
correlation effects that are typically not covered by band-theory, a proper description of the
more delocalized bands is indispensable since the unique material properties are determined by
the coupling of the localized, correlated states to these bands. While these theories started as
more conceptual tools for the understanding of the solid state, nowadays advances both in the-
ory and (computer) simulation techniques made it possible to predict electronic (and magnetic)
properties on a quantum mechanical basis. Most notably, density functional theory developed
into a reliable tool for material scientists which aim at designing materials with selected proper-
ties. In particular for spintronic applications we have to meet very specific demands which can
only be accomplished through an fundamental understanding of electronic states in solids.
Of course there are many materials – often with promising functional properties – that need a
theoretical description beyond the one given in this lecture. Some of the subsequent lectures
will cover part of these, like strongly correlated oxides. Mesoscopic quantum systems and their
properties, effects on more mesoscopic length scales (e.g. Hall effects) etc. will be discussed at
a later stage. Here, we deal mainly with the electronic ground state of matter from an atomistic
point of view. The discussion of magnetic phenomena will be left out except in connection to
spin-orbit coupling, where it natural to include also magnetic materials in the discussion. Other
aspects will be covered by the contribution on the “electronic basis of magnetism”.
In a first section we will look at the basic properties of electrons in an infinite periodic lattice.
We will ignore their mutual interactions but incorporate the proper symmetry that defines the
quantum numbers (constants of motion) of the system in a nonrelativistic context. The interac-
tion between electrons is then the topic of the second section, where methods will be discussed
to treat Coulomb- and exchange interactions e.g. Hartree-Fock and density functional theory or
the GW approximation. While up to that point the spin of the electron was just considered as
an additional quantum number, in the last section we will introduce the spin as a real vectorial
quantity that can be manipulated in utilized as required for spintronic applications. Since spin
is an inherently relativistic phenomenon, a theory on the level of the Dirac equation will be
required, which is outlined in the appendix.

2 Electrons in a lattice

The electronic properties of a periodic solid are to a large part determined by the symmetry of
the lattice that is formed by the atomic nuclei. They create a periodic potential in which the
electrons (in particular the most loosely bound valence and conduction electrons) are moving.
The constants of motion of such a system are determined by the symmetry, here in particular
the translation symmetry in the crystal. Therefore, we start with a discussion of the symmetry
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properties of a crystal that leads us to Bloch’s theorem and illustrate these considerations for
the case of a nearly free electron gas. To be specific, we present a couple of prototypical band
structures to see how – even in the presence of electron-electron interactions – many properties
can be inferred from the crystal symmetry. For a more extended treatment of these topics, the
reader is referred to standard textbooks on solid state physics, e.g. Ref. [1].

2.1 Translation symmetry

The structure of an infinite periodic crystal can be considered as a space filling repetition of
non-overlapping units cells in three dimensions. The origin, R, of an unit cell can be written as

Rn = An ; where A =

⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ and n =

⎛
⎝ n1

n2

n3

⎞
⎠ (1)

where the ni are integer numbers labeling the unit cell andA is the Bravais matrix of the crystal.
In each unit cell n, a finite number of atoms (denoted by α) are located at positions

rn,α = Rn + τα (2)

and the vectors τ α are called the basis of the lattice. A crystal, that can be described by equa-
tions (1) and (2), is invariant under an infinite set of symmetry operations which can be classi-
fied as translations, T , and (proper and improper) rotations,R, and combinations of these two.
Here, we will focus on the translations, which act on some function in real space, f(r):

TRnf(r) = f(r + Rn) . (3)

The Hamiltonian of the electrons in a periodic solid consists of three parts: the kinetic energy of
the electrons, T , their mutual Coulomb repulsion, Ve−e and the potential created by the nuclei,
Vext. The first two parts of the Hamiltonian are invariant with respect to any translation, but the
latter term will only be unchanged if the translation vector is a lattice vector, Rn:

TRnVext(r) = Vext(r + Rn) = Vext(r) . (4)

Therefore, the total Hamiltonian, H, commutes with the translation operator TRn and both
operators will have common eigenfunctions.
To find the eigenvalues γ of the translation operator, we consider the successive action of two
translation operators on a function:

TRn′TRnf(r) = TRn′γ(Rn)f(r) = γ(Rn′)γ(Rn)f(r)

TRn′TRnf(r) = TRn′+Rnf(r) = γ(Rn′ + Rn)f(r) . (5)

The fact that γ(Rn′)γ(Rn) = γ(Rn′+Rn) suggests, that the vectors R appear in an exponential
form in γ, i.e.

γ(Rn) = eRn·P . (6)

If we consider, that f is a normalized function, φ(r), that should not grow or vanish expo-
nentially in an infinitely extended solid by applying a translation, we can assume that P is an
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imaginary quantity and write it as ik. We can use this vector k to label the functions φ according
to

TRnφk(r) = eiRn·kφk(r) . (7)

The matrix elements of the Hamilton operator with two such functions should be invariant to a
lattice translation, i.e.

〈φk′(r)|H|φk(r)〉 = 〈TRnφk′(r)|H|TRnφk(r)〉 =
〈
eiRn·k′

φk′(r)|H|eiRn·kφk(r)
〉

= eiRn·(k−k′) 〈φk′(r)|H|φk(r)〉 (8)

which means, that either the exponential factor is unity or the matrix element must vanish. From
the translation symmetry properties of the lattice we can thus conclude, that we only get non-
vanishing matrix elements, if Rn · (k− k′) = 2πN , if N is some integer number. The latter
condition can be brought into a slightly different form, if we write

Rn = An ; k− k′ = Bm and AB = 2π1 (9)

where 1 is the 3 × 3 unit matrix and B defines a lattice, where the lattice vectors are given by
Km = Bm for integer vectors m. This lattice is called the reciprocal lattice and Km is called
a reciprocal lattice vector. To get non-vanishing matrix elements, k − k′ must be a reciprocal
lattice vector.
This result will help us in two ways: firstly, this results holds for all kinds of operators, that
commute with the translation operator, i.e. 〈φk′|O|φk〉 is only non-vanishing, if k− k′ = Km.
E.g. if O describes some excitation of the crystal and the φ’s are wavefunctions of the ground-
and excited state, we can derive selection rules from this symmetry. Secondly, if we consider
that φk is a trial function for the solution of the Dirac or the Schrödinger equation, we can im-
mediately block-diagonalize the Hamiltonian in blocks of wavefunctions, where the difference
of two wavevectors k and k′ is a reciprocal lattice vector. This allows us to restrict the values of
k to the smallest ones in each block and to use this vectors as quantum numbers that label the
wavefunctions in the solid. The volume filled by these k-vectors is called Brillouin zone and it
is the equivalent of the Wigner-Seitz cell in real space, but now in reciprocal space.
The reciprocal lattice is particularly useful to describe lattice periodic functions:

u(r) =
∑
Km

eiKm·ru(Km) since u(r + Rn) =
∑
Km

eiKm·(r+Rn)u(Km) = u(r) . (10)

We can now write the eigenfunctions of the translation operator according to equation (7) as

TRnφk(r) = TRn(eik·ruk(r)) = eik·Rneik·ruk(r) = eik·Rnφk(r) . (11)

Functions of the form eik·ruk(r) are called Bloch functions. They are the eigenfunctions of the
translation operator TRn and play an important role in the electron theory of periodic solids.
Since we know that TRn and the Hamiltonian commute, also the eigenfunctions of H can be
written in this form:

Hφk,ν(r) = εk,νφk,ν(r) ; φk,ν(r) = eik·ruk,ν(r) . (12)

This is called Bloch’s theorem. We introduced an additional quantum number ν to distinguish
the different solutions that belong to the same vector k. They will correspond to different values
of uk,ν(Km) in equation (10).
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Fig. 1: Band structure of a free electron gas (left) with three parabolic bands, originating from
reciprocal lattice points outside the Brillouin zone (BZ, white). In the case of a nearly-free
electron gas, i.e. in the presence of a periodic potential, the degeneracy of the bands at the BZ
boundaries and at the origin will be lifted (thick lines, right panel).

Let us illustrate these points with the simplest possible example, a non-interacting electron gas
in an uniform potential, V0. Since the wavefunction is separable, it is sufficient to study the
Hamiltonian for a single particle, that is of the form

H = − �
2

2me

∇2 + V0 . (13)

Omitting the constant potential and using atomic units (� = 1, me = 1) we can write the
Schrödinger equation with Eq. (10) and Eq. (12) as

−1

2
∇2

(∑
Km

ei(k+Km)·ruk,ν(Km)

)
=

1

2

∑
Km

(k + Km)2ei(k+Km)·ruk,ν(Km) = εk,ν
∑
Km

ei(k+Km)·ruk,ν(Km) . (14)

To fulfill Eq. (14) for each Km we get a solution

εk,ν =
1

2
(k + Km)2 , (15)

i.e. the eigenvalues can be described as parabolas in k-space originating at reciprocal lattice
points. This is illustrated in figure 1 in one dimension: if we restrict our description to the first
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Brillouin zone (BZ), we observe that for each k-vector we obtain an infinite, but discrete set of
eigenvalues. At each k-point, we can label these eigenvalues with the band index ν increasing
with energy. A set of eigenvalues with the same index ν is called a band. At the boundaries
of the BZ we observe band crossings, which will – in general – disappear for more realistic
potentials (see next subsection).
Before we study the effect of a non-constant potential, it is instructive to study the problem of
the free electron gas with a different choice for the wavefunctions. Although planewaves are
a perfect solution to the free electron problem, in many real situations the eigenfunctions can
be regarded to be derived from atomic wavefunctions, s, p, d, or f -like. Of course in a crystal
they form linear combinations that have to fulfill Bloch’s theorem, i.e. if we start from atomic
functions χ(r) centered on lattice sites Rn, we choose a form

φk(r) = eikr
∑
n

χ(r−Rn) . (16)

E.g. if χ is a spherical s-like function, it is modulated by the k-dependent “Bloch factor” with
a period of 2π/k throughout the crystal. In the spirit of the tight-binding approximation, it is
convenient to write

φk(r) =
1√
N

∑
n

eikRnχ(r−Rn) , (17)

where N is the number of lattice sites in the sum. This allows us to estimate the energy as the
expectation value of the Hamiltonian:

ε(k) =
1

N

∑
n,n′

〈
eikRnχ(r−Rn)|H|eikRn′χ(r−Rn′)

〉
=
∑
n

eikRn 〈χ(r)|H|χ(r−Rn)〉 .

(18)
Assuming a linear chain of atoms with a lattice constant a, where only the nearest neighbor
atoms have significant overlap, this reduces to

ε(k) = 〈χ(r)|H|χ(r)〉+ eika 〈χ(r)|H|χ(r− a)〉+ e−ika 〈χ(r)|H|χ(r + a)〉 . (19)

Since the nearest-neighbor integrals are identical, we can write

ε(k) = α+ 2β cos(ka) where α = 〈χ(r)|H|χ(r)〉 and β = 〈χ(r)|H|χ(r± a)〉 . (20)

For a s-type wavefunction, β is negative and ε is lowest at k = 0. With increasing k the
energy increases and reaches its maximum at k = π/a. The situation is similar to planewave
description, although the energy is too high now at the zone boundary, where the Bloch factor
forces the s-type wavefunction to disappear at every second atom, since it cannot describe
the node at this position properly. At this k-point, a p-type wavefunction would be required.
Such “odd” functions have a positive β and their energy decreases from k = 0 towards the
zone boundary, like indicated in the second band in figure 1. As we will see later, realistic
bandstructures of simple metals indeed start at low energies with a parabolic, s-type band,
followed by three inverted parabolas that correspond to p-type states. Many properties of the
valence electrons of these metals can be found in the simple free-electron picture of this section.

2.2 Nearly free electrons

Of course, the electrons in a crystal feel a periodic potential that differs considerably from out
constant model potential. The attractive potential of the nuclei is partially screened by energet-
ically low-lying core electrons, i.e. the valence electrons “feel” a potential that is smoothed by
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electrons that are bound closely by the nuclei. This is the external potential, Vext, encountered
in Eq. (4). Since it has lattice periodicity, it can also be expanded in reciprocal lattice vectors:

Vext =
∑
Km

eiKm·rV (Km) . (21)

Adding this potential term to the Hamiltonian modifies Eq. (14) and we get

∑
Km

(
εk,ν − 1

2
(k + Km)2

)
uk,ν(Km)ei(k+Km)r =

∑
Km

∑
K′

m

V (K′
m)uk,ν(Km)ei(k+Km+K′

m)r.

(22)
Introducing K′′

m = K′
m + Km, we write the right part of Eq. (22) as

∑
K′′

m

∑
K′

m

V (K′
m)uk,ν(K

′′
m −K′

m)ei(k+K′′
m)r. (23)

Substituting back Km ← K′′
m and comparing the coefficients with the left side of Eq. (22) we

obtain (
εk,ν − 1

2
(k + Km)2

)
uk,ν(Km) =

∑
K′

m

V (K′
m)uk,ν(Km −K′

m) . (24)

For the case of a constant potential, we set V (0) = V0 and all other Fourier coefficients to zero.
In this case, Eq. (24) reduces to

(
εk,ν − 1

2
(k + Km)2

)
uk,ν(Km) = V0uk,ν(Km) (25)

which corresponds, apart from an additional constant V0, to Eq. (15). Eigenfunctions are again
planewaves with wave vector Km, i.e. the Fourier coefficients for the expansion of the wave-
function, uk,ν(Km) for a certain state ν are unity for a specific Km and zero otherwise. If we
consider uk as a matrix with dimensions ν and Km, we find that for the case of a constant
potential uk is the unit matrix 1 (we denote matrix quantities here and in the following with an
underline).
If the potential is of general shape, the expansion coefficients uk,ν(Km) can be obtained from
Eqs. (24). We can rewrite these equations using 1

2
(k + Km)2 = ε0

k,Km
in the form

(
εk,ν − ε0

k,Km

)
uk,ν(Km) =

∑
K′

m

V (K′
m −Km)uk,ν(K

′
m) . (26)

If we write V in matrix form and consider u and ε0 as vectors, this equation can be rewritten in
the form of a standard eigenvalue problem:

(
V + ε0

k1
)
uk,ν = εk,νuk,ν . (27)

Let us finally analyze, how a weakly varying potential affects the bandcrossings at k = π/a
in figure 1. The lowest bandcrossing is formed by a parabola originating at Km = 0 and a
parabola that has its minimum at Km = K1. In the vicinity of the crossing, we denote the
(unperturbed) eigenvalues of these two states as ε0

+ = V0 + ε0
0 and ε0

− = V0 + ε0
K1

. Ignoring all
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other states, the potential matrix V will be a 2× 2 matrix which has diagonal elements V0 and
off-diagonal elements V−K1 and VK1 . Eq. (27) has then the form

(
V0 + ε0

0 VK1

V−K1 V0 + ε0
K1

)(
u0

uK1

)
= ε

(
u0

uK1

)
. (28)

This problem can be solved by setting the determinant to zero:
∣∣∣∣ ε

0
+ − ε VK1

V−K1 ε0
− − ε

∣∣∣∣ = 0 (29)

resulting in

ε1,2 =
ε0
+ + ε0

−
2

±
√(

ε0
+ − ε0−

2

)2

+ |VK1|2 . (30)

In case the two eigenvalues ε0
+ and ε0

− coincide, the non-constant potential will lift this degen-
eracy and lead to a splitting of ±|VK1|. If |VK1| is small compared to ε0

+− ε0
−, e.g. k is far from

the zone boundary, the effect will be small. Likewise, the interaction with other bands, that
are energetically far away, will be small and our assumption to consider just two bands near a
crossing will be justified.
Of course, in realistic bandstructures more than two bands can be energetically close and not all
potential Fourier coefficients will be small, so that more complicated interactions will occur. In
this case, it is necessary to solve Eq. (27) in full.

2.3 Bandstructures of selected systems

To visualize the effects of the crystal lattice, we shortly discuss here two simple examples of
bandstructures. First, we consider the sodium crystal, which is body-centered cubic and has
a very low valence electron concentration. In contrast, the face-centered cubic copper crystal
contains eleven valence electrons, some of them rather closely bound, being rather far from the
free electron gas limit.
First we discuss the electronic structure of sodium, which is a simple metal from the first column
of the periodic table. All the metals in this row crystallize in a bcc lattice and with a single
valence electron per atom. Thus, the Na bandstructure is prototypical for these elements, like
K or Rb [2]. Due to its low electron density (the s-electrons are typically very delocalized in
metals), it is already very close to an almost free electron gas in a periodic lattice.
The bandstructure in figure 2 has been obtained by density functional theory (DFT), that will be
outlined in the next section (3.2). As can be seen from this figure, the bottom of the occupied
band is almost parabolic, as expected for a free-electron like dispersion. We see, however, that
gaps are opening at the boundaries of the Brillouin zone, e.g. at the N-point. Above the s-band
three downward dispersing p-bands can be observed with very different dispersions. E.g. in ΓN
direction, only one band reaches down to the s-band, while the other two bands remain above
8 eV.
We should notice, that even in this very simple case one has to be careful when comparing
singe-particle eigenvalues (figure 2) with experimental photoemission results: While the Fermi
surface, i.e. the surface that is created by all states k, ν which fulfill the condition εk,ν = EF,
is in very good agreement, the bottom of the s-band is too low as compared to the experiment.
Photoemission results show that 2.5 eV are required to excite an electron at the Γ-point to the
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Fig. 2: Band structure of sodium (left) and the reciprocal unit cell of the bcc lattice with high
symmetry points and lines (right). The right image was taken from the Bilbao Crystallographic
Server [3].

Fermi level, while the DFT eigenvalue is at about −3.2 eV [4]. Methods to calculate excitation
spectra will be shortly discussed in subsection 3.4.
As a second example, we show in figure 3 the band structure and Fermi surface of fcc Cu.
Again, we can see that the bottom of the valence band is formed by a parabolic s-type band,
but between −1.5 and −5.0 eV flat d-bands are crossing. Due to symmetry some of these five
bands are degenerate at the displayed high-symmetry lines and points, e.g. at the Γ-point a 3-
fold and a 2-fold degenerate state (corresponding to t2g and eg symmetry) can be seen. It might
be interesting to notice, that the bandstructures of the three coinage metals Cu, Ag, and Au are
rather similar, only in the case of Ag the d-band is shifted about 2 eV further away from the
Fermi level. This accounts for the different colors of these metals, i.e. the smaller the energy
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Fig. 3: Band structure of copper (left) the Fermi surface (right, red) with the reciprocal unit
cell of the fcc lattice in blue and the high symmetry points and lines (yellow).
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difference between Fermi level and the d-band, the more reddish the color. Density functional
theory reproduces this trend reliably, provided that in case of Au scalar-relativistic corrections
(cf. Appendix) are included in the Hamiltonian [5]. The Fermi surface of Cu is not spherical,
as in the case of Na, but shows characteristic necks which can also be observed in De Haas-Van
Alphen oscillations experimentally. Again, the electronic structure at the Fermi level is quite
reliably described by the calculation.

3 Interacting electrons

In any realistic calculation, we cannot simply ignore the mutual Coulomb repulsion of the elec-
trons and we have to include the term

Ve−e =
1

2

∑
i�=j

1

|ri − rj| (31)

in the Hamiltonian (since we work in atomic units, e2 = 1). This destroys the separability of the
wavefunction and the straightforward quantum mechanical treatment of the electronic degrees
of freedom is limited to a very small number of particles. This is mainly due to the appear-
ance of the manybody wavefunction Ψ(r1, r2, . . . , rN), which contains a tremendous amount of
information and is difficult to handle for N larger than a few dozen or so.
One can try to construct Ψ from single particle wavefunctions and combine them to manybody
wavefunctions of different complexity: a simple product Ansatz, Ψ = φ1(r1)φ2(r2) . . . φN(rN),
leads to the so called Hartree approximation. Unfortunately, this form of the wavefunction is
not compatible with the Pauli principle, i.e. interchanging two arguments of Ψ does not lead
to −Ψ. In the Hartree-Fock (HF) method, the wavefunction has the form of a determinant of
a N × N matrix of single particle wavefunctions φμ(rν) with 1 ≤ μ, ν ≤ N , which ensures
that the Pauli principle is fulfilled. Therefore, the HF method leads to better results (e.g. bind-
ing energies) than the Hartree method. The energy contribution missing in the latter method
as compared to the former one is called exchange energy. Although the HF method is numeri-
cally quite complicated, the obtained energies are still often quite far from the true ground state
energies. What is missing is called correlation energy and the results can be improved by e.g.
constructing the manybody wavefunction as a linear combination of many determinant func-
tions. These so called configuration-interaction (CI) methods can be systematically improved,
but the numerical effort is huge. While the HF method scales nominally like N4, calculational
schemes that include correlation scale with N5 (second order Møller-Plesset perturbation the-
ory) or N7 (Coupled Cluster theory). A good account of these quantum-chemical methods can
be found in the article of V. Staemmler in Ref. [6].
A completely different approach is taken by the density functional theory (DFT): although in
most cases the true wavefunction is impossible to access, this poses no fundamental limitation
since normally we are not interested in Ψ, but in a limited number of physical observables. Den-
sity functional theory therefore bypasses the troublesome manybody wavefunction and starts
directly from the density of the particles in question (in our case electrons) allowing thereby the
treatment of a large number of particles.
As we will see, DFT is quite suitable to describe the many aspects of the electronic structure.
Also structural properties, like lattice parameters, that can be obtained from total energies are
very well accessible in DFT, since the total energy is a quantity that has a definite meaning in
this theory. In metals also other electronic properties are reproduced well, mainly due to the
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Fig. 4: Left: LDA bandstructure of Si around the Fermi level. Note, that the fundamental gap
is indirect, as found experimentally, but the experimental gap is a factor two larger than the
calculated one. Right: Calculated bandgaps in DFT (LDA) and the GW-approximation for
several insulators and semiconductors as a function of the experimental gap (data taken from
Ref. [7]).

fact that they are dominated by states near the Fermi level. Evidence, that these electrons can be
qualitatively described in an independent particle description (similar to the “particles” in DFT)
comes from Landau’s Fermi liquid theory [1].
In insulators or semiconductors, we are typically interested in states far away from the Fermi
level which cannot be expected to bear very close resemblance with the single particle states
described by DFT (and also other methods that will be discussed below). As an example, we
show in figure 4 the bandstructure of silicon. Although DFT can describe many properties of Si
reliably (e.g. the lattice constant or the Γ-point phonon turn out to be in good agreement with
the experiment), the experimental bandgap is a factor two larger than the energy difference be-
tween the highest occupied and the lowest unoccupied state. This does not mean, that the DFT
bandstructure would be useless, it “predicts” correctly the nature of the bandgap as indirect be-
tween the Γ-point and the ΓX-line, but the valence and the conduction band are too close by the
same amount throughout the BZ. This close resemblance between calculated bandstructure and
experimental data lead to the fact, that the too small bandgaps in DFT are often called a “DFT
problem” but of course, these bandstructures simply do not describe the electron-removal or
electron-addition process that defines the bandgap. Other methods, like the GW approximation
to manybody perturbation theory are available for this purpose and will be described at the end
of this section.

3.1 The Hartree and the Hartree-Fock approximation

Let us start with the many-body Schrödinger equation for the electrons

∑
i

(
hi +

1

2

∑
i�=j

1

|ri − rj|

)
Ψ = εΨ with hi = −1

2
∇2

i + Vext(ri) (32)
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where Vext(r) includes the potential arising from the interaction with the nuclei and other
possible external potentials. Assume that we found solutions to the single-particle Hamilto-
nian hi and denote them φi(ri). Then, we can try to construct Ψ from these single particle
wavefunctions and combine them to a manybody wavefunctions by a simple product Ansatz,
Ψ = φ1(r1)φ2(r2) . . . φN(rN).
Ignoring the interaction part in Eq.(32) for the moment, we study a system of independent
electrons. Then, if we multiply from the left with all single particle wavefunctions except one
(e.g. φi) and integrate over all r’s except ri, we arrive at a set of equations

hiφi(ri) = (ε−
∑
j

εj)φi(ri) where hjφj(rj) = εjφj(rj) . (33)

In this case, the eigenvalue of the manybody wavefunction, ε, is obviously the sum of all single
particle eigenvalues, εi. Given the fact that electrons are fermions and cannot occupy a state
more than once, this means that the ground state of our system will be the one that has the
lowest N single particle states occupied.
Now, if we reintroduce the electron-electron interaction and go through the same steps, we get
a coupled set of equations

(hi + Vi(ri))φi(ri) = (ε−
∑
j

εj)φi(ri) with Vi(ri) =
∑
j �=i

〈
φj(rj)| 1

|ri − rj| |φj(rj)
〉

(34)
where Vi(ri) is the potential created by all electrons except the one described by φi. Solving
these equations is already a complicated task, but a considerable simplification can be achieved
if we assume that in an infinite solid there are so many electrons in the system, that we can
assume that every electrons “sees” the same potential arising from all the states

VH(r) =
∑
j

〈
φj(rj)| 1

|r− rj| |φj(rj)
〉
. (35)

This leaves a singe equation for all states

(h+ VH(r))φi(r) = εiφi(r) (36)

which has to be solved self-consistently. This means, since VH – the Hartree potential – depends
on the states φi, first a guess for this potential has to be made (e.g. for states calculated in
the independent electron approximation), and then Eq.(36) can be solved initially. With the
solutions in the next iteration a new, better guess for VH can be obtained and this process can be
repeated until the potential does not change any more from one iteration to another.
What we can learn from this so-called Hartree method are two things: in some approximation
we can retain the notion of single-particle states and occupy them by an Aufbau-principle to
construct a manybody wavefunction. In a self-consistent scheme, equations for these single-
particle states can be solved to obtain a solution iteratively. The other lesson to learn is, that
already a simple product Ansatz is very difficult to handle unless we make approximations, like
substituting the state-dependent potential Vi by the Hartree potential, VH, thereby introducing
some self-interaction of the single-particle states.
However, this is not the most severe shortcoming of the Hartree method: as mentioned above,
the biggest approximation we introduced in the beginning by choosing a simple product Ansatz.
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This construction of the many-body wavefunction of N non-interacting electrons still suffers
from a serious problem in the treatment of the fermionic nature of the electrons. The simple
product of single-particle states does not fulfill a basic requirement for fermions which states
that the many-body wavefunction has to be anti-symmetric under the exchange of two particles

Ψ(x1, . . . ,xi, . . . ,xj , . . . ,xN) = −Ψ(x1, . . . ,xj , . . . ,xi, . . . ,xN) (37)

where we introduced x = (r, σ) to denote the combination of the spatial and spin degrees of
freedom. For the moment it is sufficient to consider the spin, σ, simply as a label that can
assume two values.
However, it was realized early by Slater [8], that an anti-symmetric linear combination of prod-
uct wavefunctions can be constructed, which has the desired property. This construction is
known as a ’Slater determinant’ as it can be expressed in terms of a determinant of a matrix
containing the single-particle states

ΨSlater(x1 . . .xN) =
1√
N !

∣∣∣∣∣∣∣
φ1(x1) . . . φ1(xN)

...
. . .

...
φN(x1) . . . φN(xN)

∣∣∣∣∣∣∣
=

1√
N !

∑
P

(−1)PP (φ1(x1) . . . φN(xN )) . (38)

In this notation the sum is performed over all permutations P acting on the indices i of the φi.
The factor (−1)P ensures the required anti-symmetry.
The Slater-determinants as given in Eq. (38) form an anti-symmetric solution of the non-
interacting Schrödinger equation. It can be shown that using all possible combinations of
single-particle wavefunctions these determinants form a basis of the space of theN-body wave-
functions so that the interacting many-body wavefunction can be expressed as a linear combi-
nation of Slater determinants. Such an expansion forms the basis of complicated and expensive
computational methods like so called configuration interaction calculations which yield high
accuracy but can be performed only for a small number of electrons N .
Using these determinant functions to find a solution for the Hamiltonian as shown in Eq.(32) is
the essence of the Hartree-Fock method. The derivation of the equations is somewhat lengthy
but rather straightforward. The strategy is to vary the functions φ to make the expectation value
of the many body Hamiltonian 〈Ψ|H|Ψ〉 an extremum under the constraint that the functions φ
are normalized to unity. This constraint is introduced by an Lagrange multiplier εi,σ for each
φi,σ. This leads then to the so called Hartree-Fock equation

(
−1

2
∇2 + Vext(r) + VH(r)

)
φi,σ(r) +

∑
j,σ′

∫
φ∗
j,σ′(r

′)φi,σ′(r′)

|r− r′| dr′φj,σ(r) = εi,σφi,σ(r) . (39)

It is the last term on the left side of Eq.(39) that introduces the physics missing in the Hartree
method. It can be rewritten to give the equation a more familiar form:

(
−1

2
∇2 + Vext(r) + VH(r) + Vex(r; iσ)

)
φi,σ(r) = εi,σφi,σ(r) . (40)

In addition to the non-interacting single-particle Hamiltonian two additional single-particle po-
tential terms appear which describe the Coulomb interaction. The first one we know already as
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the Hartree potential. The second term, the so called exchange potential, is a combined effect
of Coulomb interaction and the antisymmetry condition and can, therefore, not be interpreted
classically. This term can be written

Vex(r; iσ) = − 1

φ∗
i,σ(r)φi,σ(r)

∑
j,σ′

〈
φi,σ(r)φj,σ′(r

′)| 1

|r− r′| |φi,σ(r
′)φj,σ′(r)

〉′
(41)

where the integration (〈〉′) is assumed over r′. If the summation in Eq.(41) would be restricted
to the term j = i only, we would recover Eq.(34) indicating that the exchange potential in the
Hartree-Fock method contains a self-energy correction. Again we arrive at a state dependent
potential, that can be thought to originate from a (nonlocal) charge density

niσex(r, r
′) =

∑
j,σ′

φ∗
i,σ(r)φ

∗
j,σ′(r

′)φi,σ(r′)φj,σ′(r)

φ∗
i,σ(r)φi,σ(r)

. (42)

nex has the property that it integrates to unity, so it corresponds to the charge of a single elec-
tron. Furthermore, for a spin σ and the limit r = r′ it reduces to the state-independent value∑

j φ
∗
j,σ(r)φj,σ(r). This charge density is also called the exchange hole, describing the influence

of a state i, σ when moving through the ensemble of all states in the system. We will encounter
the exchange hole once more in the context of density functional theory where it appears in a
state-independent form, actually very similar to Slaters idea [9] of a state-averaged version of
Eq.(42) that inspired also the conception of the first exchange-correlation potentials for DFT.
Interestingly, even though this simple construction of the many-body wavefunction as a Slater
determinant only describes non-interacting systems, the description of the complicated many-
body interaction in terms of single-particle states φi is a rather useful and powerful concept
frequently also used for the case of interacting particles. This success of the single-particle
description of the interacting system is even more surprising if one considers the both very
strong and very long-range character of the Coulomb interaction. It can be understood and
explained by the theory of Fermi-liquids introduced by Landau [10].

3.2 Density functional theory

While many researchers were working on more tractable versions of the Hartree-Fock method,
in the middle of the sixties Hohenberg and Kohn [11] worked out two central theorems that
form the basis of a conceptually different approach, the density functional theory: Consider
a system of N particles (e.g. electrons) moving in an external potential V (r) (caused by e.g.
nuclei). In a non-degenerate ground state (i) the many-body wavefunction Ψ and V (r) are
uniquely determined by the particle density distribution n(r) and (ii) there exists an energy
functional of this density, E[n(r)], which is stationary with respect to variations of the ground-
state density. These two theorems allow – at least in principle – the determination of the ground-
state density and energy of a N-particle system by searching for the density that minimizes the
energy functional. Extracting the classical Coulomb interaction energy, this Hohenberg-Kohn
energy functional takes the form

E[n(r)] =

∫
Vext(r)n(r)dr +

1

2

∫ ∫
n(r)n(r′)
|r− r′| drdr

′ +G[n(r)] (43)

where the functional G[n(r)] contains all other contributions.
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If we succeed to find the functionalG[n(r)] or a good approximation to it, the immediate advan-
tage of DFT is that, instead of dealing with the full manybody wavefunction, Ψ(r1, r2, . . . , rN),
we can work with the much more tractable density, n(r). Although more information is directly
accessible from the wavefunction than from the density,

n(r) =

∫
dr2 . . .

∫
drNΨ∗(r, r2, . . . , rN)Ψ(r, r2, . . . , rN) (44)

in DFT many physical quantities, like the structural properties or bond strength can be obtained
for large systems, where a manybody wavefunction would be impossible to access. E.g. cal-
culations of the ground-state energies for different external potentials, as they result from a
variation of the lattice parameters in a periodic solid, allow the determination of the equilibrium
lattice constant, which is nowadays possible to within a few percents. Early attempts to use the
density as a key parameter for calculations of periodic solids were made by Lenz [12] based on
the statistical method of Thomas [13] and Fermi [14]. In this approach, G[n(r)] was considered
to contain the kinetic energy density (taken to be proportional to [n(r)]

5
3 ). In the Thomas-Fermi-

Dirac method G[n(r)] even contains an exchange energy density term proposed by Dirac [15]
(proportional to [n(r)]

1
3 ). Although the Thomas-Fermi theory has still its applications today, it

never became useful as a theoretical method for the prediction of materials properties [16].
The key idea, that made DFT a success, was to extract from G[n(r)] the kinetic energy T0 of a
non-interacting electron gas in its ground state which has the same density distribution, n(r), as
the interacting system. In this Kohn-Sham theory [17] a new functional

Exc[n(r)] = G[n(r)]− T0[n(r)] (45)

appears, that remains to be determined. Exc is a much smaller term than G and is called
exchange-correlation energy functional, since – as we will see below – without Exc our en-
ergy functional E would yield just the energy in the Hartree approximation. If we take into
account that particle conservation, i.e. N =

∫
n(r)dr, has to be ensured, we can formulate the

stationarity of E in equation (43) with respect to variations of the ground-state density, n, as

δT0

δn(r)
+ V (r) +

∫
n(r′)
|r− r′|dr

′ +
δExc

δn(r)
− λ = 0 (46)

where the Lagrange parameter λ ensures the particle conservation. Expressing the kinetic en-
ergy of the non-interacting particles via their wavefunctions, φi, we can recast equation (46) in
the form of an effective single particle Schrödinger equation, the Kohn-Sham equation:

[
−1

2
∇2 + V (r) +

∫
n(r′)
|r− r′|dr

′ +
δExc

δn(r)

]
φi(r) = εiφi(r) (47)

which has to be solved self-consistently since n(r) =
∑N

i=1 |φi(r)|2. From this point of view,
the structure of the Kohn-Sham equations is very similar to the Hartree approach outlined in
the last subsection. The index i combines now the k-point, k, and the band index, ν. Note,
that without Exc equation (47) reduces to the Hartree equation. Therefore, this last term of
the Hamiltonian is called the exchange-correlation potential, since exchange and correlation are
exactly what is missing in the Hartree approximation.
Although λ was introduced as a Lagrange multiplier and also the εi’s should be strictly be
interpreted in this way, it is usual to derive from the εi’s the bandstructure of a crystal and use the
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wavefunctions φi(r) as approximations to true quasiparticle wavefunctions. Some justification
will be given below and comparison with experimental data often confirms this point of view,
but there are also well known examples, where this interpretation leads to significant “errors”,
like in the comparison of the bandgaps of semiconductors and insulators with bandstructures
derived from these εi’s.
One of the first interpretations of the term, which emerged as the exchange-correlation poten-
tial in DFT, was given by Slater [16] in the context of the Thomas-Fermi method and later in
connection with the Hartree-Fock method [9]. Essentially, it describes the afore mentioned in-
teraction of a particle with the “hole” that is created by its own presence in the gas of the other
particles. This means, that the probability of finding an electron at a position r reduces the
probability of finding another electron at a position r′ nearby, depending of course also on the
spin of the two particles (therefore, in the Hartree-Fock method this hole, Eq. (42), has been
given the name “exchange hole”).
To derive some properties of the exchange correlation energy functional, it is useful to write this
“hole” (exchange-correlation hole in DFT), nxc, in terms of a two-particle correlation function,
g(r, r′) [18]:

nxc(r, r
′) = n(r′)

∫ 1

0

dξ[gn(r, r
′, ξ)− 1] ≡ n(r′)h(r, r′). (48)

Here, gn(r, r′, ξ) is the correlation function of a system of charged particles where the Coulomb
interaction is scaled by a factor ξ and a ξ-dependent potential has been added, so that the density,
n(r), is independent of ξ. Additionally, the so called hole function, h(r, r′), was introduced.
The exchange correlation energy can then be written as

Exc[n(r)] =
1

2

∫
drn(r)

∫
dr′

1

|r− r′|nxc(r, r
′). (49)

Although the exchange-correlation hole can be very complicated in shape, it was soon realized,
that only its radial dependence enters in the exchange correlation energy [19]. This means that
in practice Exc is rather insensitive to details of shape of nxc. Some properties of the exchange-
correlation hole can be derived from the definition via the correlation function g. E.g. there is a
sum rule, which states that nxc corresponds exactly to one electron, i.e. that

∫
dr′nxc(r, r

′) = −1 (50)

has to be fulfilled. Such relations can guide the construction of exchange-correlation functionals
or help to judge the validity of existing approximations to Exc.
One of the big surprises in the early days of density functional theory was certainly the fact, that
even a simple exchange-correlation functional like the local density approximation (LDA) leads
to relatively convincing results. The LDA starts from the limit of the homogeneous electron gas,
assumingExc rather as a function than as a functional of n(r). Its success can now be explained
by the fact, that the exchange-correlation hole in the local density approximation is of the form

nLDA
xc (r, r′) = n(r′)h0(|r− r′|;n(r′)) (51)

where h0(|r− r′|;n) is the hole function of an uniform interacting electron gas of densityn. For
an uniform density, this exchange-correlation hole satisfies equation (50). For a non-uniform
density the sum rule should be at least approximately fulfilled and [20] showed, that in LDA
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this is on average the case. This, together with the fact that Exc depends only on the spherical
average of nxc, is mainly responsible for the success of the LDA.
Also modern, exchange-correlation functionals including gradient corrections are constructed
in such a form, that they fulfill certain conditions that are known exactly in different limits (like
high or low density, constant or slowly varying density etc.). In this way, exchange-correlation
potentials are improved on a parameter-free basis. Alternatively, the functionals (or parts of
the functionals, e.g. the correlation energy) can be fitted to numerical results from manybody
calculations. Another strategy – often used in the chemical literature – is to adjust the functional
to yield best results (like bond-length, dissociation energies etc.) for a given set of systems.

3.3 Extensions to DFT: the LDA+U method

Dealing with f and some d transition metals and their compounds it was realized that, while
the s, p and some d electrons can successfully be described in standard DFT methods, for
the strongly localized electrons a more atomic-like description (e.g. Hartree-Fock) is appro-
priate [21]. Taking into account the different atomic potentials and the stronger screening in the
metal, an atomic theory [22] for these localized states can describe the situation quite satisfacto-
rily. Following this approach, Anisimov et al. [23] merged this atomic picture with band theory
(i.e. standard DFT), to get a “band approach” to Hubbard-type models: For the localized d and
f states, the Coulomb interaction of the electrons is formulated in the spirit of the Anderson
model:

Eee =
1

2
U
∑
i�=j

ninj (52)

where the n’s are here the d-orbital occupation numbers and U is the famous Hubbard parame-
ter, describing the on-site Coulomb interaction. In the local density approximation to this model
the energy of the d− d interaction is [24]

ELDA
ee =

1

2
UN(N − 1) where N =

∑
i

ni . (53)

If we add Eee from equation (52) to the LDA energy functional, ELDA
ee should be subtracted, so

that

ELDA+U = ELDA +
1

2
U
∑
i�=j

ninj − 1

2
UN(N − 1) . (54)

This is a simple version of the LDA+U method. Such a modification of the LDA results in a
shift of the LDA eigenvalues:

εi =
dE

dni
= εLDA

i + U

(
1

2
− ni

)
(55)

i.e. more than half-filled bands are shifted down in energy, while less then half-filled bands are
shifted up. Despite the formal similarity with the Stoner model, it should be noted that the
physical background of this model is quite different [23]. A simple example is given in figure 5,
where the LDA+U method was used to correct the positions of the 4f states in ferromagnetic
bcc Eu. It is easy to see, that the correction has almost no effect on the s and p states, but
shifts down the occupied 4f states (an enhanced localization of these states can be seen by the
narrowing of the band) and pushes the unoccupied 4f levels to higher energies. How large this
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Fig. 5: Left: Density of states of bcc Eu calculated with standard LDA (dashed line) and the
LDA+U (full line) method. A Hubbard U of about 6 eV was used to correct the positions of
the 4f states. The local partial 4f DOS as obtained in LDA is shown as grey shaded area, the
LDA+U result in black. Right: Eu bandstructure obtained in the LDA+U method: majority
spin states (full lines) and minority spin states (broken lines).

shift is, depends of course on the chosen U . Before we turn to the question how to obtain a
reasonable estimate for U , we have to refine the model to see, how we can apply the LDA+U
method on a certain set of states (e.g. 4f ) at a given atom.
To separate the localized orbitals from the itinerant states, for which the LDA provides already
a good description, one chooses a site-centered, {l,m} dependent orbital basis, |ν, l,m〉, where
ν is the site-index of the selected atom and l and m are the angular and azimuthal quantum
numbers, respectively. If the density is given by Kohn-Sham orbitals like

n(+)(r) =
∑
i

w
(+)
i |φ(+)

i (r)|2 and n(−)(r) =
∑
i

w
(−)
i |φ(−)

i (r)|2 (56)

where the weights, w(±)
i , determine the occupation of the states, we can define a density matrix

for spin α in m,m′-space:

nανmm′ =
∑
i

wαi 〈ν, l,m|φαi 〉〈φαi |ν, l,m′〉. (57)

E.g. if we want to apply the LDA+U method on 4f states, we need for each spin a 7×7 density
matrix, where the diagonal elements give the occupancy of the l = 3, m = −3,−2, . . . , 3
orbitals of the selected atom. Using this density matrix, the electron-electron interaction energy
can be formulated as [25]

Eee =
1

2

∑
ν

α,β∑
mm′pq

nανmm′ [〈m, p|Vee|m′, q〉 − 〈m, p|Vee|q,m′〉δαβ ]nβνpq (58)
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and used instead of the simpler version, equation (52). Here, the electron-electron interaction
can be expressed in terms of an angular part, contained in ak, and the radial part that is given by
the effective Slater integrals [22], Fk:

〈m, p|Vee|m′, q〉 =
∑
k

ak(m, p,m
′, q)Fk ; 0 ≤ k ≤ 2l (59)

In terms of the screened Coulomb- and exchange parameters, U and J , the Slater integrals can
be approximated, e.g. for l = 2, as

U = F0 ; J =
F2 + F4

14
and

F4

F2
=

5

8
, (60)

and the ak are sums of integrals of the angular part of the wavefunction with spherical harmon-
ics. Then, we can define an orbital selective potential,

V αν
mm′ =

∑
pqβ

[〈m, p|Vee|m′, q〉 − 〈m, p|Vee|q,m′〉δαβ ]nβνpq −
[
U(nν − 1

2
)− J(nαν − 1

2
)

]
δmm′

(61)
where nαν =

∑
m n

αν
mm and nν =

∑
α n

αν . This spin-, site- and l,m-dependent potential enters
now the Kohn-Sham equation via

[−∇2 + V α
LDA(�r)

]
φαi +

∑
ν

∑
mm′

V α,ν
mm′

δnα,νmm′

δφαi
= εαi φ

α
i . (62)

Thus, we have introduced a Hartree-Fock like potential term that acts on a certain subset of the
orbitals, leaving the others (in a first approximation) unchanged. Equation (62) has to be solved
self-consistently, until both the density and the density matrix are converged. If the Kohn-Sham
equations are solved by expanding the wavefunction into some basis set, for different types of
basis sets also a different orbital basis, |ν, l,m〉, will be convenient. It is clear, that also the
result of the LDA+U calculation will depend to some extent on the choice of the orbital basis,
but in practice for the same parameters U and J also qualitatively the same answers are reached.
As can be seen from figure 5, when applied to 4f metals like Eu or Gd, the LDA+U method
can be used to shift the position of the 4f as a function of U . A comparison to the position
where they are spectroscopically measured can be used to determine a value for U , although
other methods will be described below. One of the problems of LSDA, the prediction of an
antiferromagnetic groundstate for hcp Gd, is resolved when the LDA+U method is applied in
this way [26]. Another improvement due to the LDA+U approach can be seen in the case of
Eu, where LDA would predict a much too small lattice constant, while LDA+U removes this
overbinding caused by the 4f states [27].
More complicated physical phenomena, like orbital ordering, can be introduced in a DFT cal-
culation by the LDA+U method. In perovskite materials a transition metal atom sits in an
octahedral cage of oxygen atoms and its electron system is rather isolated from the rest of the
electronic structure. If a single d electron is left on this atom, e.g. on the V in SrVO3, this
electron is in an almost atomic-like state forming a very narrow band and feels just a small
octahedral crystal field from the neighboring anions. Thus, the d states are split in eg and t2g
states, populated by a single electron. Due to the remaining degeneracy, we would expect a
Jahn-Teller (JT) distortion to form but conventional exchange-correlation potentials fail to cap-
ture this phenomenon. One of the first examples, where this was studied, was KCuF3 where a
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Fig. 6: Left: Total energy as a function of the Jahn-Teller distortion in (paramagnetic) KCuF3

as calculated with the GGA without (dashed red line) and with a Hubbard-U (full black line).
The experimental (cubic) lattice constant and an a-type orbital ordering was assumed. Within
the LDA+U method a quadrupolar distortion is stabilized. Right: Orbital ordering in a d-type
antiferromagnetic structure of KCuF3. The distorted octahedra, formed by the fluorine atoms,
are indicated by red lines, the unit cell in gray. Blue spheres are K atoms, the magnetization
density (mostly on the Cu atoms) is shown in red.

single d-hole sits in a fluorine octahedron, inducing a sizable distortion [25]. While LDA gives
no JT distortion at all, GGA leads to a very shallow energy minimum at finite distortions as can
be seen from figure 6. Here the distortion is measured by the fraction (l−s)/(l+s) where l and
s are the long and short axis of the deformed octahedron. In contrast to these results, with the
LDA+U method (U was chosen to be 7.5 eV) a paramagnetic orbitally ordered state with a size-
able JT distortion can be stabilized (left of figure 6). Several different orbital orderings can be
obtained, one of them shown in the right of figure 6, and their energies can be compared. We see
that in the LDA+U method it is also possible to stabilize solutions which are not the electronic
ground state - in contrast to non-spin polarized DFT. Since it is a ground-state method, LDA+U
predicts an antiferromagnetically and orbitally ordered ground-state in good agreement with
experiment [28]. The structural parameters are very similar to the results obtained from dynam-
ical mean-field theory (DMFT) calculations [29], although it needs this more elaborate theory
to capture the electronic structure of this material in its (high temperature) paramagnetic state.
Despite the enormous computational expenses of DMFT calculations for even a few bands or
sites (cluster-DMFT), detailed insight into the physics of these strongly correlated materials is
nowadays possible [30]. More details on the “electronic structure of transition metal oxides”
and on “highly correlated electron systems” will be given in subsequent lectures.

Although the LDA+U method is rather simple and quite successful, it faces the problem that it
introduces an external parameter and thus destroys the “ab initio” character of the conventional
LDA approach. Therefore, concepts to calculate U within constrained DFT [31] and with the
GW method [32] (next subsection) have been developed. Fortunately, in many cases the re-
sults do not depend too sensitively on the exact values of U and J . But there are also systems,
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like YMnO3, where depending on the value of U different magnetic ground-states can be stabi-
lized [33]. A collection of applications of the LDA+U method can be found in reference [24].

3.4 Quasiparticles and the GW approximation

Up to now, we relied on the concept of single-particle states which we inherited from the in-
dependent electron approximation. Of course in a many-body system it is not at all clear in
how far this concept still is meaningful. As we have seen at the beginning of this section, in
a system of independent particles the energy to remove a single electron can be determined as
the eigenvalue of a single particle equation like Eq.(33). So we can ask whether it is possible to
create an equation similar in structure that yields as an eigenvalue the energy to remove or add
a single electron to a many-body system. These energies would be what is typically obtained in
experiments like photoemission or inverse photoemission.
It would lead to far to introduce all necessary theoretical concepts to develop an appropriate
theory to study this problem. To outline the basic difficulties we will follow here an early
paper of many-body perturbation theory [34]. It starts from a single-particle Hamiltonian, e.g.
Eq.(36), and assumes that the difference between this Hamiltonian and the true, many-body
Hamiltonian can be treated as a perturbation. The energy needed to add a single particle to the
N-electron state will differ from the (N + 1)th eigenvalue of a single particle Hamiltonian, h0,
by an amount which is called the self-energy of this particle. It can be shown that it is possible
to add a term to h0 so that this self-energy vanishes. The resulting Hamiltonian has the form

h0φi(r) +

∫
Σ(r, r′, εi)φi(r′)dr′ = εiφi(r) (63)

with the non-local, energy dependent self-energy operator. The eigenvalues are now excitation
energies, i.e. the energy differences between aN and aN+1 particle system (or aN and N−1
particle system).
Formally, we can notice a similarity between Eq.(63) and the Hartree-Fock Eq.(39) by writing
an energy independent self-energy

ΣHF(r, r′) =
∑
j,σ′

φ∗
j,σ′(r

′)φj,σ′(r)
1

|r− r′| = iG(r, r′,−η)v(r, r′) . (64)

In the last step we wrote the sum over the single-particle states as a Green function with η being
an infinitesimally small (positive) time, so that G reduces to the density matrix.
In many body perturbation theory it turns out that – in a certain approximation – the self energy
operator, when Fourier transformed from the energy to the time domain, can be written in a
rather similar form:

Σ(r, r′; τ) = iG(r, r′, τ)W (r, r′, τ + η) (65)

where G is now the full Green function and W is a screened Coulomb interaction. Generally,
iG(r, r′, τ) describes the probability to find a particle inserted into a many-body system at a
position r after some time τ at a position r′. The screened Coulomb interaction W is related to
the bare Coulomb interaction v(r, r′) via the dielectric function ε,

W (r, r′, ε) =

∫
ε−1(r, r′′, ε)v(r, r′′)dr′′ = v(r, r′) +

∫
nind(r, r

′′, ε)v(r′, r′′)dr′′ (66)
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Again, we see the effect that the Coulomb potential of the electron repels neighboring charges
to give rise to a positive induced charge, nind, that modifies (screens) the bare Coulomb inter-
action. This behavior reminds to the exchange hole, Eq.(42), of the Hartree-Fock theory or the
exchange-correlation hole, Eq.(48), of DFT that gives rise to the exchange-correlation energy,
Eq.(49).
It should be noticed that Eq.(65) is a kind of Hartree-Fock (HF) approximation for quasiparti-
cles, while Eq.(64) is the HF approximation for electrons. So, despite the formal similarity to
the HF equations we have to keep in mind a couple of important differences: Eq.(63) contains
an energy-dependent non-Hermitian self-energy operator. The eigenvalues, εi, are complex
numbers and the imaginary part leads to a damping term in the time-dependent Schrödinger
equation, meaning that the quasiparticles, described by Eq.(63), have a finite lifetime that is
proportional to the inverse of the value of the imaginary part. An electron or hole that is added
to a many body system keeps its particle-character for some time, until it ”dissipates” into the
many-body ensemble.
Hedin [35] provided a set of equations that link all these quantities like the self-energy (con-
taining so-called vertex corrections), the Green function, screened Coulomb interaction and
dielectric function. These equations can – in principle – be solved self-consistently. In practice,
however, the solution of these equations is far too complicated and commonly an approxima-
tion to this equations is solved, which takes Eq.(65) for the self-energy and substitutes the G
in this equation by a Green function constructed by Kohn-Sham wavefunctions. Also the di-
electric function, ε, is calculated from these wavefunctions in the random phase approximation.
This scheme is commonly termed GW approximation [7] and leads to quite reliable excitations
energies, e.g. for bandgaps of semiconductors (cf. figure 4).
It should be mentioned that this is a method to calculate excitations in a many-body system
where the particle number is changed by one. There are also excitations which leave the particle
number unchanged and are accessible by generalizations of density functional theory, like time-
dependent DFT (TDDFT), which provide a way to calculate these types of spectra and are active
research fields today [36].

4 Relativistic effects

Having established various methods to deal with the electronic structure of solids, in this section
we will focus on the spin of the electron. Up to now, we encountered the spin just as a label
attached to electron wavefunctions that has to be taken into account in context of the Pauli
principle. This additional quantum number can lead to important consequences, e.g. favoring
magnetic ground states in transition metals, but this is the topic of a separate contribution on
the “electronic basis of magnetism”. We have to note here, that the spin introduced in this way
is effectively just a number. To make full use of the electrons spin, e.g. to store or transmit
information, it is crucial to focus on spin as a vectorial quantity that is carried along with the
electron, having a definite orientation in space that can be manipulated and used in a spintronic
device.
Therefore, in this section we will try to give spin a physical interpretation and study its conse-
quences. Semi-classically, the electrons “spinning” around its own axis can be thought to be the
source of the spin magnetic moment. This should not be confused with the orbital moment, aris-
ing from the precessional (orbital) motion of the electron. If we will denote the wavefunction
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and the spin-label (referred to as spin-up or spin-down) as

ψ(r) = φ(r)χ with χ =

(
1

0

)
or

(
0

1

)
, (67)

we can express the spin, S as the expectation value of the spin-operator, σ,

S = 〈ψ|σ|ψ〉 ; σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (68)

Of course the Schrödinger equation will provide the wavefunctions ψ, but tells us nothing about
the orientation of S. In a collinear case, i.e. when all the spins are oriented along the same
direction, for convenience the spins are assumed to be aligned in z-direction.
To give this spin-vector an absolute orientation in space, we first have to introduce a new term in
the Hamiltonian that connects the spin-orientation with the axes of the crystal. This spin-orbit
coupling term, which will be discussed on a general basis in the first subsection, leads then to a
preferential spin orientation in the crystal, which is essential for every magnetism-based device,
be it a simple compass or a modern hard-disk drive.
Spin-orbit coupling is a crucial effect in magnetic systems. In most solid state systems, however,
due to chemical bonding the number of spin-up and spin-down wavefunctions are equal, so that
the total spin is zero. Interestingly, even in these spin-compensated systems, that are in total
non-magnetic, spin-dependent processes can be observed, e.g. the Rashba effect. These effects
are fundamental for combining semiconductor systems with “classical” magnetic structures and
will be introduced in the second subsection. Finally, we will shortly discuss spin-orbit coupling
in magnetic systems, that leads to the magnetic anisotropy.

4.1 Spin-orbit coupling

As a consequence of the Lorentz transformation, an electron that is traveling with a velocity v
on a classical trajectory around the nucleus, experiences an electric field E (from the potential
gradient that arises due to the screened nucleus) as a magnetic field, B = 1

c
(v × E). This

field will couple to the spin, σ, of the electron as −σ ·B.1 To include this effect on a quantum-
mechanical basis, it is necessary to start from relativistic one-electron theory, the Dirac equation.
In the Schrödinger equation – even for a magnetic system – there is no term that explicitly
includes the spin-operator. But if we include a certain term from the Pauli equation (a two-
component approximation to the Dirac equation [38], see Appendix) we get[

−1

2
∇2 + V (r)− μB

2c
σ · (p× E(r))

]
ψi = εiψi. (69)

It is this relativistic correction (factor 1
c
) that leads to the coupling between spin-space (σ) and

lattice (E(r)).
If we assume that the electric field is derived from a spherically symmetric potential, V (r), (as
occurs in the vicinity of an atomic nucleus) we can transform this term

−σ · (p×E(r)) = σ · (∇V (r)×p) =
1

r

dV (r)

dr
σ · (r×p) =

1

r

dV (r)

dr
(σ ·L) = ξσ ·L, (70)

1Although this interaction has the form of a Zeeman term (the interaction of the spin with an external magnetic
field), its interpretation is not so straightforward: as compared to a classical interpretation, due to kinematical
effects a factor of two arises in the expression. The origin of this effect is called Thomas-precession [37].
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Fig. 7: Bandstructure of Ge around the Fermi level without spin-orbit coupling (left) and with
spin-orbit coupling included (right). Notice, that the three-fold degeneracy of the highest occu-
pied state at the Γ point is split by spin-orbit coupling, as well as the doubly degenerate band
along the lines ΓL and ΓX . The calculation is performed at the experimental lattice constant
using the local density approximation to DFT. Note, that the experimentally observed bandgap
of 0.75 eV closes in a DFT calculation. In the present calculation the gap is opened by applying
the LDA+U method (cf. subsection 3.3).

where L is the orbital momentum operator. This term is called the spin-orbit coupling (SOC)
term with the spin-orbit coupling constant ξ. Keep in mind that – although the term σ ·L looks
like a coupling between a spin- and an orbital moment – the SOC term describes the coupling
between the spin and the magnetic field created by the electrons orbital motion. Therefore,
σ · L enters with a positive sign in Eq.(69), indicating that spin- and orbital moment like to
orient antiparallel – giving rise to Hund’s third rule.
Since the radial derivative of the potential in a crystal will be largest in the vicinity of a nucleus,
we can expect that the major contribution to the spin-orbit interaction will come from this
region. For an atom ν then r is the radial part of the vector rν = r − τ ν . Furthermore, since
for small rν the potential will be Coulomb-like (V (r) = −Z

r
), its derivative ∂V

∂rν
is proportional

to the nuclear number of the atom, Zν . We thus expect that ξ will be large for heavy atoms, but
small for lighter ones.
Electrons, that are close to the nucleus (i.e. those of the inner shells) will feel the consequences
of this spin-orbit coupling most strongly. As it is well known from free atoms, this term will
favor the formation of an orbital momentum, L, which is then coupled to the electrons spin.
E.g. the p-electrons can form states with a total orbital momentum L = 1, coupling then to
the electrons spin. We can classify p-states according to their projections on a selected axis (z)
by their magnetic quantum numbers mz = −1, 0, 1. Combined with the electrons spin, this
will result in a total angular momentum J = 3/2 with projections mj = 3/2 or 1/2. As a
consequence of spin-orbit coupling, this results in a level splitting between the p3/2 and p1/2

states.
In contrast, the valence electrons in a solid will arrange to optimize the chemical bonding, e.g.
in a simple cubic lattice px, py and pz states will form. The level splitting is then determined
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by the crystal field. Partially, spin-orbit coupling will interfere and lead to additional level
splittings as can be observed e.g. in semiconductors at the center of the Brillouin-zone: In Si
(cf. figure 4) we see a three-fold degenerate state directly below the Fermi-level that splits into
a doubly degenerate and a singly degenerate one. The former one is closest to the Fermi level
in turn consists of two bands with different dispersions, the highly dispersive state is called the
light-hole band, the other one is termed heavy hole band. The singly degenerate state at Γ forms
the spin-orbit split-off band. In a non-relativistic calculation these bands are degenerate in some
high symmetry directions, but when spin-orbit coupling is included a splitting can be observed.
As expected, this splitting is small in Si, but larger in the isoelectronic but heavier Ge (figure 7).

4.2 The Rashba- and the Dresselhaus effect

In a system without internal or external magnetic field time-reversal symmetry holds, i.e. chang-
ing the direction of the arrow of time will not alter the properties of the system. The transfor-
mation t → −t exchanges a particle moving with momentum k with a particle moving in −k.
Time reversal will also invert the precessional motion of the electron and, therefore, its spin.
As a consequence, the energy of a right-moving spin-up particle will equal the energy of a left
moving spin-down particle,

ε(k, ↑) = ε(−k, ↓) . (71)

In a crystal with inversion symmetry, additionally ε(k) = ε(−k) holds, both for spin-up and
spin-down electrons. This means, that the bandstructure is symmetric around the center of
the Brillouin-zone, k = 0, and all bands are doubly degenerate. E.g. in the bandstructures in
figure 4 or 7 show this degeneracy.
In contrast, crystals without inversion symmetry the degeneracy of the bands can be lifted as a
consequence of spin-orbit coupling and only Eq. (71) holds. This can be understood if we real-
ize that a lack of inversion symmetry, V (r) �= V (−r), will result in a non-vanishing potential
gradient or electric field, E(r). As we have seen in the last section an electron moving in an
electric field will experience this field Lorentz-transformed as B-field and

ε(k, ↑) �= ε(k, ↓) . (72)

This will, depending on symmetry, result in different consequences for the bandstructures.
Performing a Taylor expansion of the potential V (r), V (r) = V0 + eE(r) · r + · · · , in lowest
order the inversion asymmetry of the potential V (r) is characterized by an electric field E(r).
When electrons with an effective mass m∗ propagate with a velocity v = dε/dp = 1

m∗k in
an external electric field E defined in a global frame of reference, then the relativistic Lorentz
transformation gives rise to magnetic field B = 1

c
(v × E) = 1

m∗c(k× E) in local frame of the
moving electron. We have seen this term appearing in the spin-orbit coupling Hamiltonian in
Eq.(69) in the last chapter. Again, the interaction of the spin with this B field leads to a coupling
term. This term is called Rashba or Bychkov-Rashba Hamiltonian [39, 40]

HR = αRσ·(p×E) or HR = αR σ·(k×E) or HR = αR(|E|) σ·(k×ê) (73)

describing the Rashba spin-orbit coupling as additional contribution to the kinetic energy. σ =
(σx, σy, σz) are the Pauli matrices, Eq.(68). The latter two terms are strictly correct only for
plane wave eigenstates as, e.g. for a two-dimensional electron gas (2DEG). An important re-
alization of a 2DEGs are electrons in doped semiconductor heterostuctures, that support an
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Fig. 8: Schematic illustration of an electron moving in the potential gradient near a nucleus
(left) and a surface (right). In both cases the electric field E resulting from the potential gradient
is Lorentz-transformed into a B field by the motion of the electron. In the case of the atomic
spin-orbit coupling (left) this is an orbital motion, in the case of the Rashba-effect (right) it is a
linear motion. In both cases, the electrons spin, σ couples to the resulting B field.

electron gas at the interface between two materials, e.g. (InGa)As and InP [41]. Another pos-
sibility to study the Rashba-effect in 2DEGs is shown in figure 8: on surfaces which support a
surface state, e.g. in Au(111) [42] the electrons of the surface state move in a potential gradi-
ent that is provided by the surface itself (but can also be modified slightly by external electric
fields [43]). More examples will follow in other lectures.
The general features of the Rashba-model are studied for the 2DEG in a potential with structural
inversion asymmetry (SIA) and the corresponding bandstructure are displayed schematically in
figure 9. For electrons propagating in the 2DEG extended in the (x, y) plane subject to an
electric field normal to the 2DEG, êz = (0, 0, 1), the Hamiltonian takes the form

H = HK +HR =
p2

‖

2m∗ + αR (σ × p‖)|z =
p2

‖

2m∗ + αR (σxpy − σypx) , (74)

which can be solved analytically. For a Bloch vector in the plane of the 2DEG, k‖ = (kx, ky, 0) =
k‖(cosϕ, sinϕ, 0), the eigenstates written as a product of plane wave in space and two-component
spinor are

ψ±k‖(r‖) =
eik‖·r‖

2π

1√
2

(
ie−iϕ/2

±eiϕ/2
)

(75)

with eigenenergies

ε±(k‖) =
k2

‖

2m∗ + αR (σ × k‖) =
k2

‖

2m∗ ± αR|k‖| = 1

2m∗ (k‖ ± kSO)2 −ΔSO , (76)

where ± denotes the spin-up and -down states with respect to a spin orientation axis n̂(k‖),
local in k‖ space. With the exception of the high-symmetry state k‖ = 0, we find that the
original two-fold degenerate energy paraboloid of the 2DEG in a constant potential is indeed
spin-split. This splitting ε+(k‖) − ε−(k‖) = 2αRk‖ is linear in k‖. Due to the presence of
the SIA potential and the spin-orbit interaction, the origin of the degenerate parabola is shifted
by kSO = m∗αR, but in opposite directions for up- and down-spins with in overall spin-orbit
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Fig. 9: Cut through the parabolic energy dis-
persions of a two-dimensional electron gas in
a structure inversion asymmetric (SIA) environ-
ment. Indicated are the vector fields of the spin-
quantization axes (or the patterns of the spin)
at the Fermi surface. As the opposite spins have
different energies, the Fermi surface becomes
two concentric circles with opposite spins. The
effective B-field, Beff is always perpendicular to
the propagation direction defined by k‖.

lowering of ΔSO = m∗αR/2. The orientation axis is given by the expectation value

n̂±(k‖) = 〈ψ±k‖|σ|ψ±k‖|〉 = ±
⎛
⎝ sinϕ

− cosϕ

0

⎞
⎠ ⊥ k‖ = k‖

⎛
⎝ cosϕ

sinϕ

0

⎞
⎠ . (77)

We find that the orientation axis is independent of the magnitude k‖ and depends only on the
direction of the k‖ vector. In fact, it is in the plane of the 2DEG and the orientation axis is
perpendicular to the propagation direction of the electron. Considering k‖ → −k‖, ϕ changes
to ϕ+ π, we find that the spin orientation axis reverses as indicated in figure 9. Thus for k‖ and
−k‖ the spin-up and -down states refer to opposite orientations. Defining a global quantization
axis along the line (−k‖,k‖), e.g. according to n̂±(+k‖), then a spin-up state appears as spin-
down state if k‖ changes sign. Together with the eigenvalue spectrum given in equation (76)
the Kramer degeneracy ε↑(k‖) = ε↓(−k‖) holds. In all, the magnetic moment is zero when
averaged over all states k‖. This is consistent with the absence of an B field.
The Rashba spin-orbit splitting may be observed either by electron photoemission or transport
experiments. Transport experiments work typically on a shell of constant energy ε. Here we
expect at a given energy two different wave vectors for up- and down-electrons, which will be
exploited in the Datta-Das proposal of a spin-transistor [44].
That the Rashba-type spin-orbit coupling may have important consequences for the one-electron
energy levels in bulk semiconductors was first emphasized by Dresselhaus et al. [45] already
in 1955. Unlike the diamond structure of Si and Ge, the zinc blende structure, in which for
example the III-V semiconductor crystallize, exhibit a bulk inversion asymmetry (BIA), i.e. this
crystal structure lacks a center of inversion, so that we can have a spin splitting of the electron
and hole states at nonzero wave vectors k as for the Rashba effect even if B = 0. Today, this is
called the Dresselhaus effect. The corresponding Dresselhaus Hamiltonian

HD = αD [σxpx (p2
y − p2

z) + σypy (p2
z − p2

x) + σzpz (p2
x − p2

y)] (78)

describes the BIA spin splitting due to the Dresselhaus spin-orbit coupling, which produces
spin vector fields quite different from those produced by the SIA splitting. One difference
is obviously that the Dresselhaus term produced a spin splitting which is proportional to k3,
εD ∝ k3, while the spin splitting of the Rashba-term is linear in k, εR ∝ k.
In a magnetic system time-reversal symmetry is broken and there is a shift between the spin-
up and spin-down states, e.g. in the Stoner-model for a magnetization M and the intraatomic
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exchange integral I we find ε(k, ↑) = ε(k, ↓)−IM . In addition to this splitting, the Rashba-type
spin-orbit splitting can add a term αRk to the energy difference between electrons of the same
k but different spin. However, in a magnetic material the exchange interaction tries to align
the electron spins in a parallel (collinear) manner and there is a well-defined spin-quantization
axis (SQA) that fixes the orientation of the spins in the crystal. Then, only electrons moving in
a direction perpendicular to the SQA can be influenced by a Rashba-type effect, for electrons
with k parallel to the SQA the term σ · (E× k) has to vanish [46].

4.3 Magnetic anisotropy

As mentioned shortly at the end of the last subsection, in a magnetic system the spin-orbit in-
duced splittings in a bandstructure will be influenced by the direction of the spin-quantization
axis. This gives a small, but important contribution to the total energy of a magnetic system
since in a non-relativistic Hamiltonian there is no term which could give a dependence of the
total energy on the direction of the SQA. Generally, a dependence of the total energy of the
magnetization-direction (with respect to the crystal axes) is termed a magnetic anisotropy. This
anisotropy fixes the magnetization direction w.r.t. the lattice and allows for a stable magnetiza-
tion direction in a material, which is the basis of almost all magnetic applications.
There are several interactions that can lead to a magnetic anisotropy, e.g. the dipolar interac-
tion [49] which is of substantial importance in bulk materials. In low-dimensional magnets
also other interactions that lead to magnetically anisotropic behavior can become dominant,
most importantly the spin-orbit coupling. The magnetocrystalline anisotropy energy (MAE)
results from the anisotropy of the spin-orbit interaction, i.e. it is the difference of total ener-
gies obtained from Hamiltonians including the spin-orbit coupling term with the magnetization
pointing in two different directions.
To see how this can happen, remember that out of certain d-levels, only orbital moments point-
ing in a certain direction can be formed. E.g. a dxy and a dx2−y2 orbital can only be combined
to form an orbital moment in z direction. An orbital moment pointing in x-direction has to be
formed from electrons that can move in the (y, z)-plane, and this is impossible within only the
dxy and dx2−y2 orbitals. If now two appropriate orbitals are degenerate and occupied by a single
electron (and thus forming the Fermi level), it is rather straightforward to identify the resulting
direction of the orbital moment using group theory [47]. In a metal, where several bands are
crossing the Fermi level, εF, it is basically the sum of all contributions from bands near εF that
determine the orbital moment. In second-order perturbation theory the expectation value of the
orbital moment operator L can be written as:

〈L〉 =
∑
i,j

〈ψi|L|ψj〉 〈ψj |Hso|ψi〉
εi − εj f(εi) [1− f(εj)] , (79)

where Hso is the spin-orbit coupling Hamiltonian and f is the Fermi function ensuring that the
wavefunction ψi is occupied and ψj is unoccupied. Van der Laan [47] has shown, that in the
absence of spin-flip terms (i.e. when the majority and minority band are well separated by the
exchange interaction), the spin-orbit coupling changes the total energy of a system in second-
order perturbation theory as:

δE =
∑
i,j

〈ψi|Hso|ψj〉 〈ψj |Hso|ψi〉
εi − εj f(εi) [1− f(εj)] ≈ −1

4
ξŜ · [〈L↓〉− 〈L↑〉] (80)
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where ξ is the radial part of the spin-orbit Hamiltonian (Eq. (70)), Ŝ is the direction of the
spin moment, and L↓ and L↑ are the orbital moment vectors of the spin-down and spin-up
bands, respectively. If the spin-up band is completely filled, we see that energy change, δE,
is proportional to the size of the orbital moment and the magnetocrystalline anisotropy energy
(MAE), i.e. the difference of δE for two different magnetization directions, will be proportional
to the difference in the orbital moments. This relation between orbital moment anisotropy and
MAE was first derived by Bruno [48].

Practically, one starts from a solution Ψ0 of the Schrödinger equations (possibly including
scalar-relativistic corrections, cf. Appendix), and then solves the Hamiltonian including the
spin-orbit coupling term with the spin-quantization axis turned into the required direction by
means of a spin-rotation matrix U :

〈UΨ0|HS + ξσ · L|UΨ0〉 = 〈Ψ0|HS|Ψ0〉+ ξ 〈UΨ0|σ · L|UΨ0〉 =

= ε0 + ξ

〈
Ψ↑

0

Ψ↓
0

∣∣∣∣∣U †
(

Lz Lx − iLy
Lx + iLy −Lz

)
U

∣∣∣∣∣
Ψ↑

0

Ψ↓
0

〉
(81)

If ξ or the orbital moment is small, the last part of Eq. (81) is only a small correction to the en-
ergy ε0 obtained from the Schrödinger equation and the magnetization direction of the solution
will point into the direction of the spin-quantization axis described by U .

From the above equations it is clear that both, strong spin-orbit coupling and a sizeable or-
bital moment, L, are necessary for a large contribution to the magnetic anisotropy. But it is
also necessary that the spin-orbit interaction gives different energy contributions for different
magnetizations of the sample. In principle there are two possibilities to imagine how this could
happen: (i) the orbital moment is fixed to the lattice and its projection on the axis of the spin mo-
ment varies with the magnetization direction or (ii) the spin and orbital moments are collinear
and depending on the magnetization direction the size of the orbital moment varies. Normally,
we observe collinear spin- and orbital moments. The rotation of the orbital moment by an exter-
nal magnetic field can then lead to structural changes of the crystal. This phenomenon is called
magnetostriction and is discussed e.g. in Ref. [49].

The MAE is a typically a small energy, for elemental bulk magnets it is in the order of micro-
electronvolts (μeV). This is mainly a consequence of the high symmetry in these bulk systems.
Low-dimensional systems (thin films, chains and wires) can show much higher MAE’s, up to a
few milli-electronvolts. Since other sources of magnetic anisotropy can be even smaller in these
systems, spin-orbit coupling can get very important in magnetic nanostructures.

Sometimes, in analogy to the Heisenberg Hamiltonian describing the exchange interaction in
a crystal, the spin-orbit coupling is cast into a form

∑
i ξiLiSi where i is a particular atomic

site. Then, evidently, another term coupling the spin of a site i to the orbital motion at site j
is conceivable: CijLjSi. This spin-other orbit interaction is, like the dipole-dipole interaction,
derived from the Breit equation. In the Hartree approximation it was included in ab-initio
calculations but was found to be much weaker than the formerly described spin- (same) orbit
interaction [50].
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Appendix

The Dirac equation

A relativistic theory for an electron (of charge −e) in an external scalar potential V and a vector
potential A can be formulated via the Dirac equation (for clarity, no atomic units are used in
this section)

HΨ = +i�
∂

∂t
Ψ = εΨ; H = −eV (r) + βmc2 + α · (cp + eA(r)). (82)

Here, α is a vector of 4× 4 matrices, that can be written in terms of the Pauli spin-matrices, σ,
while β is a matrix of same rank, expressible in terms of the 2× 2 unit matrix I2:

α =

(
0 σ

σ 0

)
, β =

(
I2 0

0 −I2

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

The Hamiltonian acts on a four-component wavefunction Ψ that can be written as a 2-vector of
the so-called large and small components, ψ and χ. For this components the Hamiltonian of the
Dirac equation can be written as

(ε− 2mc2 + eV (r))ψ = σ · (cp + eA(r))χ (83)

(ε+ 2mc2 + eV (r))χ = σ · (cp + eA(r))ψ (84)

where σ is the vector of Pauli matrices. In the non-relativistic limit, these equations reduce to
the Schrödinger equation for the large component. Discussions of the Dirac theory are available
in most textbooks on quantum mechanics, we follow here the book of Bethe and Salpeter [38].
Substituting Eq.(84) in (83) and retaining only terms up to order (v/c)2 , it is possible to for-
mulate an equation (sometimes termed Pauli equation) for the large component only:

[
ε+ eV (r) +

�
2

2m
∇2 +

1

2mc2
(ε+ eV (r))2 + i

e�

mc
A(r) · ∇ − e2

2mc2
A2(r) +

+i
e�

(2mc)2
E(r) · p− e�

(2mc)2
σ · (E(r)× p)− e�

2mc
σ ·H(r)

]
ψ = 0 (85)

where the gradient of V and the curl of A have been written explicitly as electric (E) and mag-
netic (H) fields. In the non-relativistic limit the first three terms give the ordinary Schrödinger
equation. The fourth term gives the relativistic correction due to the change of the mass with
velocity. In absence of a vector potential (and magnetic field) only two more terms involving
the electric field remain. The expression including the triple product σ · (E(r)× p) is the spin-
orbit coupling term, discussed in section 4.1. Ignoring this term and retaining the E(r) · p term
(which has no classical analogon) gives a spin-free equation, the so-called scalar relativistic
version of the Schrödinger equation.
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1 Introduction

Although magnetic materials are known since ancient times and much about the relation be-
tween electricity and magnetism has been discovered by Ampere, Faraday, Oersted, Maxwell
and others in the nineteenth century, the key for understanding of magnetism was only provided
by the development of quantum mechanics in the twentieth century. In my lecture I will first
show that classical theory for a system of moving electron in an external magnetic field leads
to a vanishing magnetization so that the description of magnetism necessarily requires quantum
theory. Quantum theory for a single electron is then used to explain the origin of diamagnetism,
paramagnetism and spin magnetism. Then I will show how the many-electron system can be
treated by spin density functional theory, that this theory provides a powerful tool to study fer-
romagnetism in elements and alloys and that it can be used to obtain parameters for simpler
model Hamiltonians. Finally, I will discuss that for practical applications of magnetism also
relativistic effects are important.

2 Classical and Quantum Theory

2.1 Bohr-van Leeuwen Theorem

The magnetization m in classical statistical physics can be obtained from the derivative of the
free energy F = −kBT lnZ with respect to the magnetic field B as

m = − 1

V

∂F

∂B
=
kBT

V

∂ lnZ

∂B
, (1)

where V is the volume, T the temperature and kB the Boltzmann constant. For a classical
system of N electrons the partition function Z is given by an integral over all momenta p

i
and

coordinates ri as

Z =

∫
· · ·
∫

exp

(
− H

kBT

)
dp

1
. . .dp

N
dr1 . . .drN . (2)

In an electric field described by a potential v and a magnetic field B = ∇× A described by a
vector potential A the Hamilton function H can be written as

H =
N∑
i

{
1

2me

[
p
i
− eA(ri)

]2
+ v(ri)

}
+

1

4πε0

e2

2

∑∑
i�=j

1

|ri − rj |
, (3)

where ε0 is the electric constant and me and e electron mass and charge. The substitution
p′
i

= p
i
− eA(ri) for all momentum integration variables in (2) leads to the result that the

partition function Z cannot depend on A and consequently (1) gives m = 0. This result that
in an external magnetic field in thermal equilibrium a classical system of moving electrons has
a vanishing magnetization is known as the Bohr-van Leeuwen theorem because it has been
derived by Niels Bohr in 1911 and independently by Johanna Hendrika van Leeuwen in 1919
in their doctoral dissertations.
In quantum theory the situation is different. The electron system is described by a Schrödinger
equation ĤΨ(r, t) = i�∂tΨ(r, t), where the Hamilton operator

Ĥ =

N∑
i

{
1

2me
[−i�∇i − eA(ri)]

2 + v(ri)

}
+

1

4πε0

e2

2

∑∑
i�=j

1

|ri − rj |
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is obtained from the Hamilton function (3) by replacing the classical momentum variables p
i

by momentum operators p̂
i
= −i�∇i. Since the momentum operator p̂

i
does not commute with

the coordinate ri and the vector potential A(ri), the Bohr-van Leeuwen theorem does not apply
with the consequence that magnetism is a pure quantum phenomenon.

2.2 Paramagnetism and Diamagnetism

To simplify the discussion only a single electron will be considered now. Here the stationary
Schrödinger equation can be written as

{
− �

2

2me
∇2 +

ie�

2me
(∇ · A(r) + A(r) · ∇) +

e2

2me
A2(r) + v(r)

}
Ψ = EΨ . (4)

The term linear in A(r) gives rise to paramagnetism and the term quadratic in A(r) to diamag-
netism. With (31) and (32) derived in the appendix it can be shown that for a constant magnetic
field B equation (4) simplifies into

{
− �

2

2me
∇2 − e

2me
L · B +

e2

8me
r2B2(1− cos2 ϑ) + v(r)

}
Ψ = EΨ , (5)

where r = |r| and B = |B| denote absolute values, ϑ is the angle between r and B and
L = −i�r × ∇ is the angular momentum operator. The relative size of the paramagnetic and
diamagnetic terms in (5) can be estimated using r ≈ a0, where a0 is the Bohr radius, and
L = |L| ≈ �. The ratio of diamagnetic to paramagnetic contribution is then given by

(e2/8me)a
2
0B

2

(e/2me)�B
=
ea2

0

4�
B .

With e = 1.602×10−19 As, a0 = 0.529×10−10 m and � = 1.054×10−34 Js one obtains a factor
ea2

0/4� which is the order of 10−6 T−1. (J = m2 kg s−2 and T = kg s−2 A−1 are the derived SI
units joule and tesla). Thus for fields achievable in laboratories (about 10 T) the diamagnetism
of atoms is much smaller than their paramagnetism. For other systems, for instance for metallic
electrons, diamagnetism and paramagnetism can be of comparable magnitude as the result χL =
−1

3
χP for the diamagnetic Landau and paramagnetic Pauli susceptibilities of a free electron gas

demonstrates. It is also instructive to compare the paramagnetic term with the Coulomb energy
e2/4πε0a0. Their ratio can be estimated as

(e/2me)�B

e2/4πε0a0

=
2π�ε0a0

eme

B .

With ε0 = 8.854× 10−12 Fm−1 and me = 9.109× 10−31 kg one obtains a factor 2π�ε0a0/eme

which is of the order of 2× 10−6 T−1. (F = s4 A2 kg−1 m−2 is the derived SI unit farad.) Thus
for laboratory conditions magnetic effects arising from the external fields A or B in (4) and (5)
are rather small.

2.3 Electron Spin

In 1922 Stern and Gerlach found that in an inhomogeneous magnetic field a beam of silver
atoms splits into two subbeams. This famous result cannot be explained by the Schrödinger
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equation given above. The angular momentum operator L in (5) splits the beam into 2l+1 sub-
beams, for l = 0 (s state) no splitting is expected and for l = 1 (p state) three subbeams should
appear. Thus the observed splitting cannot be caused by the orbital motion of the electron. The
reason for the two subbeams is an internal degree of freedom, the electron spin discovered by
Uhlenbeck and Gouldsmith in 1925. In 1927 Pauli proposed to add a term gμBS · B to (5)
and to use a two component wavefunction Ψ±, where S is the spin operator, μB = e�/2me

the Bohr magneton and g = −2 the Landé-g-factor for the electron. One year later the rela-
tivistic Dirac equation was discovered and, because the Pauli term naturally follows from the
non-relativistic limit of the Dirac equation, for historical reason spin is often considered as a
relativistic phenomenon.
However, the Pauli term can also be derived without a relativistic formalism. It is only necessary
to linearize the quantum mechanical wave equation. Whereas in a relativistic formalism Lorentz
invariance requires a linear relation of space and time variables, which is achieved in the four
component Dirac equation, non-relativistically a linear relation only between the three space or
momentum variables is required. Obviously the linearization

γ0(p
2
x + p2

y + p2
z) = (γ1px + γ2py + γ3pz)

2 . (6)

cannot be satisfied if the γi are numbers, but it can be achieved with matrices, for instance with
2× 2 matrices

I2 =

(
1 0

0 1

)
, σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
(7)

if the choice γ0 = I2, γ1 = σx, γ2 = σy and γ3 = σz is made. In vector notation (with a vector
σ built from the Pauli matrices σx, σy, σz), equation (6) can be written as

I2p
2 = (σ · p)2 , (8)

which is valid as shown in the appendix. By use of (8) one obtains that
(
EI2 σ · p
σ · p 2meI2

)(
Φ

X

)
=

(
0

0

)
(9)

after elimination of X leads to

(
p2

2me
−E)I2Φ = 0 . (10)

Thus the four component equation (9), which is linear in px, py and pz and which was derived by
Levy-Leblond [1] by requiring Galilean invariance instead of Lorentz invariance, is equivalent
to the two component Schrödinger equation (10), which is quadratic in px, py and pz. If now
electric and magnetic field are added to (9) by the usual prescription of gauge invariant minimal
coupling one obtains

(
(E − v)I2 σ · (p− eA)

σ · (p− eA) 2meI2

)(
Φ

X

)
=

(
0

0

)
, (11)

which after elimination of X leads to{
1

2me

[
σ · (p− eA)

]2 − [E − v(r)]I2
}

Φ = 0 .
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Substituting p = −i�∇ and using

[σ · (i�∇+ eA)]2 = I2(i�∇+ eA)2 + iσ · [(i�∇+ eA)× (i�∇+ eA)]

= I2(i�∇+ eA)2 − e�σ · [∇× A+ A×∇]

= I2
(−�

2∇2 + ie� [∇ · A+ A · ∇] + e2A2
)− e�σ · B

which are valid because of (28 - 30) derived in the appendix, leads to
{
I2

[
− �

2

2me
∇2 +

ie�

2me
(∇ · A(r) + A(r) · ∇) +

e2

2me
A2(r) + v(r)− E

]
+ gμBS · B

}
Φ = 0,

where μB = e�/2me = 9.274× 10−24 JT−1 is the Bohr magneton, S = σ/2 the spin operator
and g = −2 the non-relativistic approximation to the electron g-factor g = −2.002319.

3 Spin Density Functional Theory

It is well known that certain materials, for instance the elements Fe, Co and Ni, show sponta-
neous magnetism even in a vanishing external magnetic field. ForA = 0 the system is described
by the Hamilton operator

Ĥ =
N∑
i

[
− �

2

2me

∇2
i + vext(ri)

]
+

1

4πε0

e2

2

∑∑
i�=j

1

|ri − rj|
(12)

where vext(r) is the external potential provided by the atomic nuclei. Within density functional
theory this many-electron system can be treated by effective single-particle equations. By the
Hohenberg-Kohn theorem there exists a one-to-one mapping between the external potential
and the ground-state density which means that the ground-state density uniquely determines
the external potential and the wavefunctions for this potentials and by the wavefunctions all
stationary quantum-mechanical observables. Thus for magnetic systems it should be sufficient
to calculate the ground-state density n(r) and then the magnetization m(r) as a functional of
n(r). Unfortunately, the functional dependence m(r) = m[n(r)](r) is not known.
To circumvent this problem von Barth and Hedin [2] and Rajagopal and Callaway [3] proposed
to extend density functional theory into a spin density functional theory by using a Pauli spin
term added to (12) and two component wavefunctions. In principle, terms, which are linear and
quadratic in A can be added also and treated within spin-current density functional theory, but
for the present purpose only the spin term will be considered.

3.1 Basic Formalism

In spin density functional theory the basic variables are the density n(r) and the magnetization
m(r). Alternatively, it is possible to use the 2 × 2 spin density matrix nαβ(r), where the spin
indices α and β can have two values, either + for spin up (majority spin) or − for spin down
(minority spin). The notation ↑ instead of + and ↓ instead of− is also often used in the literature.
The connection between n(r), m(r) and nαβ(r) is given by

n(r) =
∑
α

nαα(r) m(r) = μB
∑
αβ

σαβnαβ(r)
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and by
nαβ(r) = Iαβ2 n(r)/2 +

[
σαβx mx(r) + σαβy my(r) + σαβz mz(r)

]
/2μB ,

where the spin indices are explicitly displayed. The spin density functional

E[nαβ(r)] = Ts[n
αβ(r)] +

1

4πε0

e2

2

∫ ∫
n(r)n(r′)
|r − r′| drdr′ (13)

+
∑
αβ

∫
vαβext(r)n

αβ(r)dr + Exc[n
αβ(r)]

consists of a sum of the kinetic energy Ts of non-interacting electrons, the electron-electron in-
teraction in the Hartree approximation, the interaction energy with the external potential vαβext and
the exchange-correlation energy. The external potential vαβext contains the electrostatic Coulomb
potential of the nuclei and the potentials arising from possible external electric and magnetic
fields. Because the Hohenberg-Kohn theorem is valid for arbitrary values of the coupling con-
stant e2, it is also valid for a non-interacting electron system characterized by e2 = 0 so that the
spin density matrix nαβ(r) of the interacting system uniquely determines a potential vαβs (r) for
the non-interacting system. The energy functional for the non-interacting system is given by

Ee2=0[n
αβ(r)] = Ts[n

αβ(r)] +
∑
αβ

∫
vαβs (r)nαβ(r)dr (14)

Subtraction of (13) and (14) leads to an integral equation for vαβs (r), which by functional deriva-
tion with respect to the ground-state spin density matrix nαβ(r) gives the result

vαβs (r) = Iαβ2

e2

4πε0

∫
n(r′)
|r − r′|dr

′ + vαβext(r) + vαβxc (r) . (15)

Note that both E[nαβ(r)] and Ee2=0[n
αβ(r)] are minimal in the ground state so that their func-

tional derivatives vanish in the derivation of (15). The exchange-correlation potential vαβxc (r) can
be obtained by the functional derivative δExc[nαβ(r)]/δnαβ(r). For the non-interacting system
the spin density matrix and the kinetic energy can be calculated by single-particle equations

nαβ(r) =
∑
i

ϕ�αi (r)ϕ
β
i (r) and Ts[n

αβ(r)] =
∑
αi

∫
ϕ�αi (r)

(
− �

2

2me

∇2ϕαi (r)

)
dr ,

where the sum over i includes all occupied orbitals. These orbitals can be determined from the
single-particle Kohn-Sham equation

− �
2

2me
∇2ϕαi (r) +

∑
β

vαβs (r)ϕβi (r) = εiϕ
α
i (r) , (16)

which arises if the energy functional (14) is minimized with respect to the orbitals. Useful
approximations for the exchange-correlation energy functional can be given in terms of the
eigenvalues n+(r) and n−(r) of the matrix nαβ(r) which can be diagonalized as

∑
α′β′

Uαα′
(r)nα

′β′
(r)Uββ′

(r) = δαβnα(r) , (17)
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where Uαβ(r) are spin-1/2 rotation matrices and nα(r) the eigenvalues. Note that these matri-
ces and eigenvalues generally depend on the position r. In many applications, for instance in
ferromagnetic and antiferromagnetic solids, a common magnetization axis exists for all atoms.
The z axis can then be chosen globally along the direction of the magnetic field and the spin-1/2
rotation matrices in (17) are independent of r. This has the simplifying consequence that the
energy and all other physical observables are functionals of the density and of the magnitude of
the magnetizationm(r) = |m(r)| = μB[n+(r)−n−(r)] rather than of the vectorm(r). In terms
of the spin up and spin down orbitals ϕ+

i (r) and ϕ−
i (r), the spin densities n+(r) and n−(r) can

be represented as
n±(r) =

∑
i

|ϕ±
i (r)|2 (18)

and the Kohn-Sham equation can be written as
[
− �

2

2m
∇2 + v±s (r)

]
ϕ±
i (r) = ε±i ϕ

±
i (r)

with the effective potential

v±s (r) =
e2

4πε0

∫
n(r′)
|r − r′|dr

′ + v±ext(r) + v±xc(r) .

In an external magnetic field B, the external potential v±ext contains a field term −(±μBB),
where the negative sign means that the majority electrons (with spin +) are energetically favored
compared to the minority electrons (with spin−). The exchange-correlation potential v±xc(r) can
have different values for the two spin directions even without an external magnetic field. This
is, for instance, realized in the ferromagnetic metals Fe, Co and Ni.
Spin density functional theory as presented above is exact in principle, however the functionals
Exc and v±xc, in which all complications of the many-electron system are hidden, are not known
and must be approximated. Useful approximation like the local-spin-density approximation
(LSDA) [2, 4, 5] and the generalized gradient approximation (GGA) [6, 7] have been developed
and have been shown to be rather accurate for many applications.

3.2 Stoner Model for Ferromagnetism

Normally the magnetization m(r) is a small compared to the density n(r). Thus the exchange-
correlation potential can be expanded in terms of m(r) and approximated as

v±xc(r) = voxc(r)∓m(r)ṽ[n(r)](r) ,

where higher order terms ofm(r) are neglected and voxc is the non-magnetic exchange-correlation
potential. The average value of ṽ is positive such that majority electrons (with spin +) feel a
more attractive potential and minority electrons (with spin−) a less attractive one. In the Stoner
model the difference of the potentials is simulated by a constant

v±xc(r) = voxc(r)∓
1

2
IM with M =

1

μB

∫
VAtom

m(r)dr =

∫
VAtom

[n+(r)− n−(r)]dr .

Here I is the exchange integral (Stoner parameter) and M the difference of the number of
majority and minority electrons in the atomic unit cell so that Mloc = μBM gives the local
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atomic moment. In the ferromagnetic elements Fe, Co and Ni all atoms are equivalent (with
the same value of I and M) so that v±xc(r) differ by IM , which is constant in space. For a
constant shift of the potential the wavefunctions and eigenvalues, which in periodic crystals are
characterized by wavevector k and band index ν, can be calculated as

ϕ±
kν(r) = ϕokν(r) and ε±kν = εokν ∓

1

2
IM .

This means the wavefunctions are identical to the non-magnetic ones and the eigenvalues are
simply shifted by a constant amount. Consequently, the densities of states n±(E) are also
shifted compared to the non-magnetic density of states no(E) as

n±(E) =
∑
ν

∫
BZ

δ(E − ε±kν)dk = no(E±1

2
IM) . (19)

Here the integral is over the Brillouin zone (BZ). The shift±1
2
IM for the spin up and down den-

sities of states describes reasonably well the situation which is found in spin density functional
calculations for the ferromagnetic elements as can be seen in Fig. 1.

Fig. 1: Density of states for Fe (left picture) and Co (right picture) from spin-density-functional
calculations [8]. The density of states for majority-spin electrons is plotted upwards and for
minority-spin electrons downwards. States for negative energies (lower than EF ) are occu-
pied states for positive energies (higher than EF ) are unoccupied. The dotted curves represent
energy integrated density of states.
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Fig. 2: Graphical solution for the Stoner model. The intersection of F (M) with the straight
line M determines the solution Ms. The intersection at M = 0 is always a trivial solution.

From (19) one obtains by integration over all occupied states

M =

∫ EF[
n+(E)− n−(E)

]
dE =

∫ EF
[
no(E +

1

2
IM)− no(E − 1

2
IM)

]
dE (20)

N =

∫ EF[
n+(E) + n−(E)

]
dE =

∫ EF
[
no(E +

1

2
IM) + no(E − 1

2
IM)

]
dE . (21)

Since no(E) is determined by the non-magnetic calculation and N by the condition of charge
neutrality, (21) implicitly defines EF = EF (M) as function of M and (20) defines a function

F (M) =

∫ EF (M) [
no(E +

1

2
IM)− no(E − 1

2
IM)

]
dE

for which the solution M = F (M) must be found self-consistently. The function F (M) sat-
isfies F (M) = −F (−M), F (0) = 0, F (±∞) = ±M∞ and F ′(M) > 0, where the last
condition arises from no(E) > 0. Here M∞ is the spin moment for full spin polarization, when
all majority states are occupied and all minority states are empty. This situation corresponds to
the atomic limit with maximal spin moment according to Hund’s first rule. Two possibilities
for F (M) are shown in Fig. 2. For the function denoted by (A) only the trivial non-magnetic
solution M = 0 exists. For the function denoted by (B) three solutions exist, M = ±MS

with a finite spontaneous magnetization and M = 0. This non-magnetic solution is however
unstable. From Fig. 2 it is obvious that a solution with non-zero moment always exists, if the
slope F (M)/M at M = 0 is larger than one. Thus F ′(0) > 1 is a sufficient condition for
ferromagnetic solutions. From (20) one obtains by differentiation

F ′(M) =
I

2

[
no(EF +

1

2
IM) + no(EF − 1

2
IM)

]
(22)

+

[
no(EF +

1

2
IM)− no(EF − 1

2
IM)

]
dEF
dM

which for M = 0 leads to
F ′(0) = Ino(EF ).
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This implies that the Stoner criterion

Ino(EF ) > 1

is a sufficient condition for ferromagnetic solutions, which are thus favored for large exchange
integrals I and large density of states no(EF ) at the Fermi energy EF .
The Stoner model can be extended to include effects of an external magnetic fieldB = (0, 0, B).
This allows to determine the spin susceptibilityχ , which according to μBM/V = χB describes
the relation between the magnetization and the magnetic field for small fields. Instead of (19)
the relevant potential is given by

v±(r) = vo(r)∓ 1

2
IM ∓ μBB

and instead ofM = F (M) the equationM = F (M+2μBB/I) must be solved self-consistently.
Linearizing around M0, which would be the magnetic moment without field, leads to

ΔM = M −M0 = F (M +
2μBB

I
)− F (M0)

≈ F ′(M0)

(
ΔM +

2μBB

I

)

Solving this equation for ΔM , inserting M0 = 0 and F ′(0) = Ino(EF ) leads to

M =
no(EF )

1− Ino(EF )
2μBB and χ =

1

1− Ino(EF )
χP ,

where χP = 2μ2
Bn

o(EF )/V is the Pauli spin susceptibility for non-interacting electrons, which
is obtained if the exchange interaction is neglected. The exchange interaction leads to a Stoner
enhancement factor S = [1− Ino(EF )]−1, which diverges for Ino(EF ) = 1. For Ino(EF ) < 1
the non-magnetic state is stable, whereas for Ino(EF ) > 1 the ferromagnetic state is stable.
The density of states shows usually a rather detailed structure. However, in simple approxi-
mation it scales inversely to the band width W . For a constant density of states nol for states
with quantum number l this relation is exact (nol = (2l + 1)W−1), because

∫
W
nol dE = Wnol

is given by 2l + 1, the number of states with quantum number l. For delocalized electrons the
band width is large and the density of states is small, whereas for more localized electrons the
band width is smaller and the density of states larger. In the atomic limit the band width goes to
zero, the Stoner criterion is always satisfied and the magnetic moment is maximal according to
Hund’s first rule. Fig. 3 shows a schematic representation for the band widths of transition met-
als, rare earth metals and actinides. The 5f electrons of the early actinides and the 3d electrons
of the late transition metals from Cr to Ni have a tendency for band magnetism, whereas the
late actinides and the rare earth metals show localized magnetism with almost atomic moments
in good agreement with Hund’s rules.
Quantitative results of non-spin-polarized local density functional calculations [9] for no(EF )
and I are given in Table 1 for some selected metals. The results in Table 1 show that Fe and
Ni satisfy the Stoner criterion Ino(EF ) > 1 and that Co with Ino(EF ) = 0.97 almost satisfies
this criterion. It is discussed in Ref. [9] that the calculated values for I in Table 1 are lower
bounds and that the value Ino(EF ) = 0.97 for Co does not contradict that ferromagnetism is
observed for this metal. As a matter of fact in spin-polarized calculations [8, 10], which do not
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Fig. 3: Schematic illustration for the band width W of transition metals (3d, 4d and 5d elec-
trons), rare earth metals (4f electrons) and actinides (5f electrons). The shaded rectangle rep-
resents the region favorable for band magnetism. Above the rectangle magnetism is suppressed
and below the rectangle localized (atomic) magnetism is preferred.

use the Stoner model and do not rely on an estimate of I , the ferromagnetic state of Co has been
found to be more stable than the non-magnetic state. Thus these early spin density functional
calculations are consistent with the observed ferromagnetism of Fe, Co and Ni. The metal Pd
also has a large Stoner factor and is almost magnetic. The experimental Stoner factor for Pd is
even approximately twice as large as the one given in Table 1 in agreement with the fact that
the tendency for magnetism is underestimated by the approximation for I used in Ref. [9].

Fig. 1 shows densities of states obtained by spin density functional calculations for Fe and Co,
where the bcc structure was used for Fe and the fcc structure for Co. Except for the exchange
splitting Fig. 1 shows rather similar densities of states for both spin directions, thus indicating
the applicability of the Stoner model for these metals. Ni with fcc structure has a similar density
of states as Co, but with a smaller exchange splitting. The majority states for Co and Ni are fully
occupied, whereas in the minority states 1.7 electrons are missing for Co and 0.6 electrons for
Ni. This leads to moments of 1.7 μB and 0.6 μB per Co and Ni atom. The calculated moment
for Fe is 2.2 μB. In contrast to Co and Ni, the majority d states in Fe are not fully occupied.
Thus Fe is characterized as a weak ferromagnet, whereas Co and Ni are characterized as strong
ferromagnets. Table 2 shows that the calculated moments agree well with the experimental
values.

Remark: While the discussion above was restricted to ferromagnetism, it is equally well ap-
plicable for other magnetic states, for instance for antiferromagnetic materials. Here, as Neel
pointed out in 1936, the internal magnetic field 1

2
IM has opposite sign on the two sublattices.

In a Stoner like picture the competition between ferromagnetism and antiferromagnetism has
been extensively discussed by Heine and Samson [11] who have shown that antiferromagnetism
is favored if EF is in the middle of a band, in particular if the density of states is small at EF ,
whereas ferromagnetism is favored if EF is near to a band edge, in particular if the density of
states is large at EF .
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Table 1: Densities of states no(EF ) at the Fermi energy, exchange integrals I , their products
and Stoner enhancement factors S obtained in non-spin-polarized density functional calcula-
tions [9] for some selected metals.

metal no(EF )[Ry−1] I[Ry] Ino(EF ) S = χ/χP
Na 6.2 0.067 0.42 1.71
Al 5.6 0.045 0.25 1.34
Cr 9.5 0.028 0.27 1.36
Mn 21. 0.030 0.63 2.74
Fe 42. 0.034 1.43 -2.34
Co 27. 0.036 0.97 38.2
Ni 55. 0.037 2.04 -0.98
Cu 3.9 0.027 0.11 1.12
Pd 31. 0.025 0.78 4.46

Table 2: Magnetic momentsMLSDA for Fe, Co and Ni obtained in local spin density functional
calculations [8] in comparison with the experimental values for the spin-only moments Mspin

and for the total moments M including the orbital contributions.

metal MLSDA[μB/atom] Mspin[μB/atom] M [μB/atom]

Fe 2.15 2.12 2.22
Co 1.56 1.57 1.71
Ni 0.59 0.55 0.61

3.3 Ferromagnetism of Alloys

Alloys of Fe, Co and Ni and alloys of these elements with other transition metals display a wide
variety of magnetic properties since the magnetization of the pure elements can be strongly
changed by alloying. The moments of the ferromagnetic atoms can be reduced or enlarged and
parallel or antiparallel alignment of moments of the different atoms can occur. A combined rep-
resentation of the averaged moments of binary magnetic alloys is given by the Slater-Pauling
curve which is shown in Fig. 4. The Slater-Pauling curve has two main branches with slopes of
45o and -45o which meet in the middle where a maximal moment of about 2.4 μB occurs. The
left main branch consists of Fe alloys, whereas Co and Ni alloys form the right main branch and
the subbranches. The main reason for the two different slopes is a different electronic screening
behavior. Alloys on the main branch on the right have a full majority spin band so that the
screening of the valence difference introduced by the impurity atoms is provided by minority
spin electrons. This leads to a reduced number of minority d electrons which gives increased
moments. Alloys on the other branches are characterized by the occurrence of antiparallel mo-
ments of the impurities which lead to reduced averaged moments with increasing concentration.
Here the screening is mainly provided by the majority spin electrons. The experimental results
(upper picture) have been obtained by measurements of the saturation magnetization and con-
tain an orbital contribution of about 5–10 % of the spin contribution. Therefore, the theoretical
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Fig. 4: Slater-Pauling curve from Ref. [12] for the averaged magnetic moment per atom as
function of the averaged number of electrons per atom. Important alloys for applications are
Permalloy (Fe20Ni80) as a typical soft magnet and Invar (Fe65Ni35) because of its small thermal
expansion.

results (lower picture) for the spin moments have been scaled to take into account this effect.
For CoMn two solutions have been obtained, CoMn(1) and CoMn(2) with Mn moments parallel
and antiparallel to the bulk magnetization.

The theoretical determination of the averaged moments by spin-density functional calculations
is not easy for these concentrated and disordered alloys. Statistical averaging over many config-
urations for many different concentrations requires a substantial amount of computing time [13]
which was not available when the results shown in Fig. 4 were calculated in 1991. For these cal-
culations the coherent potential approximation (CPA) was used which is based on an effective
medium concept, where the effective medium is obtained by the self-consistent requirement that
the averaged scattering of the electrons at A and B atoms in the effective medium vanishes. Al-
though the agreement between experiment and calculation (upper and lower picture in Fig. 4) is
not perfect, this figure shows that spin density functional theory is a powerful tool to understand
and explain magnetic properties of materials.
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3.4 Mapping to Model Hamiltonians

Although spin density functional theory can be used to determine the magnetic ground state,
the calculations, particularly for large and complex systems, often require too much computing
time. Thus a mapping to simpler model Hamiltonians is of great value, for instance to the
Heisenberg Hamiltonian

Ĥ = −
∑
i,j

JijŜiŜj ,

where Jij is the exchange coupling constant between the spins at sites i and j. Such a mapping
can be obtained by constrained density functional theory [14]. Constraints are already used
in the formal development of density functional theory, for instance the density is constrained
to give the correct number of electrons and the Kohn-Sham orbitals must be normalized as∑

α(ϕ
α
i , ϕ

α
i ) = 1, which is guaranteed by the Lagrange parameters εi in the Kohn-Sham equa-

tion (16). The basic idea of constrained density-functional theory is the extension to quite
arbitrary constraints. The energy of the lowest state compatible with a constraint can then be
found by a modified energy functional. One example considered in Ref. [14] is a modification
of the energy functional E[n(r)] into

Ẽ[n(r)] = E[n(r)] + v

[
NV −

∫
V

n(r)dr

]
, (23)

where the constraint, guaranteed by the Lagrange parameter v, describes that the local volume
V contains exactly NV electrons. The minimization of (23) with respect to n(r) leads to an
additional potential v in the Kohn-Sham equations, which is constant in volume V and zero
elsewhere. This potential must be adjusted such that the resulting density n(r) gives exactly
NV electrons in volume V . Instead of calculating the energy from the functional Ẽ[n(r)], it is
computationally easier to calculate the energy difference with respect to a reference state, for
instance the ground state with N0 electrons in volume V . This can be done by the Hellmann-
Feynman theorem

dẼ(NV )

dNV
= v ⇒ ΔẼ(NV ) =

∫ NV

N0

v(N ′)dN ′ , (24)

which only requires the knowledge of the potential v(N ′). Physically, the potential v can be
viewed as the “force” necessary to constrain the system to the desired state and ΔE as the
“strain energy” of the system.
An early application of constrained density functional theory is the calculation of interaction
energy differences between the ferromagnetic and antiferromagnetic configuration of impurity
pairs in metals [15]. In these calculations the local magnetic moment of one of the impurities
is constrained to an arbitrary value Mloc = μBM and the lowest energy compatible with the
constraint is determined by a modified functional

Ẽ[n(r), m(r)] = E[n(r), m(r)] +B

[
μBM −

∫
V

m(r)dr

]
,

where the Lagrange parameter B is a constraining magnetic field, which is constant in the cell
of one impurity with volume V and zero elsewhere. This field is chosen such that the integral
of the magnetization m(r) over the cell gives the desired value of the moment. Similar to (24)
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Fig. 5: Magnetic interaction energy difference and constraining magnetic field for pairs of
Mn and Fe impurities on nearest neighbor sites in a Cu crystal (from Ref. [15]). Note that
the energies involved in these calculations are several orders of magnitude smaller than the
individual energies of the antiferromagnetic and ferromagnetic configurations.

the energy difference is given by

ΔE(M) =

∫ M

M0

H(M ′)dM ′ ,

where M0 is the value of M in the reference state. For instance in Fig. 5, the reference state
is the antiferromagnetic configuration, for which the moments for the two impurities have op-
posite sign. This reference state with calculated values M = −3.22 and M = −2.31 (for
Mn and Fe pairs) corresponds to the left minima of the ΔE(M) curves in Fig. 5. The right
minima of the ΔE(M) curves correspond to the ferromagnetic configuration with calculated
values M = 3.20 and M = 2.40 (for Mn and Fe pairs). Both the antiferromagnetic and the
ferromagnetic configurations are stable as the minima of the energies with vanishing constrain-
ing field B indicate. The energy differences between the ferromagnetic and antiferromagnetic
configuration are 0.14 eV for Mn and -0.13 eV for Fe pairs so that the antiferromagnetic state is
more stable for the Mn pair and the ferromagnetic state is more stable for the Fe pair. Note that,
whereas energy and field curves depend on the choice of the constraint, for instance the volume
V , the resulting energy differences between both configurations are independent of the choice.
Instead of constraining the absolute magnitude of the moment also its direction can be con-
strained. This requires a transversal field perpendicular to the direction of the moment. The
calculated energy changes can then be mapped to effective Hamiltonians. For instance, for
small deviations from the ground state, the energy difference is quadratic in the changes of the
moments

ΔE(M i,M j) ≈ −
1

2

∑
i,j

JijΔM iΔM j ,

which provides a method to calculate the exchange-coupling constants Jij for the Heisenberg
model within density functional theory.

4 Relativistic Effects

In applications of magnetic materials, for instance permanent magnets or magnetic storage me-
dia, one usually exploits the fact that the material is more easily magnetized in a certain direction
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than in other directions. The energy needed to rotate the magnetization from a direction of low
energy (easy axis) to a direction of high energy (hard axis) is of the order of μeV to meV per
atom. The small energy difference can be attributed to relavistic effects, the magnetic dipole
dipole interaction and the coupling of spin and orbital motion of the electrons. The classical
expression for the dipole dipole interaction

μ2
Bμ0

2

∑∑
i�=j

1

|ri − rj |3
{
mi ·mj − 3

[
(ri − rj) ·mi

] [
(ri − rj) ·mj

]
|ri − rj|2

}

can be obtained within density functional theory as shown by Jansen [17] from the Hartree
energy part of the relativistic Breit equation. An important property of this interaction is its slow
decrease with distance like |r − r′|−3. Thus the dipole field experienced at an atom depends
significantly on the moments located at the boundary of the sample. This results in the shape
anisotropy which is important for small samples of non-spherical shape and for low dimensional
systems like magnetic films and wires. In bulk cubic crystals the dipole dipole contribution
to the magnetic anisotropy, which is of second order in m(r), is unimportant because cubic
symmetry requires that second order terms vanish. Here the main contribution to the magnetic
anisotropy comes from spin-orbit coupling, which is a relativistic effect contained in the Dirac
equation as can seen, if the Dirac equation is expanded with respect to the inverse of the velocity
of light 1/c.
Phenomenologically the free energy density f = F/V can be expanded into spherical harmon-
ics

f(ϑ, ϕ)/V =
∑
l even

m=l∑
m=−l

κlm(B)Ylm(ϑ, ϕ) . (25)

Here odd terms in l vanish because of time reversal symmetry. Often instead of (25) an ex-
pansion in the directional cosines (α1, α2, α3) = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) is used in the
form

f(ϑ, ϕ) = b0(B) +
∑
i,j

bij(B)αiαj +
∑
i,j,k,l

bijkl(B)αiαjαkαl + · · · ,

where again only even terms compatible with time reversal symmetry appear. Due to crystalline
symmetry certain relations between coefficients of equal order exist so that for cubic crystals
the anisotropy can be written as

f(ϑ, ϕ) = K0 +K1(α
2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) +K2α

2
1α

2
2α

2
3 + · · · (26)

with the coordinate axes taken along the cubic axes and for hexagonal crystals as

f(ϑ, ϕ) = K0 +K1 sin2 ϑ+K2 sin4 ϑ+ · · · , (27)

where ϑ is the angle between the magnetization direction and the c axis. (Note that in (26) and
(27) the index i ofKi does not describe the order.) Values for the magnetic anisotropy constants
for the ferromagnetic elements Fe, Co and Ni are given in Table 3. In general, the anisotropy
constants K1 and particularly K2 are difficult to measure, since they are strongly temperature
dependent and susceptible to crystal imperfections.
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Table 3: Magnetic anisotropy constants for Fe, Co and Ni at 300 K (from Ref. [16]).

metal Fe Co Ni
lattice (bcc) (hcp) (fcc)
K1 [Jm−3] 4.8 · 104 5.3 · 105 4.5 · 103

Appendix

Useful relations for products of∇ and A, which do not commute, are

∇ · (AΨ) + A · ∇Ψ = (∇ ·A)Ψ + 2A · ∇Ψ = 2A · ∇Ψ , (28)

∇× (AΨ) = (∇× A)Ψ− A×∇Ψ = BΨ−A×∇Ψ , (29)

where in (28) the Coulomb gauge condition∇ ·A = 0 was used. To derive (8) matrix multipli-
cation can be used

(σ · u)(σ · v) =

(
uz ux − iuy

ux + iuy −uz

)(
vz vx − ivy

vx + ivy −vz

)

=

(
uxvx + uyvy + uzvz + i(uxvy − uyvx) −uxvz + uzvx + i(uzvy − uyvz)
−uxvz + uzvx + i(uzvy − uyvz) uxvx + uyvy + uzvz − i(uxvy − uyvx)

)

= I2(u · v) + iσ · (u× v) ,
which leads to (8) for the choice u = v = p. For a constant magnetic fieldB the vector potential
can be written as

A = −1

2
r ×B = −1

2

⎛
⎝ yBz − zBy

zBx − xBz

xBy − yBx

⎞
⎠ (30)

which is consistent with B = ∇× A because of

∇× A =

⎛
⎝ ∂yAz − ∂zAy

∂zAx − ∂xAz
∂xAy − ∂yAx

⎞
⎠ = −1

2

⎛
⎝ −Bx − Bx

−By − By

−Bz − Bz

⎞
⎠ = B .

By use of (28) and (30) one obtains

∇ · A+ A · ∇ = (Byz −Bzy)∇x + (Bzx−Bxz)∇y + (Bxy −Byx)∇z

= (y∇z − z∇y)Bx + (z∇x − x∇z)By + (x∇y − y∇x)Bz

= [r ×∇] · B = − 1

i�
L · B (31)

and

4A2 = (xBy − yBx)
2 + (zBx − xBz)

2 + (yBz − zBy)
2

= y2B2
x + x2B2

y + x2B2
z + z2B2

x + y2B2
z + z2B2

y − 2xyBxBy − 2xzBxBz − 2yzByBz

= (x2 + y2 + z2)(B2
x +B2

y +B2
z)− (xBx + yBy + zBz)

2

= r2B2 − (r ·B)2 = r2B2(1− cos2 ϑ) , (32)

where ϑ is the angle between r and B.
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1 Introduction

In this article we focus on two issues: (i) spin related behavior of electrons propagating in
the potentials with structure inversion asymmetry (SIA). Owing to the spin-orbit interaction,
inversion asymmetric potentials give rise to a Bychkov-Rashba spin-orbit coupling causing a
spin-splitting of a spin-degenerate electron gas. In this article we show that the rich spin-orbit
driven physics in potentials with SIA is effective also for electrons at metallic surfaces. We il-
lustrate the Rashba spin-splitting of surface electrons at noble-metal surfaces, e.g. Ag(111) and
Au(111), at the semimetal surfaces Bi(111) and Bi(110), and the magnetic surfaces Gd(0001)
and O/Gd(0001). E.g. on the Bi(110) surface the Rashba spin-splitting is so large that the Fermi
surface is considerably altered, so that the scattering of surface electrons becomes fundamen-
tally different. On a magnetic surface, the Rashba splitting depends on the orientation of the
surface magnetic moments with respect to the electron wavevector, thus offering a possibility
to spectroscopically separate surface from bulk magnetism.
(ii) The second issue is the dimensional aspect of itinerant magnetism, in particular of those
systems including d electrons, as relevant for the magnetic ground-state properties of metallic
surfaces, interfaces, multilayers, ultrathin films, step edges, or magnetic clusters deposited on
surfaces. Considering the vast number of possible systems, a number growing fast with the
number of constituent atoms, the surface and interface orientation, the chemical and structural
roughness at interfaces, the electronic nature of the substrate (metal, semiconductor, metal), an
exhaustive review is unattainable. Instead we discuss chemical trends in order to develop an
intuition helpful to understand also new systems or envisage new effects not investigated yet.
The simplest low–dimensional systems are isolated atoms, whose spin moments as function
of the the number of d electrons are well described by Hund’s first rule: the spins of all elec-
trons are aligned in parallel as long as no quantum number is occupied more than once. Thus
nearly all of the 30 transition–metal atoms have magnetic spin moments. The largest possi-
ble d moments occur at the center of each series, i.e. 5 μB for Cr and Mn in the 3d series.
On the other hand, it is well-known that only 5 of 30 transition metals remain magnetic in
their bulk crystalline phase: Co and Ni are ferromagnetic, Cr is antiferromagnetic, and Mn
and Fe are ferromagnetic or antiferromagnetic depending on their crystal structure (cf. Fig. 1).
Low–dimensional transition–metals should fall in between these two extremes. Magnetic ma-
terial may be envisaged, which is nonmagnetic as bulk metal but magnetic as nano-structure.
Although these arguments do apply, band narrowing, charge transfer, lift of degeneracies, struc-
tural, morphological or thermodynamical changes mire the interpolation and it took about 10
years to settle the “relatively simple” problem of the surface magnetism of Ni(100) [1]). Totally

0

1

2

3

4

5

1 2 3 4 5 6 7

55

4

3

2

1

0

lo
c
a

l
m

o
m

e
n

t
(

)
μ

B

Ti V Cr Mn Fe Co Ni

5

4

3

2

1

0

atom

bulk

Fig. 1. Local magnetic moments of isolated 3d
atoms (empty squares connected by dashed line ),
ferromagnetic (solid squares connected by solid
line ) and antiferromagnetic (diamonds connected
by dotted line ) 3d bulk metals. The magnetism of
the atom includes only the moment due to the d
electrons. For the bulk metals the experimental
spin moment are shown.



Magnetism in Reduced Dimensions A3.3

Table 1: Typical ground-state energies E in eV/atom for 3d metal films.

E (eV/atom)

cohesive energy 5.5

local moment formation 1.0

alloy formation 0.5

magnetic order 0.2

structural relaxation 0.05

magnetic anisotropy 0.0001÷0.002

unclear is the magnetic coupling between the moments of atoms in systems of reduced dimen-
sions, in particular if the frustration of the magnetic interactions comes into play as for example
in exchange-bias systems.

The magnetic ground-state properties may be divided into (i) the formation of local moments
of different sizes (ii) the interaction between the local moments responsible for the formation
of the magnetic order, the magnetic coupling at interfaces or across spacer layers, and (iii) the
magnetic anisotropy energy, which couples the direction of the magnetization to the lattice and
determines the easy and hard axes of the magnetization. At this point it may be useful to put the
magnetic energies involved in (i)–(iii) into a general perspective by comparing them in Table 1
with the structural and compositional ground-state energies. From the relative importance of
the different energies it is evident that the local moment formation has a considerable influence
on the stability, alloy formation, atom arrangement and atom relaxation at the interface. Since
the local moments may change quite substantially at the interface, materials with new and un-
known phases [2], crystal structures and magnetic structures [3] are to be expected. Despite the
technological importance and the importance for the finite temperature properties of thin films,
the anisotropy energy is a rather small quantity The anisotropy energy depends on all structural
and electronic details of an interface, while in turn, with the exception of the magnetostriction,
not much influence on structural aspects are expected. In this sense the problem of the magnetic
anisotropy can be tackled after the interface is completely determined otherwise.

The issues (i) and (ii) cross in the point that electrons at a SIA invironment of surfaces or
interfaces, common to all nanostructures, gives rise not only to the well-known symmetric
Heisenberg exchange but in addition also to a less known Dzyaloshinskii-Moriya-type (DM)
antisymmetric exchange. Depending on the strength of the DM interaction, we expect in low-
dimensional magnets deposited on substrates, such as ultrathin magnetic films, homochiral, i.e.
chirality broken two- or three-dimensional magnetic ground-state structures between nanometer
and sub-micrometer lateral scale. Little is known about the strength of the DM interactions in
low dimenional magnets and this is one of very active research areas.

There are several low-dimensional systems and phenomena which are not covered in this chap-
ter. To these belong the magnetic chains, wires, clusters in the gas phase, the molecular magnets
and the Kondo-Effekt of adatoms on surfaces. When the growth of thin films is repeated to form
multilayers, in particular those of thin magnetic films separated by non-magnetic spacer layers,
an exchange interaction between the films across the spacer layer occurs, which is known as the
interlayer exchange coupling. The emphases of this lecture is not on thermodynamic properties
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of low-dimensional systems, they are only included at minimum. The work which I present are
basically predictions, analyses and understanding of the electronic structure, magnetic moment,
and magnetic structure as – results obtained from the density functional theory introduced in
the lecture of Dr. Bihlmayer and Dr. Zeller.

2 Models

In this section the reader is reminded at the theoretical concepts used to predict and analyze
the results. The theories and model have been in part been introduced by previous speaker,
e.g. Dr. G. Bihlmayer and Dr. R. Zeller. Further, simple models are discussed to rationalize the
results.

2.1 Stoner Model

The occurrence of ferromagnetism can be studied on the basis of the Stoner criterion introduced
in the chapter Density Functional Theory of Magnetism:

I n(EF) > 1 . (1)

The Stoner criterion is an instability condition which expresses the competition between the
exchange interaction in terms of the exchange integral I which drives the system into ferromag-
netism for large I and the kinetic energy in terms of the nonmagnetic density of states (DOS)
n(EF) at the Fermi energy EF. The kinetic energy rises if the system becomes magnetic, the
more the wider the band width or the lower the density of states, respectively. A big exchange
integral and a large nonmagnetic DOS at the Fermi energy favors ferromagnetism. When fer-
romagnetism occurs, the double degeneracy of the energy bands ε�k is lifted, majority states εk↑
and minority states εk↓ are rigidly shifted in energy by the exchange splitting IM , where M is
the value of the local magnetic moment,

εk↑ = ε�k −
1

2
IM and εk↓ = ε�k +

1

2
IM . (2)

The rigid band shift is a good model if the shift is small as in case of bulk ferromagnets. Devi-
ations can be found for thin films, as the magnetic moments and thus the exchange splitting is
large.
The Stoner criterion in equation (1) can be generalized describing the instability against the
formation of a frozen spinwave of wave vector �q,

I χ�q(EF) > 1 . (3)

Obviously the local DOS was replaced by the �q dependent susceptibility χ�q, a quantity which
is expressed in the Heisenberg model by J(�q). Within equation (3), antiferromagnetism is just
a special case. While the DOS at EF is easily accessible by experiment or electronic structure
calculations, the static susceptibilities χ�q(EF) are not. To make use of equation (2) an approx-
imate criterion for antiferromagnetism is derived which makes explicit use of the local DOS.

Small magnetic moments with the same magnitude M , but possibly different directions �̂Mj at
different sites j, induce in linear response theory local moments �Mi at sites i

�Mi =
∑
j

χij(EF)M �̂Mj . (4)
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Fig. 2: Graphical illustration of equation (8) for a DOS typical for transition-metal monolayers
on (001) oriented noble metal substrates.

The staggered susceptibility describing a particular magnetic state (M) is then expressed as

χM =
∑
i

χ0i
�̂M0 · �̂Mi . (5)

Particular examples of this staggered susceptibility are the ferromagnetic (χFM)

χFM = n =
∑
i

χ0i (6)

and the antiferromagnetic (χAFM)

χAFM =
∑
i

(−1)(i) χ0i (7)

susceptibilities. Assuming that for 3d metals the nearest-neighbor interaction is the most domi-
nating one, χ0i can be neglected for all sites beyond nearest neighbors (χ0i = 0 for i > 1), and
χFM and χAFM are given approximately by

n(E) ≈ χ00(E) + χ01(E), and χAFM(E) ≈ χ00(E)− χ01(E) , (8)

where χ00(E) is the local or atomic susceptibility, respectively, at the energy E. The energy de-
pendence of χ00 is fairly simple. It follows from atomic Hund’s rule-type arguments: The max-
imum spin M occurs for half band-filling, hence the atomic (local) susceptibility χ = ∂M/∂H
will also be largest. From equation (8), we can obtain an approximate form for χAFM using
only DOS information. This is illustrated in Figure 2. As function of the d band-filling, from V
to Ni, the Fermi energy sweeps from the left to the right through the DOS. If the Fermi energy
is positioned at the center of the band as for Cr, and the DOS is low but the antiferromagnetic
susceptibility is high, and antiferromagnetism is expected. If the Fermi energy is closer to the
end of the band, the antiferromagnetic susceptibility is small but the DOS is large and ferro-
magnetism is expected as for Fe, Co, and Ni. Mn and Fe are at the edge of both magnetic states,
and depending on circumstances different magnetic ground states can be found. Compare also
to the calculated DOS, Figure 12, in Sect. 4.1
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2.2 Role of Coordination Number

As discussed in Sect. 2.1 the Stoner criterion for ferromagnetism, equation (1), depends (i) on
the Stoner parameter I and (ii) the DOS n(EF) at the Fermi energy EF.
(i) The exchange integral I is an intra-atomic, element specific quantity, and in simplest approx-
imation independent of the local environment, the structure and the site of a given atom, e.g.
surface atom or bulk atom. According to Gunnarsson [4] and Janak [5] a global trend

I3d > I4d > I5d (9)

was found for the exchange integrals of the 3d, 4d, and 5d transition-metal series.
(ii) Focusing on the d electrons as relevant electrons for itinerant magnetism, the DOS depends
on both the coordination number Nnn and the hopping matrix elements hd between the d elec-
trons. This can be understood as follows: The energy integral

∫
W
n�(ε) dε = 2� + 1 over the

band width, W , of the local DOS of angular momentum quantum number �(= 2) is normalized
to 2� + 1 states. Thus, in simplest approximation possible (e.g. rectangular shaped DOS), one
can assume that the local DOS scales inversely proportional to the band width, W ,

n(EF) ∼ 1

W
. (10)

At the atomic limit the band width converges to zero, the Stoner criterion is always fulfilled
and moments in accordance with Hund’s first rule will be found. In general the DOS consists
of contributions from electrons in s, p, d, and f states. For transition metals by far the largest
contribution comes from the d electrons, and the d–d hybridization determines the shape of the
density of states. Therefore, in the following discussion we restrict ourselves to d electrons and
write

n(EF) ≈ nd(EF) ∼ 1

Wd
. (11)

The average local band width Wd(�Ri) for an atom i at position �Ri can be estimated in a near-
est neighbor tight-binding model, applicable for the itinerant but tightly bound d electrons of
transition-metal atoms, to be

Wd ≈ Wd (�Ri) = 2

√
Nnn(�Ri) hd(Rnn) . (12)

According to equation (12) the band width depends on two quantities: (a) the hopping matrix
element hd of the d electrons and (b) the number of nearest neighbor atoms or coordination
number Nnn.
(a) The hopping matrix element depends on the overlap of the d wavefunctions. It decreases
with increasing lattice constant or distance Rnn to the nearest neighbor atom and for a given
lattice constant it increases with the extension of the wavefunction or, equivalently, the number
of nodes. In Figure 3 the band widths of 3d, 4d, and 5d bulk transition-metals are schematically
shown, together with the band widths of rare earths and actinides. In line with the arguments
of increasing number of nodes from 3d to 5d wavefunctions a clear “macro trend” between the
transition-metal series is visible summarized as follows:

h3d < h4d < h5d =⇒ W3d < W4d < W5d =⇒ n3d > n4d > n5d (13)

Within each transition-metal series there exists an additional “micro trend”: due to the incom-
plete screening of the Coulomb potential of the nucleus by the d electrons, the d wavefunctions
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Fig. 3: Schematic illustration of the band width W of the transition-metals together with rare
earths (4f ) and actinides (5f ), all in the bulk phase. The 5f electrons of the early actinides
and the 3d electrons of transition-metals from the middle to the end of the 3d series (Cr to Ni)
show itinerant magnetism, while the magnetism of the late actinides and the rare earths is best
described as localized magnetism, and their magnetic properties can in good approximation be
explained in terms of Hund’s rule.

at the beginning of the transition-metal series are more extent than at the end of the series, thus
the hopping matrix element at the beginning of the series is larger than at the end, with the
well-known consequences for the band width W and the DOS n(EF).
(b) The smaller the coordination number Nnn the smaller the d–d hybridization and the smaller
is the band width. Let’s consider for example the coordination number of an atom in the environ-
ment of a fcc crystal (Nfcc = 12), of an atom in the (001)–surface of the fcc crystal (N(001) = 8),
located in a two-dimensional (001) monolayer film (NML = 4) and of an atom in a monoatomic
chain (Nchain = 2), keeping the nearest neighbor distance fixed (Rnn = constant) and keeping
the bonding strength fixed (hd = constant). Under these circumstances, one obtains for the
ratio of the band widths

Wd
chain : Wd

ML : W
(001)
d : W fcc

d = 0.41 : 0.58 : 0.82 : 1 ,

or the local DOS

nchain
d : nML

d : n
(001)
d : nfcc

d = 2.45 : 1.73 : 1.22 : 1 . (14)

Thus, the reduction of the coordination number leads to less d–d hybridization, consequently to
band narrowing, and in low-dimensional structures the tendency towards magnetism is consid-
erably boosted. Accordingly, one can expect, that transition-metals, which are nonmagnetic as
bulk metals, may become magnetic at surfaces or as ultra-thin films. A nice manifestation of
these arguments was recently reported for the size and shape dependence of the local magnetic
moments in Fe clusters on the Ni(100) surface [6]. The arguments put forward here for the
increased ferromagnetism in reduced dimensions can be carried over directly to the increased
antiferromagnetic susceptibility.
The magnetic properties are expected to depend also on the surface or film orientation, because
along with a change of the surface orientation goes a change of the coordination number Nnn

(cf. Table 2) as well as a change of the nearest neighbor distance R‖ between the surface atoms
and R⊥ between the surface atoms and the atoms in the next layer. For a fcc lattice, the (111)
surface is the most densely packed one, and we expect for it the smallest enhancement of the
magnetic moments. Among the three low-index surfaces, with the orientation (001), (011), and
(111), the (011) surface leads to the most open surface. For the latter we expect the largest
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Table 2: Coordination number Nnn, interlayer distance d, point symmetry S, and packing
density ρ (fraction of the area of the surface unit cell, covered by atoms with an atom radius of
touching bulk atoms) for a fcc lattice. Only the 3 low-index surfaces, (001), (011), and (111),
are considered. a is the lattice parameter of the simple cubic unit cell.

Nnn S d/a ρ

(111) 9 C3v 0.5774 0.9068

(001) 8 C4v 0.5000 0.7854

(011) 7 C2v 0.3536 0.5554

magnetic moments. At surfaces or ultrathin films of bcc lattice type the trend should be exactly
the opposite. The most densely packed surface is the (011) surface for which we expected the
smallest enhancements of the magnetic moments. The (111) surface is the most open one. This
surface is already close to a stepped one.
The implication of the coordination number, discussed so far is an important aspect in interface
magnetism, but it is not the whole story. Further important aspects neglected so far have to
be taken into account in order to give a qualitative correct description of the magnetism at
interfaces.

2.3 Heisenberg Model and Beyond

To predict the magnetic ground state of a low-dimensional magnetic system can be a highly
nontrivial problem. In cases, for example, where competing exchange interactions between
neighboring atoms cannot be satisfied, exchange interactions are frustrated giving rise to a mul-
titude of possible spin-structures. In the past, the magnetism of complex spin structures of
itinerant magnets has been almost exclusively discussed within the framework of model Hamil-
tonians, e.g. the classical Heisenberg Hamiltonian,

H2-spin = −
∑
i,j

Jij �Si · �Sj . (15)

The spins localized on the lattice sites i, j are considered as classical vectors �S, with the as-
sumption that the spins on all lattice sites have the same magnitude S:

�S2
i = S2, for all i . (16)

The exchange interaction between the spins is isotropic and described by the pair interaction
Jij . In localized spin systems the Jij can be safely approximated by the ferromagnetic (J1 > 0)
or antiferromagnetic (J1 < 0) nearest-neighbor (n.n.) interaction, i.e. Jij = 0 for all i, j, except
for Jn.n. = J1. Also in itinerant magnets J1 often dominates over the rest of the further distant
pairs, however, an attempt to reproduce TC solely from J1 produces results of limited quality. In
many cases interactions between atoms as distant as 20 sites need to be included to give reliable
results.
Exchange interactions beyond the classical Heisenberg model can be motivated from a pertur-
bation expansion of the Hubbard model [7]. Expanding the Hubbard model into a spin model,
replacing the spin operators by classical spin vectors, a second order perturbation expansion
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reproduces the classical Heisenberg model. The fourth order perturbation treatment (the third
order is zero in the absence of spin-orbit interaction) yields two additional terms of different
form. One is the four-spin exchange interaction (4-spin):

H4-spin = −
∑
ijkl

Kijkl

[
(�Si�Sj)(�Sk �Sl) + (�Sj �Sk)(�Sl�Si)− (�Si�Sk)(�Sj �Sl)

]
. (17)

The 4-spin interaction arises from the hopping of electrons over four sites, i.e. the process
1 → 2 → 3 → 4 → 1. The second term, resulting from the hopping 1 → 2 → 1 → 2 → 1, is
the biquadratic exchange:

Hbiquadr = −
∑
ij

Bij(�Si · �Sj)2 . (18)

The exchange parameters Jij,Kijkl, andBij depend on the details of the electronic structure and
it is known [8] that for transition-metals the sign and magnitude are rapidly varying functions
of the d-band filling. In thin films, the nearest neighbor exchange constants scaled by the
appropriate power of the magnetic moment, S4K1 and S4B1, are about one order of magnitude
smaller than S2J1, which is for example for Mn/Cu(111) about 30 meV [9]. The higher order
spin interactions have then the effect, depending on the sign and value, to lift the degeneracy of
magnetic states which are degenerate in the Heisenberg model.
In itinerant magnets, the electrons that are responsible for the formation of the magnetic state
do participate in the formation of the Fermi-surface and hop across the lattice. Thus, it is by
no means clear how far a short-ranged n.n. interaction or even how far the Heisenberg model,
and models beyond that, can go in giving a sufficiently good description of the physics of
itinerant magnets at surfaces and films. We believe that the interplay of ab initio calculations
with model Hamiltonians provides a powerful approach to investigate the magnetic structures of
complex magnetic systems as low-dimensional magnets and to deal with their thermodynamical
properties.
For our purpose here, the value of the Heisenberg model lies in two facts: (i) to construct a zero-
temperature phase diagram of relevant spin states as function of the exchange parameters Jij and
(ii) that a spin-spiral state, SSDW, with a propagation vector �q in the first Brillouin zone (BZ)
is a fundamental solution of the Heisenberg model for a Bravais lattice. On a Bravais lattice it
is convenient to write the spin on lattice sites in terms of their discrete Fourier components �S�q.
The Heisenberg Hamiltonian can then be written in the simple form

H2-spin = −N
∑
�q

J(�q) �S�q · �S−�q . (19)

The summation goes over the reciprocal lattice vectors �q. N denotes the number of lattice sites
in the crystal.

J(�q) =
∑
i,j

Ji−j e−i�q(
�Rj−�Ri) =

∑
�0−�Ri

J�0−�Ri
e−i�q(�0−

�Ri) = J(−�q) = J(�q)∗ (20)

are the Fourier transformed exchange constants and �Ri is the real-space coordinate of lattice
site i. The lowest energy

E( �Q) = −NS2J( �Q) (21)

is found for the magnetic ground state �S �Q of the SSDW with wavevectors ±�Q (as well as

symmetry related �Q vectors) which are obtained by minimizing the energy equation (19) under
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the condition equation (16). The corresponding spin structure are helical spin spirals equation
is given by

�Mi = M(cos(�q · �Ri) sinϑ, sin(�q · �Ri) sinϑ, cosϑ) , (22)

for ϑ = 90◦ and �Mi = −gμB
�Si. For particular �Q vectors, e.g. �Q = ±2π/a(0, 0, 1/2) one

may find the uudd-state as ground state, a collinear bilayer antiferromagnetic state of ferromag-
netic double layers, which couple antiferromagnetically. This state, for example, was found in
calculations for regime II of fcc-Fe films on Cu(001) [10].
In two dimensions �Q is typically located at high-symmetry points (lines) of the two-dimensional
Brillouin zone, where the energy equation (21) as function of the �q-vector should have an ex-
tremum, a maximum, a minimum (or a saddle point), depending on the exchange constants
Jij , and the symmetry of the high-symmetry point. In principle, one cannot exclude that
the minimum of the energy will be located at any arbitrary point along the high-symmetry
lines, representing an incommensurate spiral spin-density wave. In practice, we perform first-
principles total energy calculations E [n(�r), �m(�r)|{�q}] for flat spin-spirals along the high sym-
metry lines to gain an overview of possible minimum energies E( �Q). The role of higher order
spin interactions are then investigated carrying out constraint calculations of the total energy
E[n(�r), �m(�r)|{�̂e}] for particular paths of magnetic configurations. Zero-temperature phase dia-
grams in the J01 · · ·J0i space are very helpful to reduce the relevant phase space of possible spin
structures. This recipe had been followed in Sect. 4.1 and 4.2 to explore the magnetic ground
state of thin films. The above described mapping of ab initio calculations to spin-models re-
lies on the assumption, that the magnetic moment does not depend on the relative difference
of the magnetization axis between atoms. For itinerant systems this is not necessarily guaran-
teed. The change of the moment with respect to the relative quantization axis can be mapped
on spin-models introducing also higher order spin interactions.

2.4 Critical Temperature

It is well known that magnetic excitations in itinerant ferromagnets are basically of two different
types, namely, the Stoner excitations associated with longitudinal fluctuations of the magnetiza-
tions, and the spin-waves or magnons, which correspond to collective transverse fluctuations of
the magnetization direction. Near the bottom of the excitation spectrum, the density of states of
magnons is considerably larger than that of the Stoner excitations, so that the thermodynamics
in the low-temperature regime is completely dominated by magnons. Stoner excitations can
be savely ignored. Thus, it seems reasonable to extend this approximation up to the critical
temperature, Tc, to neglect the Stoner excitation systematically, and to describe the transver-
sal fluctuations by the Heisenberg model expressed in equation (15) with exchange parameters
determined from first-principles. An overview over the current applications along this line of
mapping first-principles results on Heisenberg-type Hamiltonians to study the thermodynamical
properties of bulk and low-dimensional magnets can be found in the paper of Turek et al. [11].
Below the critical temperature, the so-called Curie temperature TC for ferromagnets or the Néel
temperature, TN, for magnets with more complex magnetic phases, the spontaneous magneti-
zation remains finite, while it is zero above TC. The phase transition is of second order, i.e.
the spontaneous magnetization which is the order parameter characterizing the phase transition,
vanishes continously at TC. A second order phase transition is governed by the principle of uni-
versality, where a system close to the phase transition does not depend on details of the system
such as its material parameters or the geometry of the sample, but rather on the symmetry of the
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underlying model and the dimension of the spin, which is three for the Heisenberg model. In this
lecture we are interested in estimating the critical temperatures as these are non-universal quan-
tities, and of great practical importance. It is certainly important to know whether cryogenic,
room temperature or elevated temperatures are required to observe particular phenomena.
A first simple estimate of the Néel temperature for a three-dimensional system exhibiting a
helical spin-spiral ground state with wave vector �Q is given by the mean-field approximation
(MFA) to the Heisenberg Hamiltonian, which leads to

kBT
MFA
N =

2

3
S2J( �Q) and kBT

MFA
C (n.n.) =

2

3
S2NnnJ1 , (23)

where kB is the Boltzmann constant. For the ferromagnetic state, �Q = (0, 0, 0), the left equa-
tion (23) gives the Curie temperature in the MFA, TMFA

C , expressed explicitely in the right
equation in the nearest neighbor approximation to the exchange interaction. Nnn is the coor-
dination number of nearest neigbhor atoms and J1 is the interaction strength as introduced in
Subsect. 2.3. The MFA gives the right proportionality of TC with respect to the number of
neighbors, but has also a few deficiencies. Besides overestimating TC for three-dimensional
systems by typically about 20%, TMFA

C does not depend on the lattice structure nor on the di-
mensionality of the system. These shortcomings are remedied treating the Heisenberg model in
the random phase approximation (RPA) [12, 13], which gives for the critical temperatures

1

kBTRPA
N

=
3

4

1

NS2

∑
�q

[
1

J( �Q)− J(�q)
+

1

J( �Q)− 1
2
J(�q + �Q)− 1

2
J(�q − �Q)

]

and kBT
RPA
C (n.n.) =

2

3
S2NnnJ1 ·

⎧⎨
⎩

0.660 sc

0.718 bcc

0.744 fcc

. (24)

The RPA gives weight to the low-energy magnon excitations E(q) ∝ J( �Q) − J(�q) in the
summation over all modes. This provides estimates of TC in close vicinity to the numerical
analysis using classical Monte-Carlo simulations [14] discussed in detail in the book of Landau
and Binder [15].
Both approximations show that the Curie and Néel temperature depend on the number of nearest
neighbors and one expects that the critical temperature TC decreases if the dimensionality of
the system is reduced. But both approximations show a qualitatively different behavior for low-
dimensional magnets. The mean-field approximation overestimates the tendency for long-range
order and predicts always a phase transition to ferromagnetic order in the Heisenberg model,
no matter whether we have a one, two or three dimensional system, whereas TRPA

C = 0 already
for two-dimensional systems. This is consistent with the theorem of Mermin and Wagner [16],
which states that in two dimensions there is no spontaneous long-range ferromagnetic order for
isotropic Heisenberg models with short-range interaction (

∑
j Jijr

2
ij <∞) at finite temperature.

In thin films the long range order at finite temperature is stabilized by the magnetic anisotropy,
which is practically always present. It opens a gap Δ in the excitation spectrum of the spin-
waves, E(q) ∝ Δ + J( �Q) − J(�q), and supresses low-energy long-wavelength fluctuations
which occur for low temperatures. According to a renormalization group analysis of Erickson
and Mills [17, 18] the transition temperature in two dimensions, T (2D)

C , scales with the transition
temperature of the three-dimensional Heisenberg model which is renormalized by a logarithmic
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Fig. 4: Critical temperature of a two-dimensional magnet as function of the uniaxial anisotropy
following equation (25). The function startes at zero for K = 0. Note its rapid growth in the
vicinity of the origin as shown in the inset at magnified scale.

factor,

T
(2D)
C = T

(3D)
C

2

ln

(
3π
4

kBT
(3D)
C

K

) , (25)

which contains the strength of the uniaxial magnetic anisotropy in terms of a constant K (see
Subsect. 2.5). This result is displayed in Fig. 4. TC vanishes in the isotropic limit (K → 0) in
accordance with the Mermin Wagner theorem. Interestingly, for finiteK there is a rapid increase
of TC reaching reasonable values, of say 20% of the critical temperature in three dimensional
systems, for anisotropy values of less than a percent of the ferromagnetic coupling constant.
Consider for example Fe, with a shape anisotropy of 0.140 meV, which corresponds to 1.63 K on
the temperature scale. This is only 0.14% of the Curie temperature of Fe, T (3D)

C (Fe) = 1183 K,
but causes already a Curie temperature for a Fe film of T (2D)

C (Fe) = 0.27 · T (3D)
C (Fe) = 320 K.

Thus at any finite anisotropy, there is a critical temperature, where the spin degree of freedom
is frozen out due to the presence of the anisotropy, i.e. the dimension of the spin is reduced
from three for the Heisenberg model to one, spin-up and -down. In terms of universality the
Heisenberg model with any finite anisotropy value is in the universality class of the Ising model,
and the Ising model shows a phase transition in two-dimensions.
In one dimension even the Ising model does not show long-range order at finite temperatures.
Although for quasi-one-dimensional magnetic chains, these are chains of finite size, there is
strictly speaking no remanent magnetization or long-range order, but there is a temperature,
known as blocking temperature, below which a finite chain seems to a have a spontaneous and
remanent magnetization, with long-range order in the chain. In reality, this magnetic order is
accompanied by a slow relaxation [19]. The relaxation rate depends on the magnetic anisotropy
and can be of macroscopic times, such that a quasi-one-dimensional chain appears as a ferro-
magnet as it occurs in the experiments of Gambardella et al. [20] in 2002.

2.5 Orbital Moment and Magnetic Anisotropy

A piece of magnetic material is typically magnetically anisotropic. This means, besides the
isotropic exchange interaction there are additional interactions, which make the total energy de-
pend on the orientation of the magnetization as measured with respect to the crystal axes and the
sample shape. This orientation dependent energy contribution is called the magnetic anisotropy
energy (MAE), EMAE, given in units of energy per atom throughout this article. Without this
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effect of the magnetic anisotropy, magnetism would have been hard to discover and possibly
useless. In some way or the other, almost all applications of magnetic materials hinge on the
fact that it is easier to magnetize a magnetic material in one direction than another. The mag-
netic anisotropy is responsible for the occurrence of easy and hard axes, stabilizes magnetic
order against thermal fluctuations in dimensions where the exchange interaction alone would
not suffice (see Subsect.2.4), and limits the width of a magnetic domain wall. It is for exam-
ple responsible for the bimodal stability of magnetic domains with uniaxial symmetry, which
allows the two possible magnetization directions in space to be interpreted in terms of bit “0”
or “1”. This makes magnetism very valuable for magnetic storage media. Since the magnetic
anisotropy is strongly related to the crystalline symmetry and the shape of the samples, a general
expression of EMAE will be a complex function of the orientation of the magnetization relative
to the crystal axes. In low-dimensional systems twofold symmetries are the most relevant ones
and the magnetic anisotropy is then expressed as

HMAE =
∑
i

�Si · ��Ki · �Si , (26)

where the tensor of single-site anisotropy constants, ��K, determines the strength of the anisotropy
as well as the direction of minimum and maximal energy, named easy and hard axes, respec-
tively. In perfect thin films and wires the presence of a surface holds then responsible for an

uniaxial anisotropy energy normal to the surface, i.e. all components of ��Ki are zero except
Kzz
i = Kδzz for perfect films and Kxx

i = 1/2Kδxx and Kyy
i = 1/2Kδyy for isolated wires.

After expressing �Si in the form of equation (22), the uniaxial MAE takes the angular angular
dependence

EMAE(θ) = −K cos2 θ . (27)

θ denotes the angle between the magnetization and the film or wire normal andK = ΔEMAE =

E
(‖)
MAE−E(⊥)

MAE is the uniaxial anisotropy constant also given in energy per atom. The total MAE,
E

(tot)
MAE = NAEMAE = V EMAE, of the system depends then on the number of atoms, NA, in it.

Frequently, the MAE is also expressed in terms of an energy density EMAE. By definition, K >
0 (K < 0) describes the case of a preferred direction of the magnetization perpendicular, ⊥,
(parallel, ‖) to the film plane or wire axis. Additional higher symmetries in plane, for example
a fourfold symmetry in a (100) oriented film plane, corresponds to anisotropy contributions
which are smaller in energy than the uniaxial anisotropy and are neglected here. The anisotropy
constant depends sensitively on the chemical elements involved, structural details, details of the
electronic structure and the dimensionality of the system.
The microscopic origins of the magnetic anisotropy are the magnetic dipolar interaction and the
spin-orbit interaction. The dipolar interaction is of long range and senses the outer boundaries
of the sample. This results in the shape anisotropy. Discussing long range contributions, the
underlying atomistic lattice describing the crystallinity of the system can be neglected and the
shape anisotropy is described in terms of a continuum theory. Any contribution to the MAE
beyond the continuum theory taking explicitely the crystallinity of the system into account is
summarized as magnetocrystalline anisotropy energy (MCA). Both the dipolar and the spin-
orbit interaction contribute to the MCA and the total anisotropy constant K,

K = Kshape +K
(dip)
MCA +K

(so)
MCA , (28)

is just a linear superposition of the different contributions.



A3.14 Stefan Blügel

The shape anisotropy constant, Kshape in atomic Rydberg units per atom of a perfectly flat film
of infinite extension or an infinitely long perfectly cylindrical wire is given by the local magnetic
moment m and the atomic volume V as

Kfilm
shape = −2π

2

c2
m2

V
and Kwire

shape = −π 2

c2
m2

V
, (29)

all expressed in atomic units, m in μB/atom, V in a.u.3 and the speed of light, c, by the inverse
of the finestructure constant α, c = 2/α. The negative sign denotes that the shape anisotropy
pulls the magnetization into the film plane or along the wire axis. For bcc Fe, for instance, with
a bulk magnetic moment of 2.215 μB per atom and a lattice constant of 5.42 a.u.,Kfilm

shape is equal
to −0.140 meV/atom. The long range interaction senses also the interface or surface roughness
which is always present in real films. According to Bruno [21] the roughness gives rise to an
effective perpendicular contribution to the shape anisotropy whose order of magnitude depends
on the parameters characterizing the roughness. Obviously Kfilm

shape and Kwire
shape is the same for

all atoms irrespective of their position in the film and K is thus homogeneous across the film
or wire. The same is true for any finite ellipsoidal structure, for any other finite structure, e.g.
a nano-pattern structure on a surface, Kshape becomes inhomogeneous and becomes typically
much smaller at the boundary of the structure. For bulk samples, thick films, patterned nanos-
tructures and wires the shape anisotropy is frequently the most important of the anisotropies.
For thin films and wires of a few atomic layers, the assumption that the magnetization can
be treated by a continuous magnetic medium is no longer valid. Instead, the magnetic dipole-
dipole energy has to be evaluated explicitely. In transition-metals, the magnetization distribution
around the atom is almost spherical and is thus treated to a good approximation as a collection
of discrete magnetic dipoles, which are regularly arranged on a crystalline lattice. The dipolar
energy Edip per atom experienced by a dipole at site i due to the presence of ferromagnetically
aligned dipols on all other sites j can then be expressed as

E
(i)
dip(θ) = K

(i)
dip cos2 θ =

2

c2
1

2

∑
j(j �=i)

mimj

R3
i,j

(
1− 3 cos2 θij

)
. (30)

θij is the angle between the direction of the magnetic moment m of the dipoles at sites i or j
given in units of Bohr magneton and the vector �Ri,j connecting atoms i and j. Ri,j denotes
the relative distance between these dipoles or atoms, respectively. The θ-dependence expresses
explicitly the fact that the dipole-dipole interaction contributes to the magnetic anisotropy. Ob-
viously, in thin films and wires the anisotropy energy depends on the position of the atom i
normal to the surface or wire axis, respectively, and as such explicitly on the film thickness or
wire diameter (in difference to Kshape where all atoms have the same value). For crystalline
thin wires and films the sum in equation (30) can be evaluated straight forwardly with fast con-
verging summation techniques [22, 23]. Draaisma et al. [24] have worked out in detail the layer
dependent dipolar anisotropy K(i)

dip. In general, the outer atoms experience values of Kdip that
are appreciably smaller than those of the inner layers which finally approach Kshape. The inner
atoms reach 95% of Kshape after about 15Å below the surface. The exact details depend on the
crystal structure and surface orientation, e.g. a reduction between 25% and 45% of Kshape was
reported for a (100) oriented fcc or bcc monolayer, respectively. The deviation of Kdip from
Kshape givesK(dip)

MCA in equation (28), the dipolar contribution to the MCA which occurs here due
to the presence of a surface or interface and is sometimes also called the surface contribution
of the dipolar anisotropy. If the MAE is expressed in terms of energy densities E , this K(dip)

MCA
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is expressed in terms of an areal density. The dipolar energy contributes also to the MCA of
bulk systems or thick films or wires, if the underlying lattice structure has a twofold symmetry.
For this three-dimensional case more sophisticated summation techniques such as the Ewald
summation method [25] is required to obtain reliable results for equation (30).
The spin-orbit interaction, treated typically by a Pauli-type addition to the Hamiltonian as:

Hso = �σ · ( �E(�r)× �p) = �σ · (∇V (r)× �p) (31)

provides the essential contribution to the MCA. This Pauli approximation derives naturally from
the Dirac equation, and is normally sufficient for treating relativistic effects in transition-metal
magnets. For a radially symmetric potential we can rewrite equation (31):

Hso =
1

r

dV (r)

dr
�σ · (�r × �p) =

1

r

dV (r)

dr
(�σ · �L) = ξ(�r)�σ · �L , (32)

where �L is the angular momentum operator. Since the radial derivative of the potential in a
crystal will be largest in the vicinity of a nucleus, we can expect that the major contribution to
the spin-orbit interaction will come from this region. Furthermore, since for small r the potential
will be Coulomb-like (V = −Z

r
), the radial expectation value of ξ(r) leads to a material-

dependent spin-orbit coupling constant ξ, which is roughly proportional to the square of the
nuclear number Z, ξ ∝ Z2. In low-dimensional systems the MCA dominates over the shape
anisotropy. The anisotropy depends crucially on the symmetry of the system.
In a solid, where the symmetry of the states is determined by the crystal field, spin-orbit cou-
pling can now introduce orbital moments and magnetocrystalline anisotropies by coupling states
that carry no orbital momentum, e.g. a dxy and a dx2−y2 orbital, such that the combination form
an orbital moment in z direction. In second-order perturbation theory the expectation value of
the orbital moment operator μB

�L can be written as:

ml = μB〈�L〉 = μB

∑
i,j

〈ψi|�L|ψj〉〈ψj |Hso|ψi〉
εi − εj f(εi) [1− f(εj)] , (33)

where f is the Fermi function ensuring that the wavefunction ψi is occupied and ψj is unoccu-
pied. In a metal, where several bands are crossing the Fermi level, EF, it is basically the sum
of all contributions from bands near EF that determine the orbital moment. Van der Laan [26]
in 1998 has shown, that in the absence of spin-flip terms (i.e. when the majority and minority
band are well separated by the exchange interaction), the spin-orbit coupling changes the total
energy of a system in second-order perturbation theory as:

δE =
∑
i,j

〈ψi|Hso|ψj〉〈ψj |Hso|ψi〉
εi − εj f(εi) [1− f(εj)] ≈ − ξ

4μB
m̂s ·

[
�m↓

l − �m↑
l

]
, (34)

where m̂s is the direction of the spin moment, and �m↓
l and �m↑

l are the orbital moment vectors
of the spin-down and spin-up bands, respectively. If the spin-up band is completely filled, we
see that energy change, δE, is proportional to the size of the orbital moment and the magne-
tocrystalline anisotropy energy (MCA), i.e. the difference of δE for two different magnetization
directions, will be proportional to the difference in the orbital moments. This relation between
orbital moment anisotropy and MCA was first derived by Bruno [27].
We have discussed that the reduced coordination number in low-dimensional systems favors the
increase of the spin moment. But it also enables the formation of large orbital moments, as can
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be seen from most atoms. Also in the case of the orbital moment the hybridization with some
neighboring orbitals “locks” the electrons in place and quenches the orbital moment. Imagine
a Sc atom with only one d-electron: as an atom, according to Hund’s rules, the orbital moment
will be maximized and antiparallel to the spin moment. But when Sc atoms are assembled in a
square lattice, orbitals with m = −2 and m = +2 will form linear combinations to build dxy
and dx2−y2 orbitals of which the latter one will be occupied. The more these two levels are split
in energy, the more difficult it will be for the electron to “circle” around the atom and, therefore,
to form an orbital moment.

Table 3: Local spin (ms) and orbital (ml) magnetic moments in units of μB of Fe, Co and
Ni atoms in bulk materials (n=3), unsupported thin films (n=2), wires (n=1), and as isolated
atoms (n=0). For the bulk crystals the variation of the orbital moment with the direction is
small, but for films and wires the orbital moments parallel (‖) and perpendicular (⊥) to film-
plane or wire-axis are given. The geometry is chosen as if the film or wire would have been
grown epitaxial on a Pt(111) substrate. The column |KMCA| indicates the order of magnitude
of the magnetocrystalline anisotropy energy for different dimensions. The results were obtained
in the generalized gradient approximation to the density functional theory.

Fe Co Ni |KMCA|
n ms ml ms ml ms ml [

meV
atom

]
‖ ⊥ ‖ ⊥ ‖ ⊥

3 2.05 0.05 1.59 0.08 0.62 0.05 0.01
2 3.07 0.07 0.10 2.09 0.20 0.19 0.94 0.18 0.14 1.00
1 3.22 0.72 0.27 2.32 0.98 0.77 1.18 0.84 0.44 10.00
0 4 2 3 3 2 3 –

In Table 3 some representative values of spin and orbital momentum have been collected. These
calculations yield very small orbital moments: 0.05 μB, 0.08 μB and 0.05 μB for bcc Fe, hcp Co,
and fcc Ni (and about twice the value if the orbital polarization (OP) proposed by Brooks [28]
is included). It is well-known that the orbital moments are quenched in the bulk due to the
strong hybridization with neighboring atoms. Larger orbital moments are obtained for the (111)
oriented unsupported 3d monolayers. For Fe, Co and Ni the values are 2–3 times larger than
the corresponding bulk values. Thus, in monolayer films the quenching of the orbital moments
is less pronounced due to the reduced hybridization. However, it is important to realize that
these enhanced orbital moments are still an order of magnitude smaller than the corresponding
free atom values, as given by Hund’s second rule (last row in Table 3). Consequently, we
expect for atomic scale magnetic structures such as wires, small clusters and adatoms strong
changes in the orbital moment and, in turn, large values of the magnetocrystalline anisotropy
energy. In practice, these films are deposited on substrates. That will once more quench the
values, especially for the orbital moments. But the spin-polarization of the substrate can lead
to additional large contributions to the magnetocrystalline anisotropy energy in particular for
substrates with large Z, such as Pt or Ir.
Typically, first-principles calculations based on the LSDA or GGA underestimate the orbital
moments. In the literature several methods have been discussed how this deficiency can be
overcome [28, 29, 30]. For example, the orbital moments of the bulk magnets are about twice
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the value if Brooks’ orbital polarization is applied [31, 32]. The effect of OP is much more
drastic in low dimensions [33]. A systematic comparison of LSDA results for Pt supported and
unsupported Fe and Co magnets in various dimensions can be found in the work of Komelj et
al. [34] and Ederer et al. [35].
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Fig. 5: d-level splittings shown in the left figure at a given k-point due to a crystal field in a
square monolayer results in a density of states, shown on the right.

In order to interpret ab initio results on thin films we discuss the case of an unsupported, (100)
oriented d-metal monolayer, in terms of a simple model following Stöhr [36]. Assume that the
d-band is substantially exchange split and more than half filled, so that we only have to consider
the (partially filled) minority band. The d orbitals at each atom site experience in the monolayer
plane a crystal field V , that leads to a splitting of these levels: if the surface normal is assumed to
be in z-direction, the dxy and dx2−y2 levels will experience a stronger field than the out-of-plane
directed dzx, dyz and dz2 orbitals. The crystal field leads to a splitting of 2V‖ for the in-plane
oriented orbitals and 2V⊥ for the out-of-plane oriented ones. In a band-picture, these splittings
can be translated into bandwidthsW , which will then be twice as large (cf. Figure 5). Normally,
V‖ will be larger than V⊥, so that R = V⊥/V‖ < 1. (If, however, the monolayer is sandwiched
between two slabs of nonmagnetic material the situation could be changed.)
Assume that – like in the case of Co – the minority band is half filled; the dxy and dx2−y2 states
will split symmetrically by±V‖ around the Fermi level, the (dzx, dyz) and dz2 states by±V⊥. In
a band-picture, these splittings will of course depend on the considered �k‖ point. Now we can
use perturbation theory equation (33) to calculate the orbital moments. The result [36]

m
‖
l =

ξμB

2V‖

(
3

R
+

2

R + 1

)
and m⊥

l = 4
ξμB

2V‖
(35)

shows, that only the in-plane orbital moment, m‖
l depends on the splitting of the out-of-plane

oriented states, while the out-of-plane orbital moment is only quenched by the in-plane crystal
field. This is intuitively clear, since m⊥

l corresponds to an in-plane motion of the electron, i.e.
a hopping between the dxy and dx2−y2 states that are separated by V‖. For the calculation of the
magnetocrystalline anisotropy energy we can use equation (34), that gives:

KMCA = E
‖
MCA − E⊥

MCA = − ξ

4μB

(m
‖
l −m⊥

l ) = − ξ2

8V‖

(
3

R
+

2

R + 1
− 4

)
. (36)

From this equation we see that, as long as R < 1, an in-plane magnetization is obtained, while
for R > 1 an out-of-plane easy axis is possible. Indeed it is observed that Co-monolayers on a



A3.18 Stefan Blügel

weakly interacting substrate (like Cu(001)) have an in-plane easy axis, while a Co layer sand-
wiched in Pt has a perpendicular magnetization. Taking typical values for 3d-metal monolayers,
a spin-orbit coupling strength ξ ≈ 75 meV and bandwidths W ‖ ≈ 3 eV and W⊥ ≈ 2 eV, one
arrives at orbital moments of m‖

l = 0.285 μB and m⊥
l = 0.200 μB and the magnetocrystalline

anisotropy energy per atom of KMCA = 1.6 meV, values in the ballpark of the ab initio results
given in Table 3.

2.6 Dzyaloshinskii-Moriya Interaction

Magnets in low-dimensions face frequently a structure inversion asymmetric environment. Con-
sider for example a thin magnetic film on a substrate with the vacuum potential on one side and
the potential to the substrate on the other side. This inversion asymmetry leads to a gradient of
the potential that can be interpreted in first approximation as an electric field normal to the film
surface. In the rest frame of moving electrons, the electric field �E appears by Lorentz transfor-
mation as a magnetic field �B ∝ �p × �E, which interacts then with the spin �σ of the electron,
giving rise to an additional term in the Hamiltonian, which was already encountered in equation
(31) in the context of spin-orbit coupling. Here, instead of an orbital motion, a linear motion
of an electron with momentum �k in an electric field oriented along �ez is considered. This can
be described by a Hamiltonian H = αR�σ · (�k × �ez), known as Rashba-term [37]. The strength
described by the Rashba-parameter, αR, is determined e.g. by the asymmetry of the wavefunc-
tion due to the asymmetry of the potential or the electric field, respectively, and the spin-orbit
interaction of the electrons involved.
The magnetic interaction between the spin �Si at lattice site i and �Sj at lattice site j is caused by
electrons which hop from site i to site j and back. Electrons in a magnetic film propagate in an
exchange field ±1/2IM (cf. equation (2)), the bands are exchange split and the time-inversion
symmetry is lost. Due to the spin-orbit interaction caused by the Rashba term, electrons experi-
ence a kinetic energy with an additional weak spin-dependent potential, which depends on the
propagation direction �p of the electrons. Thus, the motion from site i to j and the back motion
from j to i is slightly different. The same is true for time inverse hopping process, the electron
hopping first from site j to i and then back. At first sight, both processes look identical and
indeed both contribute equally to the isotropic Heisenberg exchange equation (15). But due to
the presence of the spin-orbit interaction, the reflection asymmetric environment and the lack
of time inversion symmetry, the interference of both processes does not cancel out completely.
Instead, it gives rise to an additional antisymmetric exchange interaction between these sites,
known as the Dzyaloshinsky-Moriya (DM) [38, 39] interaction

HDM =
∑
i,j

�Dij ·
(
�Si × �Sj

)
, (37)

where �D is a constant vector, which depends on the symmetry of the system and on the real
space direction given by two sites i and j. For example, for typical (100) and (110) low index
surfaces of metals, �D lies in the film plane and points perpendicular to the direction (i, j) con-
necting two surface atoms, if the two surface atoms are placed along high a symmetry line. The
DM interaction arises as the first-order perturbation in the spin-orbit interaction, and might for
this reason be stronger than the magnetocrystalline anisotropy. This chiral interaction tends to
orient the spin Si and Sj orthogonal to each other and to �D, destabilizing a uniform ferro- or
antiferromagnetic order and can cause, depending on the strength D, a canting of the magneti-
zation at different atoms, a helical or cycloidal spin-wave. The sign of �D defines the chirality
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of the canting. The DM interaction is practically unknown in metallic bulk magnets, since most
metals crystallize in structures with centro-symmetric symmetries. Surprisingly, after 20 years
of research on low-dimensional magnetism, the magnitude of �D has not been established so far
and there is currently active research going on to clarify its relevance for the magnetic order in
nanomagnets.

3 The Rashba effect at metallic surfaces

3.1 Nonmagnetic Surfaces

A surface state can be considered as a particular realization of a two dimensional electron gas.
Since the surface always breaks spatial inversion symmetry, the effective potential which acts
on the surface state will generally have a finite gradient along the surface normal, i.e. there is
an electric field in this direction. The physical manifestation of this field is the workfunction.
Like in the semiconductor heterostructures discussed in the lecture of Dr. Bringer, due to the

Fig. 6: Electrons moving with in-plane wavevectors k‖ and −k‖ in the potential gradient of
a surface (indicated on the left). The resulting electric field, E, is seen in the restframe of the
moving electrons as a magnetic field B or −B which couples to the spin of the electron. This
interaction modifies the bandstructure of a spin-degenerate (s, pz)-like surface state as shown
in the lower right picture. The degeneracy is lifted and the electrons at the Fermi level have
spin directions perpendicular to their propagation directions as indicated by the small arrows
(cf. also preceding section).

movement of an electron with wavevector k‖ in the surface plane, this electric field appears
in the rest frame of the electron as a magnetic field which couples to the spin of the electron.
The situation is schematically depicted in Figure 6 for two electrons traveling on the surface in
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opposite directions. For a non-spinpolarized surface state (e.g. on a nonmagnetic surface) this
gives rise to a term in the Hamiltonian

Hsoc =
�

4m2
ec

2
σ · (∇V (r)× p) (38)

which leads to a k-dependent splitting of the dispersion curves. When we simply use the nearly
free electron gas (NFEG) model and substitute p by the k-vector, for usual workfunctions we
would expect this splitting to be very small, in the order of 10−6 eV. This would be far too
small to observe directly with angle resolved photoemission spectroscopy (ARPES). So it came
rather as a surprise, when in 1996 LaShell and coworkers [40] discovered a splitting of the
surface state of the Au(111) surface, which was not only k-dependent, but also in the order of
0.1 eV at the Fermi level. They correctly interpreted this splitting as a spin-orbit coupling effect,
which obviously was influenced by the strong atomic spin-orbit effects in the heavy Au atom.
Spin resolved ARPES experiments finally also analysed the spin distribution of this surface
state [41] and found it to be in quite good agreement with the NFEG model (cf. Figure 6), as it
was also predicted theoretically [42].
While this effect was observed in different studies for the Au(111) surface, on other surfaces
which show a similar Shockley state, e.g. Ag(111) or Cu(111), no such splitting was discovered
experimentally and in calculations [43] based on density functional theory (DFT). From the
calculations it was concluded, that the k-dependent splitting on Ag(111) is by a factor 20 smaller
than on Au(111) (cf. also Figure 7). This can neither be explained by the difference in atomic
spin-orbit coupling of Au (Z = 79) and Ag (Z = 47) alone, nor by the potential gradients at
the surface. Also the amount of p-character in the sp-surface state is larger for Ag than for Au,
so that in principle spin-orbit effects should be more prominent in silver. So what is responsible
for the size of the effect?
To resolve this issue, we did calculations based on DFT with the full potential linearized aug-
mented planewave method [44] as implemented in the FLEUR code [45]. Our calculations in-
clude spin-orbit coupling (SOC) in a self-consistent manner [46] in the muffin-tin (MT) spheres.
For the present discussion it might be interesting to note, that actually only the spherically sym-
metric part of the potential is included in the calculations, which might seem inconsistent with
the above discussion which claims that the potential gradients at the surface are responsible for
the effect we want to describe. But we will see, that in all considered cases the agreement with
experimental data is fine, suggesting that the theoretical approach includes the dominant terms
leading to the Rashba-type splitting in question.
In the calculations we can choose the region where to include SOC: in specific spheres around
the atoms, i.e. in certain layers of the film, or we can also vary the size of the sphere, where
we want to include spin-orbit coupling. In this way, it is possible to show that a bit less 60%
of the k-dependent splitting of the Au(111) surface state comes from the surface layer and
the contribution in deeper layers decays more or less like the weight of the surface state in
these layers [47]. Moreover, this effect is extremely localized in the core region, where the
radial potential gradient is largest. For Au(111), more that 90% of the effect originate from a
sphere with radius 0.25 a.u. around the nucleus. In this region the potential is almost perfectly
spherically symmetric, so that our above mentioned approximation, to include only the l = 0
part of the potential, is probably well justified. The potential gradient at the surface enters
actually only indirectly, via the asymmetry of the wavefunction in the core region. In a tight-
binding model, Petersen and Hedegård showed that the size of the Rashba-type splitting is
determined by the product of the atomic spin-orbit coupling parameter and a measure for the
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asymmetry of the wavefunction under consideration [48].
A measure for the asymmetry of the wavefunction of a surface state can be found by analysing
the l-like character of the state, i.e. to determine how much s, p or d character a surface state
shows at a certain k‖-point, in our case the Γ-point. E.g. a surface state of pure pz character is
inversion symmetric and will – in absence of an electric field – show no Rashba-type splitting.
The potential gradient or electric field at the surface will distort the wavefunction, so that some
s or dz2 contributions to the surface state will arise. The ratio of l- to l ± 1-type character of a
surface state (for a givenm, e.g. m = 0) will therefore give a measure for the asymmetry of this
state. In the case of Ag(111), we find that the surface state is predominantly of pz-type, with
a small dz2 admixture (p : d ratio of 9.5) while in Au the surface state has much stronger dz2
character (p : d = 3.3). The fact that the Au d band lies much higher in energy than the Ag d
band leads to a stronger d character of the Au surface state and thus to larger asymmetry of the
wavefunction [47]. This determines the stronger k-dependent splitting in the Au(111) surface
bandstructure.
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Fig. 7: Bandstructure of Au(111) (left, full circles) and one monolayer Ag on Au(111) (left,
open circles) as compared to a Ag(111) film (right, full symbols) and a single Au monolayer on
Ag(111) (right, open symbols).

This effect can be further demonstrated, when we compare a single monolayer of Ag on Au(111)
with a Au monolayer on Ag(111). Just from the point of view of the atomic SOC, we would
expect that the Rashba-type splitting of the Au monolayer of Ag(111) is larger than that of the
Ag/Au(111) system, since more than 50% of the effect comes from the surface layer. But since
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the gold d states of the subsurface layers can induce a larger d character of the Ag surface state
in Ag/Au(111) while the Au surface state of Au/Ag(111) has less d character than the one of
pure Au(111), finally the Rashba-type spin-orbit splitting is larger in Ag/Au(111) (cf. Figure 7).
Other examples, how the asymmetry of a surface state influences the strength of the Rashba-
type splitting can be found on lanthanide surfaces (e.g. Lu(0001) [47]), and a particular case
will be presented in subsection 3.3.

3.2 Semimetal Surfaces

Up to now we have discussed examples, where the Rashba-type spin-orbit splitting was in the
order of 10 to 100 meV (up to 120 meV for Au(111)), so that experimentally it is not so easy to
detect in ARPES experiments. Now, we turn to another extreme, where the splitting is so big,
that it was not a-priori clear, whether the two experimentally observed features were spin-split
partners of the same state or two different surface states: the low-index surfaces of Bi. Bismuth
is a non-magnetic, rather heavy metal (Z = 83) with semimetallic properties, i.e. the Fermi
surface consists only of two tiny pockets, so that the density of states (DOS) at the Fermi level
(EF) is almost zero. In the surface projected bulk-bandstructure extended gaps are observed
around EF, in which surface states can be localized.
ARPES measurements on the Bi(110) surface [49] showed the existence of two spectroscopic
features in the gap, which could be interpreted as to two surface states. Bismuth has a rhom-
bohedral crystal structure and the (110) surface consists of unreconstructed pseudocubic bilay-
ers [50], where dangling bonds can give rise to surface states. Similarly, on Bi(111) two states
were identified spectroscopically [51]. The (111) surface has closed-packed layers and again
shows a bilayer structure, but without dangling bonds and with a much larger separation of
the bilayers [52]. In both cases of course only the occupied part of the surface bandstructure
could be observed spectroscopically. Using DFT calculations, we have the possibility to access
also the unoccupied part of the spectrum. It can be seen that the observed spectroscopic fea-
tures are actually a Rashba-type spin-split pair of a surface state which forms – at least for the
(110) and (100) surface – a band through the whole surface Brillouin zone [53, 54]. That these
surface state is actually split by spin-orbit coupling can be demonstrated by comparison of a
scalar-relativistic calculation without inclusion of SOC and with the inclusion of SOC [55] (cf.
also left of Figure 8). In this cases, the splittings are very large (in the order of 300 meV) and,
since the surface states extend throughout the Brillouin zone, they are also no longer linear in
k, except in the vicinity of high symmetry points.
It is not only of academic interest, whether two surface states are a spin-split pair or two spin-
degenerate surface states. For example, on the Bi(111) surface the Fermi surface forms a small
hexagon around the Γ point, which led to speculations about the formation of a charge density
wave on this surface [56]. If the Fermi surface were indeed formed by spin-degenerate surface
states, this would be possible. If, on the other hand, Rashba-type spin-split bands form this part
of the Fermi surface, the electrons at +k‖ and −k‖ were of opposite spin and instead of a peak
in the (spin) diagonal part of the susceptibility χ, we would expect a large contribution to the
spin off-diagonal part, χ±, leading to a modulation of the spin-structure. Since the surface is of
course still nonmagnetic, these modulations have to cancel and a direct observation is difficult.
When magnetic atoms were present at the surface, their interaction would be modified and this
effect could be detected. We will show in a later chapter, that this is actually possible.
Using scanning tunneling microscopy (STM) techniques, consequences of the spin polarization
of the surface states have indeed been observed for another Bi surface [53]. If a scanning
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tunneling spectrum (STS) is recorded for a dense mesh of positions on a surface, this STS map
can be Fourier transformed for a given energy within this spectrum. The Fourier transformed
(FT) STS map gives then a picture of the energy dispersion in reciprocal space, i.e. a two
dimensional cut through the function ε(k‖), but with doubled length of the k-vectors, since the
STS maps the scattering between two states of different k but at the same E. In particular, for
E = EF, this yields an image of the Fermi surface. It is easily seen, that a surface state with
a Fermi surface of a wavevector ±kF will give rise to standing waves with 2kF which can be
seen in the STS map. This correspondence between FT-STS and Fermi surface has been used
extensively to study the electronic properties of high-temperature superconductors. A Rashba
splitting will not change this picture, since for one spin channel the Fermi vectors are changed
to±kF+Δk, while for the other spin we get±kF−Δk, so that both spin channels will lead to a
contribution of ±2kF in the STS map, i.e. the picture is indistinguishable from the one without
Rashba splitting [48]. But if the Fermi surface is more complex, like in the case of Bi(110), the
fact, that the surface states are spin polarized can be seen the FT-STS clearly.
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Fig. 8: Bulk-projected bandstructure of Bi and surface bandstructure of a 22 layer Bi(111)
film with H termination on one side (left) with (full line) and without (broken line) spin-orbit
coupling included in the calculation. A similar calculation with SOC included for a symmetric
20 layer film without H termination is shown on the right.

Consider a simple one-dimensional example: along the line ΓM in Bi(111) we can see in Fig-
ure 8 (left, broken line) a surface state obtained without inclusion of SOC. This state originates
at−0.3 eV at Γ, crosses the Fermi level at a wavevector we denote ka, disperses down again and
crossesEF once more at kb and reaches M at−0.22 eV. Surface states atEF can scatter between
ka and kb and give rise to standing waves with wavelength 2ka, 2kb, (ka + kb) and (ka − kb), if
the state is spin-degenerate. Now, consider that spin-orbit coupling splits this degeneracy and
gives rise to spin-up states at ka + Δk and kb − Δk, while spin-down states cross the Fermi
level at ka − Δk and kb + Δk. In this case, spin conserving scattering events will again give
rise to oscillations with wavelength 2ka, 2kb, but also (ka + kb) ± 2Δk and (ka − kb) ± 2Δk.
Here, the effect of spin is clearly visible. On the Bi(110) surface, this effect was also verified
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experimentally in a two dimensional case [53].

The occurrence of spin-polarized surface states of course suggests, that this could be utilized in
some way for spintronic applications. In the case of Ag(111), where the surface state contributes
very little to the density of states at the Fermi level, this might not seem very promising, but
in the case of a semimetal surface, where the DOS at EF originates almost exclusively from
surface states, this might be more realistic. Alternatively, the surface of a thin film on insulating
or semiconducting substrates could be interesting, since in this case the relative contribution of
the surface state to the conduction electrons is also increased. This works of course only, if
the thin film still supports the same surface state as the semiinfinite crystal, i.e. localized Tamm
states of d-character as they occur on lanthanide (0001) surfaces will be more suitable for very
thin films than the extended s, p-derived Shockley states of the closed packed coinage metal
surfaces.

Another effect, that can disturb the surface states in thin films, is the interaction between the
two surfaces of the film. If, like in Bi, the screening is very weak, surface states at the upper
and lower surface of a symmetric film interact to form even and odd linear combinations. This
of course interferes with the concept of broken inversion symmetry at the surface. On the other
hand, in our theoretical calculations for Au and Ag surfaces, we always used symmetrical films
where a tiny interaction between upper and lower surface cannot be avoided, even in thicker
films. For the bandstructures of Figure 7 we used 23 layer films and especially in the case of
Ag(111), a finite splitting of the surface state parabolas at the Γ point can be seen. At the first
glance it might seem surprising, that the two different splittings, the even-odd and the Rashba-
type splitting result in only two dispersion curves. Without the interactions that lead to the
splittings, we can think of having two states (spin up, ↑ and down, ↓) on each surface. The spin-
orbit coupling leads for the spin up states of the upper surface (↑u) to the same shift in energy
as for the spin down states of the lower surface (↓l) (since the potential gradient is reversed
there) and they will have an energy ε+. In the same way of course ε(↓u) = ε(↑d) = ε−. A
hybridization of ↑u and ↓u leads to energies ε+ + εs and ε− − εs, respectively, but in the same
way the two downspin states, ↓u and ↓l will be shifted to energy values ε− − εs and ε+ + εs.
The stronger the interaction across the film, the more each state will be localized at both sides
of the film so that finally the spin-polarization for a given energy and k‖ gets reduced.

A case, where this scenario has been actually observed in experiment are thin Bi films grown
on a Si substrate [57]. The interaction with the substrate is very weak, since the Bi film is
deposited on a seeding layer of Bi atoms and can adopt (for more than a few bilayers) the
structure of Bi(111). Angle resolved photoemission has shown that near the zone center the
electronic structure of these Bi films is not so different from what has been observed on single
crystal surfaces. But when the k‖ vector approaches the zone boundary at M, the crossing
of the two spin-split states is no longer observed. Instead, quantum well states (QWS) are
formed when the surface state gets near to the bulk continuum at M [57]. The energy levels of
these states agree nicely with those obtained by the calculation of symmetric films of the same
thickness (cf. right of Figure 8). As the surface state character is lost, also the spin-polarization
of these states vanishes. The very bad screening of Bi makes this QWS disappear only for very
thick films (more than 40 bilayers). Therefore, when we simulate Bi single crystal surfaces, we
have to terminate one side of the film with H atoms to saturate the dangling bonds and explicitly
remove the inversion symmetry of the film, even if it is 22 layers thick.
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3.3 Magnetic Surfaces

Let us finally consider the case of a surface of a magnetic metal, like Gd(0001). On this closed
packed surface a bulk projected bandgap around Γ contains a surface state of dz2 character, like
it can be found also on other lanthanide surfaces. Exchange interaction splits this surface state
into an occupied majority spin state and an unoccupied minority state. This splitting is mainly
controlled by the 4f electrons of Gd and amounts to about 0.8 eV, which is large as compared to
spin-orbit effects in this system. No matter how SOC affects the electrons of the surface state,
their spin will remain more or less parallel to the exchange field, which is oriented in plane in
the directions of nearest neighbor atoms by the magnetic anisotropy.
An electron traveling on the surface in a direction perpendicular to its spin quantization axis,
will experience the potential gradient at the surface as a magnetic field parallel to its spin. There-
fore, a magnetic coupling can arise and the dispersion curves will split more or less similar to
what is observed on a nonmagnetic surface. If, on the other hand, the propagation direction of
the electron is parallel to its spin quantization axis, the field arising from SOC cannot couple
to the electron’s spin and no Rashba-like splitting can be observed. Schematically, this situa-
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Fig. 9: (a): Rashba splitting on a non-magnetic surface: the top panel shows the Fermi surface
and the spin-polarization of the states at the Fermi level. In the middle and lower panel the
bandstructures along two orthogonal directions in reciprocal space are shown. (b): The same
relations as in (a) are shown, but now for the case where the spin-quantization axis of the
electrons has been aligned in a particular direction. For electrons propagating in this direction,
the Rashba splitting vanishes. (c): Effect of an additional exchange splitting on the situation as
described in (b). (d): Surface bandstructure arising from the calculation of a symmetric film,
where the surface states from the lower surface are shown in red.

tion is shown in Figure 9. In contrast to the surface state on the nonmagnetic surface, where
the spin of the electron is always oriented perpendicular to the propagation direction and the
surface normal, ez, (with some deviation, depending on the shape of the potential [42]), on
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the spin-polarized surface, the spins are more or less collinear. This changes the shape of the
Fermi surface significantly, especially if exchange splitting is considered (Figure 9 (c)). If the
exchange splitting is large, this leads to a Fermi surface consisting of a single circle shifted
away from the zone center. The consequences for the bandstructure are simple: along a certain
direction in reciprocal space SOC will have no particular effect. In a direction orthogonal to this
one, the dispersion curves for majority and minority spin will be shifted in opposite directions.
For the eigenvalues this results in an expression

ε↓(↑)(k) = ε(k)± IM ± αR(k× ez) · M̂ (39)

where M = MM̂ is the magnetization and IM represents the exchange splitting of the bands.
Of course in a calculation of a symmetric film, again on the lower surface (−ez) the directions
of the spin-orbit induced shifts will be exactly opposite to the shifts on the upper surface, so that
in total a picture as shown in Figure 9 (d) is obtained. From this picture the two splittings for
the spin-up and the spin-down surface state can be determined directly as Δε(k) = ε(k,M)−
ε(k,−M).
Experimentally, for a single crystal surface, it is possible to measure with ARPES two spectra
of the same surface, but rotated by 180 degrees. In the case of an in-plane anisotropy, as for
Gd(0001), this rotation reverses the spin and leads, therefore, also to a picture as Figure 9 (d).
A comparison of these two spectra allowed to determine the Rashba splitting in Gd(0001),
even though its magnitude is rather small [58]. A particular advantage of magnetic surfaces is,
that the measurements allow the determination of the sign of the Rashba parameter, αR, even
without the need of spin-analysis via a Mott detector.
Modification of the Gd surface also alters the characteristics of the surface state: if (atomic)
oxygen is adsorbed in the surface, the surface state shifts down in energy and both, minority
and majority spin states become occupied. Moreover, the dispersion of the surface state changes
from almost flat on Gd(0001) to parabolic for O/Gd(0001). Both surface states were observed
experimentally, and DFT calculations show, that these states are actually interface states resid-
ing between the topmost Gd/O layer and the underlying Gd bulk [58].
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Let us now focus on the Rashba-type splitting on O/Gd(0001). In Figure 10 we plotted the
splitting as a function of k‖ for the directions ΓM1 and ΓK1 as indicated in the Figure. Since
the magnetization is directed towards nearest neighbours (a-direction), the largest effects on
the surface state dispersion should be observed in ΓM1 direction while no splitting should be
visible in the direction ΓK2. A closer look at Figure 10 reveals, that the splitting, Δε is indeed
smaller in ΓK1 than in ΓM1. Furthermore, we observe that Δε for the majority spin state
(S↑) is not only of opposite sign as compared to Δε for the minority state (S↓), but also their
absolute values differ. This is also observed experimentally, and can be explained again by the
different positions of the states in the bulk-projected bandgap and the different asymmetry of
the wavefunctions. One should note here, that also the effective masses of the S↑ and S↓ states
differ and this shows, that spin is not the only difference of these states.
Even more drastic is the difference of the S↑ surface state of O/Gd(0001) to the S↑ state of
Gd(0001). We can see from the right of Figure 10 that not only the magnitude of the splitting is
a factor 3 to 4 smaller, even the sign is different. Since this reversal of sign cannot be attributed
to the spin, it must result from a different admixture of pz-character to the dz2 surface state. A
reversal of the gradient of the wavefunction at the position of the Gd nucleus can be interpreted
as the result of hybridization with pz-type wavefunctions of different signs. In some sense we
can say, that we see the sign of the wavefunction here in the sign of the Rashba-parameter.
Spin-orbit coupling effects on surfaces can be very diverse and recently this field expanded in
various directions: Studies of the spin-orbit splitting of surface states in Bi or Pb surface alloys
have shown more complex spin-orientation patterns than what is expected from the Rashba-
model [59]. In thin films of Bi on Si(111) substrates, a gradual decrease of the Rashba-type
spin splitting has been observed as the orbitals change their character from surface states to
quantum well states as a function of momentum [60]. On the other hand, in Pb films on
Si(111) even quantum well states can be spin split due to their stronger interaction with the
substrate [61]. Thin Bi films turn out to be quite attractive, since Bi can undergo a transition
from its semimetallic to a semiconducting state at low thickness [62]. Edge states of these semi-
conducting films can provide a non-trivial band topology that can support the so called quantum
spin-Hall effect. A two-dimensional variant of this effect has been recently confirmed on BiSb
alloy surfaces [63].

4 Ultrathin Films

The transition-metal monolayers on noble-metal substrates are the classical systems exhibit-
ing two-dimensional (2D) magnetism. Because of the reduced coordination number of nearest
neighbor atoms in a monolayer film the d-band width in two-dimensions is considerably smaller
and correspondingly the LDOS at the Fermi energy is considerably larger than in the bulk sit-
uation. Thus the magnetic instability should occur for a much wider variety of transition-metal
elements. Following this line of argument it is clear that the strength of the d–d hybridization
between monolayer and substrate is an additional parameter which controls the d-band width
of the monolayer. For instance large band-gap material, e.g. MgO(100), as substrate allows the
formation of two-dimensional monolayer bands within the band gap of the substrate material.
In this case the impact on the magnetization of the monolayer due to the substrate is expected to
be small. The same is true for noble-metal substrates, which have d bands well below the Fermi
energy. The width of the monolayer d band is not significantly broadened by the monolayer-
substrate d–d interaction, and magnetism is restricted to the monolayer. Increasing the d–d
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Table 4: Local magnetic moments in μB/atom for 3d transition–metal atoms as ferromag-
netic (F) and antiferromagnetic (AF) 3d monolayers (ML) on Ag(001) [64], Pd(001) [65],
W(110) and on Cu(001) [2, 66]; compared with results for 3d monolayers as interlayers (IL)
in Cu(001) [2], unsupported (001) monolayers (UL) in the lattice constant of Cu(111) and
Ag(001) [67], and with results for ferromagnetic 3d monolayers on Cu(111) and Ag(111) [68].
“−” indicates that no calculation was performed for this system. “0” indicates that the cal-
culated moment was smaller than the numerical accuracy estimated to be about 0.02 μB/atom.
“?” indicates a system, for which the calculation was not finished up to self-consistency, but
result is approximately correct.

Ti V Cr Mn Fe Co Ni

Ag ML on Ag(001) F 0.34 2.09 3.78 4.04 3.01 2.03 0.65

AF 0 2.08 3.57 4.11 3.06 ? 0

UL – Ag(001) F 1.72 2.87 4.50 4.32 3.29 2.20 1.02

AF 0 2.59 4.09 4.32 3.32 2.10 0

ML on Ag(111) F 0 1.39 3.43 3.91 2.95 1.93 0.51

Pd ML on Pd(001) F 0 0.51 3.87 4.11 3.19 2.12 0.89

AF 0 1.39 3.46 4.05 3.20 1.99 0.59

W ML on W(001) F − 0.00 − 2.97 2.37 1.14 0.00

AF − 0.00 2.52 3.32 − − 0.00

Cu ML on Cu(001) F − 0 0 2.97 2.61 1.76 0.33

AF − 0 2.52 2.92 2.35 ? 0

IL in Cu(001) F − 0 0 2.01 2.39 1.51 0

AF − 0 1.84 2.15 − − −
ML on Cu(111) F − 0 0 3.05 2.69 −
UL – Cu(111) F − 0 0 3.06 2.75 − −

hybridization by choosing appropriate nonmagnetic transition metal substrates, e.g. Pd(100) or
W(110), will lead to a considerable broadening of the monolayer bands and introduce a signif-
icant spin-polarization of the substrate until we have changed from the two-dimensional limit
to the semi–infinite regime. Choosing a magnetic substrate an additional complexity arises
due to the competition of the magnetic coupling in the monolayer and between monolayer and
substrate.
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Fig. 11: Local magnetic moments as calculated for ferromagnetic (left figure) 3d metal mono-
layers on Ag(100) [64] (dots), Pd(100) [65] (squares), and Cu(001) [2] (triangles), and (right
figure) 3d, 4d [69], and 5d [70] monolayers on Ag(001) (dots) and Ag(111) [68] (triangles)

4.1 (100) Oriented Monolayers on Nonmagnetic Substrates

Ferromagnetic Monolayers

A systematic investigation of the magnetism of all possible 3d, 4d, and 5d transition-metals
monolayers on Ag(001) are collected in Fig. 11 and in Table 4. One finds that all 3d metal
monolayers (Ti, V, Cr, Mn, Fe, Co, Ni) on Ag(001) substrate show ferromagnetic solutions. Tc,
Ru, and Rh are ferromagnetic among the 4d-metals, and Os and Ir are ferromagnetic among
the 5d-metals on Ag(001). The local magnetic moments are partly very large, not only for the
3d monolayers, but surprisingly also for the 4d and 5d ones. In the 3d series the overall trend
of the local moments follows Hund’s first rule. The largest local moment of about 4 μB was
found for Mn and from Mn to Ni the magnetic moment decreases in steps of 1 μB. The latter
is a consequence of the strong ferromagnetism in these monolayers. The magnetic moments of
Ti, V, and Cr monolayers show a pronounced dependence on the substrate: Ti is magnetic on
Ag, but nonmagnetic on Pd; the magnetic moment of V is reduced by more than 1.5 μB when
changing the substrate from Ag to Pd; and for Cr the magnetic moment changes from 3.8 μB

as an adlayer on Ag or Pd to zero as an adlayer on Cu. Although not as dramatic, the reduction
is also visible for Mn. We attribute the drastic reductions of the monolayer moments to the
reduction of the lattice constants in the sequence Ag to Pd to Cu.
When comparing the results of the local moments between 3d, 4d, and 5d monolayers on
Ag(001) an interesting trend is observed: The element with the largest magnetic moment among
each transition metal series is shifted from Mn to Ru (isoelectronic to Fe) and at last to Ir (iso-
electronic to Co), respectively. Following these trends we do not expect ferromagnetism for
any other 4d or 5d metal on noble metal (001) substrates, and indeed Mo and Re remained
nonmagnetic. The overall picture of monolayers on Ag and Au is the same, but the different
substrate interactions cause Tc and Os on Au to be nonmagnetic and lead to a slightly larger
moment for Rh. Pd and Pt are predicted to be nonmagnetic. With the exception of Ru, for which
a rather small magnetic moment of 0.2μB was calculated, no monolayer magnetism was found
for 4d metals on Pd(100). Investigations [71] including the spin-orbit interaction have shown
that the spin-orbit interactions reduces significantly the magnetic spin moment of the 5d metal
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Fig. 12: Local density of states (LDOS) of ferromagnetic 3d metal monolayers on Ag(100).
The Fermi energy defines the origin of the energy scale, separating occupied (at negative ener-
gies) from unoccupied states (at positive energies). Majority (minority) states are indicated by
positive (negative) values of LDOS.

monolayers and depending on the interlayer relaxation the spin moment might be suppressed.

Antiferromagnetic Monolayers

It is by no means clear whether the ferromagnetic state is actually the magnetic ground state.
Looking at the LDOS of the 3d monolayers in Fig. 12 and considering the analysis of the anti-
ferromagnetic susceptibility (8) we expect an antiferromagnetic phase for Cr and possibly also
for V and Mn monolayers. In reality, various antiferromagnetic states as well as non-collinear
spin configurations could be anticipated. Studying an Heisenberg model (15) for a square lat-
tice as formed by the (001) monolayers up to the second nearest-neighbor interaction (J1, J2)
the situation becomes relatively simple. As long as the nearest-neighbor interaction is the dom-
inating one, there are only two phases to be considered: the ferromagnetic p(1×1) structure
(J1 > 0) discussed in the previous section and the antiferromagnetic c(2×2) superstructure
(J1 < 0, a checkerboard arrangement of up and down spins with moments of identical size on
both sublattices). The c(2×2) structure corresponds to the M-point in the 2DBZ of the square
lattice. If the next-nearest neighbor interaction is antiferromagnetic, J2 < 0, and sufficiently
strong, |J1| < 2|J2|, then the magnetic structure with a 2D �Q‖ vector of the X-point in the
2DBZ, corresponding an antiferromagnetic p(2×1) or p(1×2) structure (ferromagnetic rows
of atoms along the [100] or [010] direction coupling antiferromagnetically from row to row)
becomes the magnetic ground state.
Figure 13 shows the local moments for the ferromagnetic and c(2×2) antiferromagnetic phase
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Fig. 13: Left figure: Local magnetic moments of 3d monolayers on Cu(100) [2] and
Ag(100) [64] calculated for the p(1×1) ferro– (solid circles connected by dashed line) and
the c(2×2) antiferromagnetic configuration (open circles connected by solid line). Right figure:
Total energy difference ΔE = EAFM−EFM per 3d atom between the c(2×2) antiferromagnetic
and p(1×1) ferromagnetic phase for 3d monolayers on Cu(100) (triangle connected by full line)
and Ag(001) (solid circles connected by dashed line). ΔE > 0 (< 0) means, the ferromagnetic
(antiferromagnetic) configuration is the most stable one. “?” indicates an result which is not
fully converged

of 3d monolayers on Cu(001). It becomes evident that, for many systems (see also Table 4)
both configurations exist with moments of similar values. Depending on the inplane lattice con-
stant, differences in the local moments for the two magnetic phases develop for earlier transition
metals, e.g. for Cr on Cu(001,) for V on Pd(001) or for Ti on Ag(001). Figure 13 shows also
the energy differences ΔE = EAFM − EFM per atom between the c(2×2) antiferromagnetic
and the ferromagnetic configuration for 3d metal monolayers on Cu(001) and Ag(001). A clear
trend emerges: The Ni, Co, and Fe overlayers (ΔE > 0) prefer the ferromagnetic configuration
and the Mn, Cr, and V ones favor the antiferromagnetic one. From the strong similarities of the
monolayer trends for these two substrates we conclude, that this is a general trend: Fe, Co, and
Ni favor the p(1×1) ferromagnetism on the (001) surfaces of Pd, Pt and the noble metals Cu, Ag
and Au [72] whereas V, Cr, and Mn monolayers prefer the c(2×2) antiferromagnetic configu-
ration. The same trend was recently found for monolayers on W(110) [73], and is expected for
Al substrates although V and Ni might then be nonmagnetic. Since ΔE ≈ 8S2J1, ΔE reflects
basically the change of J1 as function of the band filling (number of d electrons) or how EF

moves through the LDOS in Fig. 12. For Mn on Ag(001), where ΔE or J1, respectively, is
relatively small, the J’s between more distant pairs may determine the picture. We investigated
by total energy calculations the stability of the possible p(2×1) structure and found that the
c(2×2) structure is indeed the magnetic ground state.

The c(2×2) antiferromagnetic phase was first predicted by theory. After the prediction several
experiments indicated that the c(2×2) state may indeed exist: no ferromagnetic long range
order was found at low temperatures for a V monolayer on Ag(100) [74], but a local exchange
splitting was found for V, Cr, and Mn monolayers on Ag(100) [75]. More than 10 years after the
theoretical prediction a direct proof of the c(2×2) antiferromagnetic state became for the first
time possible by using the spin-polarized scanning tunneling microscopy in the constant-current
mode [76, 77]. The experiments were carried out for a Mn monolayer on W(110).
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4.2 (111) Oriented Monolayers on Nonmagnetic Substrates

Ferromagnetic Monolayers

The (0001) surface of an hcp crystal and the (111) surface of a fcc crystal establish a triangular
lattice. Compared to the (100) surface the coordination number changes from 4 to 6, and the
symmetry changes from fourfold to threefold or sixfold, respectively. Moreover, the differences
in the magnetic properties between films on a square lattice and on a triangular lattice gives an
estimate of the importance of the pseudomorphic growth condition for the magnetism of the
films.
Figure 11 exhibits the general trend that the magnetic moments of the sixfold coordinated mono-
layers on Ag(111) are smaller in magnitude than those of the fourfold coordinated ones on
Ag(001). On the Ag(111) surface we found magnetism for all 3d metals with the exception of
Ti, which was very small anyway. There is nearly no difference between the monolayer mo-
ments of Mn, Fe, Co, and Ni on the differently oriented Ag substrates. A comparatively larger
reduction of the magnetic moments is found at the beginning of the 3d series where the wave-
function is more extended than at the end of the series. Thus changing the coordination number
from 4 to 6 changes the local moments not significantly. One consequence of this result is that
for monolayers which do not grow pseudomorphically on any substrate, but keep an average
distance between monolayer atoms similar to the pseudomorphic films, no dramatic difference
in the formation of large local moments are expected.
With the exception of Ru (1.23 μB), and Rh (0.67 μB) and a tiny moment for Ir (0.05 μB) among
the 5d metals, no ferromagnetism was found for any other 4d and 5d monolayers on Ag(111).
For the 4d metal monolayers Ru and Rh, the moments are reduced to about 70% of the (001)
values and for the 5d metal Ir only a tiny magnetic moment of 0.05 μB, about 15% of the (001)
value, remains. Obviously the degree of the reduction of the magnetic moments due to the
increase of the hybridization with the increase of the coordination number from 4 to 6, follows
simply the increasing degree of delocalization of the d wavefunction when moving from the 3d
to the 4d and 5d transition–metal wavefunctions.

Monolayers with Complex Spin Structures

Antiferromagnetic interactions on a triangular lattice are the origin of frustrated spin systems. In
recent years the epitaxial growth of such ultra-thin films has been studied intensively by various
experimental techniques. In particular, pseudo-hexagonal c(8 × 2)Mn films on Cu(100) [78],
Mn films on the (111) surfaces of fcc Pd [79], Ir [80], Cu [81, 82, 83], and MgO [84] and on
the (0001) surface of Ru [85] and Co [86] have been prepared and analyzed. But also other
ultra-thin hexagonal films, e.g. Cr and V on Pt(111) and Ru(0001) [87, 88, 89], have been
investigated.
To obtain an overview of all relevant spin-structures we develop first a zero-temperature phase
diagram in the context of the Heisenberg model. As discussed in Sect. 2.3 the magnetic ground
states are SSDWs, most likely with a commensurate propagation vector �q‖ located at the high-
symmetry points in the first 2DBZ of a 2D Bravais lattice. For the 2DBZ of the triangular
(hexagonal) lattice, displayed in Fig. 14 (Left), the high-symmetry points are the corner points
Γ, K, and M of the irreducible wedge of the 2DBZ (I2DBZ). The Γ-point corresponds to the
ferromagnetic solution. The K-point corresponds to a 120◦ Néel state (Fig. 14 (Center)), a 2D
coplanar spin structure with three atoms in a (

√
3 × √3) R30◦ unit cell for which the relative

angle between the spins at the different sites is always 120◦. The M-point corresponds to row-
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Fig. 15. Zero temperature
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space for the triangular lattice
indicating the regions of the
four possible magnetic states

wise antiferromagnetic (RW-AFM) configuration (Fig. 14 (Right)), which can be described by a
rectangular unit cell with two antiferromagnetically aligned atoms. Magnetic ground states with
incommensurate �q‖-vectors are also possible preferentially with �q‖-vectors from the connecting
high-symmetry lines M-Γ-K-M.
Along the line M-Γ-K-M we investigated the energetics within the Heisenberg model up the
second nearest-neighbor interaction, i.e. including the exchange constants J1, J2. The results are
summarized in Fig. 15 in terms of a zero-temperature phase diagram. Depending on the signs
and values of J1, and J2 four kinds of possible magnetic ground states exist: FM, RW-AFM,
120◦, and the SSDW. If J2 is zero or positive (ferromagnetic) than there are only two possible
magnetic ground states, determined by the sign of J1, the FM and the Néel state. But small
values of J2 are already sufficient to change the magnetic ground state and an infinite number
of magnetic states becomes possible, the RW-AFM state or the incommensurable SSDW at any
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possible wave-vector �q‖ at the high-symmetry line Γ-M. Extending the model by including also
J3, a magnetic state with a �q‖ at any high-symmetry line can become ground state.
Since the J’s are rapidly varying functions of the number of d electrons, ab-initio calculations
are carried out to determine the element specific ground states. Since the calculations are very
time comsuming, the full overview has been worked out only for unsupported, free-standing
monolayers (UML). Fig. 16 shows for the UMLs with the Cu lattice constant the total energy
E( �Q‖) and the magnetic moments M( �Q‖) calculated for a discrete set of the spin-spiral �Q‖
vectors along the high-symmetry lines. Among all the SSDWs calculated, the high-symmetry
points have the lowest energies: the 120◦ Néel state (K-point) for Cr(111), the RW-AFM state
(M-point) for Mn(111), and the FM state (Γ-point) for Fe(111). For Fe and Mn, the M( �Q‖) are
nearly a constant, but the Cr moments change drastically, as no ferromagnetic solution could be
found for Cr(111). One more interesting observation is the local minimum of E( �Q‖) for Mn on
the line Γ-K, which is only 21 meV higher in energy than the RW-AFM state. We expect that a
small change in the d-band filling, e.g. due to alloying with Fe, may change the energetics and
an incommensurate SSDW may become the magnetic ground state.
For Mn, the lowest energy magnetic state found so far is the RW-AFM state, which corresponds
to the commensurate SSDW state with one single �Q‖-vector at the M-point of the 2DBZ, and the
RW-AFM is also called single- �Q‖ (1Q) state. In the 2DBZ there are three M-points correspond-
ing to the three possible directions of the long axis of the RW-AFM unit cell on a triangular
lattice. They are equivalent in symmetry but are different to each other with �Q‖-vectors, �Q(k)

‖ ,
for k = 1, 2, 3. Within the Heisenberg model the energy of each SSDW denoted by one of
the three wave vectors �Q(k)

‖ or any SSDW being an orthogonalized linear combination of those
are degenerate. Higher order spin interactions (17) and (18) may lift this degeneracy and a so-
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Fig. 17. (Color) An image of the magnetic 3Q-
structure, with spins pointing in all three directions of
the spin-space. Note that, due to the neglect of the
spin-orbit interaction only the relative orientation of
the moments is specified

called triple- �Q‖ (3Q)-state, may become lower in energy. The 3Q-state is a three-dimensional
non-collinear spin-structure on a 2D lattice (see Fig. 17) with four chemically identical atoms
per surface unit-cell, where the relative angle between all nearest-neighbor spins is given by
the tetrahedron angle of 109.47◦. The 3Q-state is formed as a linear combination of the three
RW-AFM (1Q) structures orthogonal in spin-space, each having one of the three �Q

(k)
‖ -vectors

of the M-points:

�m(�r + �Ri) = m(�r)× 1√
3

3∑
k=1

e
i �Q

(k)
‖ �Ri ê(k), (40)

where the ê(k) are orthogonal unit vectors in spin space. We see that in the nearest-neigbhor
approximation to the higher order exchange contributions the sign of K1 and B1 determine the
sign of the energy difference ΔE = E3Q − E1Q = 16/3S4(2K1 + B1) and thus whether the
3Q or the 1Q state becomes the magnetic ground state. From the ab-initio calculations for the
Mn UML in the geometry of Cu(111) we [3] found that the 3Q-state is 15 meV/atom lower in
energy than the 1Q-state.
Calculations including the Cu(111) substrate show that the energy differences between different
magnetic states change due to the present of the substrate, but the magnetic ground state remains
unaltered: Cr/Cu(111) exhibits the 120◦ Néel state (2.35 μB), Mn/Cu(111) the 3Q-structure
(2.74 μB), which is 17 meV lower in energy than the 1Q-state (3.00 μB), and Fe/Cu(111) is
ferromagnetic (2.63 μB). On the Ag(111) substrate [90] the overall picture is the same, but
two differences were noticed: V/Ag(111) is magnetic (2.19 μB) and exhibits as Cr/Ag(111)
(3.65 μB) the 120◦ Néel state and the magnetic gound state of Mn/Ag(111) is the RW-AFM
state (3.91 μB) and not the 3Q-state (3.88 μB). Fe/Ag(111) is ferromagnetic (3.02 μB). We
believe that the complex spin-structures presented here, can be resolved using the spin-polarized
scanning tunneling microscope in the constant-current mode [91, 90].

4.3 Magneto-Interlayer Relaxation

In order to give the reader an impression (i) how strongly the formation of large monolayer
moments may affect the interlayer relaxation and (ii) what is the influence of the magnetic order
on the interlayer distance, total energy calculations as function of the interlayer distances are
presented for two selected systems: Mn/Ag(001), and Mn/Cu(001). Prior to these calculations
we determined the in-plane lattice constants which are taken to be the bulk lattice constants of
the substrate; we found a value of aCu

0 = 6.65 a.u. for Cu and aAg
0 = 7.58 a.u. for Ag. Clearly, the

Mn monolayers show the largest magnetic moments on any substrate and the magneto-volume
effects should be most substantial.
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Fig. 18: Total energies as function of the interlayer relaxation for nonmagnetic (open dia-
monds), ferromagnetic (solid diamonds), and c(2×2) antiferromagnetic (solid circles) Mn mono-
layers on Cu(001) and Ag(001). The energy of the nonmagnetic monolayer at 0% relaxation
was chosen as the origin of the total energy scale. The interlayer relaxation is given in relative
units with respect to the interlayer distance of the substrate. The vertical arrows indicate the
minimum energy interlayer relaxation

Fig. 18 shows the total energy as function of the interlayer distance for a Mn monolayer on
Cu(001) and Ag(100) for three different magnetic states: nonmagnetic, ferromagnetic and c(2×
2) antiferromagnetic. We find, as already discussed in Sect. 4.1 that the nonmagnetic solution
is the highest in energy and the antiferromagnetic one is the lowest energy magnetic state.
Second, we find a substantial change of the minimum energy interlayer distances with change
of the magnetic state. On Cu(100) the most contracted minimum energy distance was found for
the nonmagnetic solution with ΔzN =1.39%. For the ferromagnetic state a relaxation of ΔzF =
4.02% and for the antiferromagnetic state a relaxation of ΔzAF = 5.41% was determined. We
find that the effect of the long range magnetic ground state on the relaxation is equally important
as the formation of moments itself: the formation of a magnetic moment expands the interlayer
distance by about 2.6% and the change in the magnetic state changes the interlayer distance
by 1.4%. This coincides with the energy differences between the ferromagnetic state and the
nonmagnetic state which is comparable to the energy difference between the antiferromagnetic
state and the ferromagnetic one.
On Ag(001), the interlayer relaxations for the nonmagnetic, ferromagnetic, and antiferromag-
netic Mn monolayers are determined to ΔzN =−13.4%, ΔzF =−6.75%, and ΔzAF =−5.94%,
respectively. The lattice constants of Ag is 14% larger than the lattice constant of Cu. Conse-
quently the Mn atoms relax inwards on these substrates. Due to the large Mn moments, around
4 μB on these substrates (recall the moment of Mn on Cu is slightly below 3 μB), the magneto-
volume effect is very large. The ferromagnetic Mn monolayers experience a large expansion of
their minimum energy interlayer distance of about 7%, much larger than for Cu and the mag-
netic configuration modifies this expansion by an other 1% to 2%. The impact of the magnetic
order on the interlayer distance is within about 2%, but the magneto–volume effect due to the
formation of large magnetic moments is much larger for Mn on Ag than for Mn on Cu. This
is in line with the arguments based on energy differences. The energy difference between the
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antiferromagnetic state and the ferromagnetic state is for all Mn systems in the same ballpark
of about 300 meV/Mn atom (cf. Table 1), while the formation energy of local moments is at
large difference: about 200 meV for Mn on Cu but 1300 meV for Mn on Ag. This explains the
large difference in the magneto-volume effects between Mn on Cu and Mn on Ag. In all cases
the relaxations stabilize the ferromagnetic and antiferromagnetic phases, respectively.
Concluding, the atomic volume depends on the magnetism, mostly on the size of the mo-
ment and to a smaller extent on the magnetic state. An extreme example of this is the ex-
perimentally observed unusually large atomic buckling of the c(2×2)MnCu/Cu(001) [92] and
c(2×2)MnNi/Ni(001) [92] surface alloys. In these alloys a buckling of the surface atoms of
0.30 Å (MnCu) [92] and 0.25 Å (MnNi) [92] was found. Although the atomic radii of Pd and Au
are much larger than for Mn, the buckling of the c(2×2)CuPd/Cu(001) and c(2×2)CuAu/Cu(001)
atoms was observed to just 0.02 Å[93] and 0.10 Å[94], respectively. It was shown that this buck-
ling was a consequence of the magnetovolume effect, due to the large moments of Mn (3.75 μB)
in Cu [95] and Ni (3.55 μB) [96].

4.4 Orbital Moment and Magnetic Anisotropy

Trends in Unsupported (100) Monolayers

The orbital magnetic moments (ml) and the magnetocrystalline anisotropy (MCA) are fairly
small quantities as compared to spin moments and exchange energies. This holds at least for 3d
transition metals. These quantities depend on fine details of the electronic structure which alters
with lattice constant, film thickness, choice of substrate and surface orientation. Although it is
important to know the fact values of the ml and the MCA for particular systems, in this sub-
section we try to provide insight and intuition into the behavior of these quantities by studying
the chemical trend of these properties across the transition-metal series. We focus on (100) ori-
ented unsupported 3d, 4d and 5d transition-metal monolayers in the lattice constant of Ag(100)
(a0/
√

2 = 5.459 a.u.). In order to proceed with a fine scale analysis of these properties as func-
tion of the electronic structure or the band filling, respectively, the relativistic density functional
calculations are carried out for films of hypothetical atoms with non-integer nuclear numbers.
The rational behind this modus operandi is the idea that due to the required charge neutrality,
the nuclear number and the number of electrons are the same. Thus, a fine change of the nuclear
number is followed by a fine change of the number of electrons, caused by the adjustment of
the Fermi energy. This facilitates a fine scan of ml and the MCA as function of the band filling
across the transition-metal series. For example, for the 3d monolayers we have varied the nu-
clear number Z from the beginning to the end of the transition-metal series, e.g. from Z = 21
with NV = 3 valence electrons till Cu, Z = 29 with NV = 11 valence electrons, in steps of
approximately ΔZ = 0.10 ∼ 0.15.
The results are summarized in Figure 19. For each Z, two self-consistent relativistic ab initio
calculations have been carried out, one with the magnetization direction perpendicular to the
film plane, m̂ =↑, and one with the magnetization parallel to the film plane along the [100]
direction, m̂ =→. As results one obtains the orientation dependent spin moments, ms(↑) and
ms(→), orbital moments, ml(↑) and ml(→), and electronic total energies, E(↑) and E(→).
Here we focus on the ferromagnetic phase.
The magnetic spin moments exhibited in Figure 19(a), follow the trend discussed in Sub-
sect. 4.1: The 3d monolayers behave according to Hund’s first rule with a maximum moment
of more than 4 μB in the center of the series. Also 4d- and 5d-metal monolayers are magnetic
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Fig. 19: Local magnetic spin moments (a) and orbital moments (b), magnetocrystalline
anisotropy constant KMCA = ΔEMCA calculated as energy difference between between two
magnetization directions, the magnetization in the film plane (→) and out-of the film plane (↑),
calculated for ferromagnetic, freestanding, unsupported 3d- (squares) (c), 4d- (triangles) (d),
and 5d- (diamonds) (e) metal monolayers (UML) in the (100) surface orientation and in the
lateral lattice constant of the Ag(100) substrate [97]. In (b) the average orbital moments be-
tween those of the out-of-plane, ml↑, and inplane, ml→, magnetization directions are shown.
The difference of the spin moments on the magnetization direction is difficult to distinguish on
the scale of (a) and is not shown. Positive energies in figures (c)–(e) means that the out-of-plane
magnetization is energetically preferred.

for elements between Mo till close to Pd and between W till close to Pt. The magnetic mo-
ments decrease from the 3d to the 4d and 5d series and at the same time the element with the
maximum magnetic moment in each series shifts to the right in the series. The anisotropy of
the spin moments, Δms = ms(↑) −ms(→), is very small, e.g. for an Ir monolayer one yields
ms(↑) = 1.044 μB and ms(→) = 1.012 μB, and is therefore not further considered. However,
for 5d elements, relativistic calculations have an impact on the size of the spin moments. For
example, the spin-orbit interaction reduces the magnetic moment of Ir by 0.5 μB to about 1 μB.
According to equation (30),Edip is proportional tom2

s , and inversely proportional to third power
of the lattice constant, a. Since the lattice constants of all systems are fixed to the one of Ag,
Figure 19(a) mirrors the functional behavior of the dipole energy Edip with respect to the band
filling. Since the dipolar anisotropy or shape anisotropy in the continuum limit, respectively,
Kdip = ΔEdip = Edip(→)−Edip(↑), favors always a magnetization in the film plane, the shape
anisotropy is strictly negative according to our sign convention for the magnetic anisotropy.
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The largest value is obtained for a film with elements between Cr and Mn and the dipolar
anisotropy amounts to Kdip = −0.32 meV/atom. This is about 30% of the value of Kshape

as calculated according to equation (29) using continuum theory, in good agreement with the
results of Draaisma et al.[24].
Also the orbital moments, collected in Figure 19(b) exhibit a clear trend: The orbital moments
are negative in the first half of the transition-metal series, e.g. between Sc and Mn, and positive
in the second half of the transition-metal series. The change in sign is reminiscent to Hund’s
third rule which governs the coupling of the spin and orbital moment. A negative (positive)
sign of the orbital moment means that the orbital moment couples opposite (parallel) to the spin
moment. The orbital moments of elements in the second half of the transition-metal series are
an order of magnitude larger than in the first one. It is surprising that the orbital moments in
films made of the 3d, 4d, or 5d elements in the second half of the corresponding transition-metal
series show very similar values although the spin moments are substantially different. We recall
from equation (35) that for uniaxial symmetry as present in thin films, the orbital moment scales
as ml ∝ ξ ∝ Z2, which explains the increase of ml switching the transition-metal series. The
anisotropy of the orbital moments, Δml, has maximum values of about±0.07 μB in each series
and cannot be neglected. Therefore, in Figure 19(b) the average moments are shown. Δml is a
rapidly varying function with respect to the band-filling and relates according the equation (36)
to the corresponding rapid oscillation of the magnetocrystalline anisotropy.
The uniaxial magnetocrystalline anisotropy constants KMCA = ΔEMCA = E(→)− E(↑), cal-
culated as total energy differences for magnetizations in- and out-of the film plane are exhibited
in Figs. 19(c)–(e). Indeed, results show a continuous and very rapidly varying behavior as func-
tion of the bandfilling. We focus first on the 3d-metal monolayers (Figure 19(c)). Between
Fe and Cu the magnetocrystalline anisotropy energy is negative and the magnetization lies in
the film plane. Between Mn and Fe the magnetization normal to the film plane is energetically
most favorable. A closer look reveals several changes of sign as function of the band filling.
Surprising is the large variation of the value of K as function of bandfilling from 4.75 meV for
a bandfilling between Co and Ni (NV = 9.5) and 0.15 meV for V. Non-integer bandfilling are
not only of theoretical interest but have a concrete meaning in the spirit of the virtual crystal
approximation. For example, we calculated an ordered c(2×2) CoNi UML film, which has also
a bandfilling of NV = 9.5 per atom. K is practically on the spot of the curve Figure 19(c).
Adding Kdip on top of KMCA one finds that with the exception of a small interval between Mn
and Fe, where the positive KMCA exceeds the negative Kdip, the magnetization is energetically
most favorable to be in the film plane. Thus, among the 3d-metal monolayers (integer nuclear
number) only the Fe(100) UML has a magnetization direction out-of-plane.
Comparing the KMCA between the 3d, 4d and 5d monolayers remarkable, results are observed.
The most spectacular results are the giganticKMCA values for the 5d UMLs which reach values
of 12.32 meV for Os and −13.50 meV for Ir. Although the maximum magnetic spin moment
within each transition-metal series drops from 4.6 μB in the 3d series to 2.3 μB and 1.1 μB in
the 4d and 5d series, respectively, and the orbital moments are roughly the same between the
transition-metal series, the variation of KMCA changes from −4.69 meV to 0.73 meV in the 3d
series, and from 3.40 meV to 2.82 meV in the 4d series and to these truly gigantic values of
−13.50 meV to 12.32 meV in the 5d series. One further notices that the latter is accompanied
by a rapid change of KMCA of about 25 meV when going from Os to its chemical neighbor Ir.
One further notices that the functional characteristics of KMCA shows a much more oscillatory
behavior in the 4d and 5d series, both exhibiting two maxima and three minima, than in the 3d
one with one minimum, one maximum and then several small rapidly oscillating peaks.



A3.40 Stefan Blügel
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calculated by perturbation theory for Fe(100) UML in the lattice constant of Ag. The symmetry
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These results can be interpreted on the basis of the corresponding bandstructures and the second-
order perturbation theory of the MCA as presented in section 2.5. As an example, the Fe mono-
layer in the Ag(100) lattice constant is analyzed: As can be inferred from Figure 12, the majority
d-band of Fe on Ag(100) is filled, so that these states will not contribute to equation (34), where
only pairs of occupied and unoccupied states near the Fermi level can contribute significantly.
Therefore, we can focus on the minority states, and the corresponding bandstructure is shown in
Figure 20. The matrix elements in equation (34) depend on the symmetry of the states, ψ, and
the spin-orbit operator [26]. The spatial part of Hso has the symmetry of the orbital moment op-
erator, e.g. lx or lz. Therefore it is possible to find out which pairs of states can lead to nonzero
matrix elements in equation (34), depending of course on the magnetization direction. For an
estimate of the MCA, at each �k-point KMCA = δE(lx) − δE(lz) = ΔExz can be calculated
individually, as shown in Figure 20. E.g. near the M-point, states of dxz, dyz(5, 5∗) symmetry
are just below the Fermi level and states of dz2(1) symmetry above. These states are coupled by
the lx operator, therefore the bands in this region will contibute more to δE(lx) than to δE(lz),
favoring an in-plane magnetization. Between M and X , a coupling of states with 5 and 5∗

symmetry favors an out-of-plane magnetization. After summation over the whole Brillouin-
zone, the latter contributions dominate and, in accordance with Figure 19(c), Fe/Ag(100) has
an out-of-plane magnetization.
If the Fermi level is shifted to higher energies (or the bandfilling increases), the band with 5∗

symmetry gets more occupied and the coupling of the 5 and 5∗ states is no longer possible. The
contribution of the 〈5(5∗)|lx|1〉 matrix elements near M gets stronger. Finally, KMCA changes
sign ( see Figure 19(c) ) and the Co UML is in-plane magnetized. As can be inferred from
Figure 20, the contributions to the MCA oscillate strongly in �k-space and for an accurate sum-
mation a fine resolution in reciprocal space, i.e. a fine �k-point mesh, is necessary. It should
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also be noticed, that the above used decoupling of majority and minority bands can only be
applied for 3d metals. In 4d or 5d monolayers, the exchange splitting is much smaller and both
spin channels give contributions to the MCA. Therefore, a much more complex behavior of the
anisotropy as function of the bandfilling can be seen in Figure 19(d) and (e).
These results give a very excellent overview of the trends of the uniaxial anisotropy K of mag-
netic monolayers. However, the substrate plays also an important role. For weakly magnet-
ically polarizing substrates, e.g. Cu and Ag, the same trend is expected although the actual
values will change. Substrates with large nuclear numbers and thus large spin-orbit interac-
tions, which have in addition a large Stoner enhanced susceptibility, e.g. W or Pt, and can
thus be easily magnetically polarized, may at the end determine the magnetic anisotropy of
these systems. For example, in the light of the experimental results of ultrathin Co films
in contact with other metal films, as sandwich or as multilayers, e.g. Co/Pd(100) [98] or
Co/Pt(100) [99] the large negative KMCA value of the unsupported Co monolayer, which is
in accordance with results of Bruno [27] based on perturbation theory, is a fairly surprising
result. In order to get a better understanding of the influence of the substrate on the magne-
tocrystalline anisotropy, we compare the uniaxial KMCA for a Co monolayer with and without
substrate and found, KMCA = −4.75 meV for an UML(100) in the lattice constant of Ag and
KMCA = −1.39 meV on Ag(100),KMCA = −1.33 meV for an UML(100) in the lattice constant
of Cu and KMCA = −0.32 meV on Cu(100). This can be understood in the sprit of the model
of Stöhr [36], introduced in section 2.5, realizing that the presence of a substrate quenches
predominantly the in-plane orbital moment. Therefore, we observe a clear reduction of KMCA

due to the presence of the substrate, but the general trend across the transtion-metal series will
still hold. At arbitrary substrates 4d- and 5d-metal monolayers will be nonmagnetic. But thin
films show a significant Stoner enhanced susceptibility. In contrast to 3d transition-metals they
may develop a magnetic moment, an electronic structure and an uniaxial KMCA comparable to
the isolated monolayers. In turn, strongly spinpolarized substrates with large nuclear number
change even the sign of the MCA from inplane to out-of-plane.

Magnetic Reorientation Transition: Ni/Cu(100)

If more than one or two layers of magnetic material are deposited as thin film, the layers that are
not forming an interface (to the vacuum or the substrate) will show more bulk-like properties.
It is common to separate the volume-like contributions to the effective anisotropy constants,
KV (energy per unit volume), from the surface term KS and interface term KI (energy unit per
area). This yields for the effective magnetic anisotropy K of a magnetic layer of thickness t

Keff = KV + (KS +KI)/t . (41)

All three anisotropy constants K contain contributions of the dipolar and and the spin-orbit
derived anisotropy. On phenomenological grounds the dipolar anisotropy is also split into a
volume term,KV

shape, namely the shape anisotropy due to the average dipolar energy as obtained
by the continuum theory and the contribution due to the reduction of the dipole anisotropy
field experienced by the atoms in the surface and interface region, KS (dip)

MCA + K
I (dip)
MCA . Thus,

we can write for the volume term KV = KV
shape + KV

MCA, and for the surface term KS =

K
S (dip)
MCA +K

S (so)
MCA and analogously for the interface term. While for smaller thicknesses KS

MCA

and KI
MCA can dominate, for thick films the negative shape anisotropy which has a constant

value per atom and thus increases with thickness of the film can determine the easy axis.
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shape, these
values determine the in-plane / out-of-plane / in-plane transition of the easy axis for Ni films on
Cu(001).

If these terms have different signs, a reorientation transition of the easy axis can occur. A well
investigated example is the system Ni/Cu(001) [100]: For up to seven layers Ni, an in-plane
easy axis of the Ni film is found. Then a reorientation to perpendicular magnetization sets in
and only very thick films (more than 50 monolayers) show again in-plane magnetization. Here
KS is negative, about −85μeV/atom at room temperature, while KV

MCA is positive, approxi-
mately 30μeV/atom. So we expect a reorientation between 5 and 6 monolayers, but actually the
shape anisotropy contributes another −10μeV/atom to KV (the shape anisotropy in thin films
always favors in-plane magnetization). Therefore, the transition sets in after 7 monolayer thick-
nesses. But we have to realize, that the value of KV is much larger than the bulk value of fcc
Ni. In fact, LEED measurements demonstrated that Ni grown on Cu(001) is actually strained,
the in-plane lattice constant is 1.6% larger than in fcc Ni. To compensate this strain, the spacing
between the Ni layers is smaller than in the bulk. From the arguments of the last paragraph
we would now suppose that V⊥ > V‖, therefore R > 1 and, indeed, KV favors perpendicular
magnetization (although the band-filling of Ni does not correspond to the assumptions under-
lying equation (36)). In very thick films, the structure of Ni relaxes back to fcc and the size of
KV decreases until the influence of the shape anisotropy once more brings the easy axis back
in-plane.

4.5 Spin-Orbit Induced Homochiral Mesoscale Spin Spirals

At surfaces, and in other geometries with broken inversion symmetry, magnetic structures are
subject to an antisymmetric exchange interaction, Eq. (37). This Dzyaloshinskii-Moriya inter-
action favors spiral magnetic structures of a specific handedness. In this chapter, we illustrate
the impact of this interaction on the mesoscale magnetic structure of a monolayer of Mn atoms
deposited on the W(110) surface. In this system, the Dzyaloshinskii-Moriya interaction is in-
deed strong enough to induce a spiraling magnetic ground state.
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(a) (b) (c)

Fig. 22: Spin spirals with different rotation axes on a symmetric surface. The left panel shows a
right- and a left-handed spiral for each rotation axis. For (a) and (b), the right- and left-handed
spirals are mirror images of each other. In the case (c), however, the surface breaks the mirror
symmetry. Therefore, the two spirals in (c) are not equivalent to each other and may differ in
energy. The right panel illustrates a spiral and its mirror image for Mn on W(110) a material
with local antiferromagnetic order. The top picture shows a left rotating cycloidal spiral, which
was found in nature. The bottom picture shows the mirror image, a right rotating spiral, which
does not exist.

In a wide class of magnetic materials, the magnetic structure changes on a mesoscopic length
scale and this changes can be described by a continuous vector field �m(�r) with |�m| = const. .
In the simplest case, �m varies only along one spatial coordinate x and the energy of a magnetic
configuration can be described by a simple Landau-Lifshitz functional of the form

E0[�m] =

∫
dx
(
A
(

d �m(x)
dx

)2
+ �m(x)† · ��K · �m(x)

)
. (42)

Thereby, the spin stiffnessA represents the exchange interactions that favor collinear spin align-

ment, and the symmetric anisotropy tensor ��K accounts for the preferred orientation of the
magnetization with respect to the crystal lattice, cf. Eq. (26). The exchange term A (d �m

dx
)2 is

symmetric with respect to the rotational direction, i.e. the energy does not depend on the sign
of d �m

dx
. The exchange term reflects the contribution of the Heisenberg Hamiltonian (15) in the

continuous model. In some systems, however, the Dzyaloshinskii-Moriya term (37) has to be
taken into account. This term implies, that the energies for right- and left-handed spin rotations
differ, and in the continuous approximation it is described by

EDM[�m] =

∫
dx
(
�D·(�m(x)× d �m(x)

dx

))
. (43)

As already pointed out in Chapter 2.6, �D is nonzero only if the underlying crystal structure
does not posses inversion symmetry. Prominent examples for such structures are surfaces and
interfaces [101]. Fig. 22 illustrates how a surface can break the symmetry between right- and
left-handed spiral magnetic structures.
The DM term competes with the symmetric exchange and the anisotropy energy: The latter
terms favor collinear spin alignment, whereas the DM term favors a spatially spiraling magnetic
structure of a specific rotational direction. The resulting ground state was already discussed
in 1965 for a simplified energy functional [102], but the actual values of the corresponding
parameters (in particular the size of �D) are still unknown in most cases.
One can expect, that the DM term is of particular importance in atomically thin magnetic films
that are deposited on non-magnetic surfaces: In such systems the local environment of all mag-
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Fig. 23. Homogeneous spin spiral with period
length |λhs|. The angle between the magnetization
directions of two adjacent lattice sites is constant.

netic atoms is inversion asymmetric. On the other hand, such low-dimensional structures usu-
ally show a large magnetocrystalline anisotropy that favors collinear spin alignment. We want
to find out, to what extent the DM interaction can modify the the magnetic ground state of such

systems. For the exemplary system Mn/W(110), we estimate the model parameters (A, �D, ��K )
from first-principles, i.e. by electronic-structure calculations in the framework of the density
functional theory.
We deduce the values of the spin stiffnessA and the size and sign of the �D-vector from the elec-
tronic energies of homogeneous spin spirals. Such spirals are characterized by a fixed rotation
axis and (d �m

dx
)2 = const. (cf. Fig. 23). For these spirals Eqs. (42-43) simplify to

E0 + EDM

|λhs| = 4 π Aλ−2
hs + 2 πD λ−1

hs + const. , (44)

where the integration is performed over one period length |λhs|, the sign of λhs distinguishes
between right- and left-handed spirals, and D depends on the size and orientation of �D. The
computational scheme that allows us to deal with these large magnetic unit cells is described in
Ref. [103].
In the following, we discuss the exemplary system of a monolayer of Mn atoms deposited on
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Fig. 24: (from Ref. [104]) Left panel: Electronic energy of a homogeneous spin spiral depend-
ing on the period length |λhs|. The sign of λhs depends on the rotational direction. The data
points show the results obtained from the electronic-structure calculations and the lines indicate
the fits with the terms of Eq. (44). Right panel: Magnetic structure of Mn/W(110) imaged with
spin-polarized STM. The stripes on the nanometer scale represent the local antiferromagnetic
structure. On a larger length scale, however, the image shows a spiral structure that is driven
by the DM interaction.
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the W(110)-surface [104]. The magnetic structure of this system is well studied experimen-
tally by spin-polarized STM. Locally it shows a c(2×2)-antiferromagnetic structure [76] (this
does not conflict in with our ansatz, since the vector field �m in Eqs. (42-43) represents only the
spatial modulations on larger length scales). In Fig. 24, the calculated energies are shown for
spin spirals propagating along the high-symmetry lines and the rotation axes aligned parallel to
the corresponding �D-vectors. When the spin-orbit operator, Eq. (32), is neglected the curves
represent the symmetric exchange, whereas the DM interaction and the anisotropy terms are a
consequence of the spin-orbit coupling. From the figure, we can directly identify the homoge-
neous spiral of lowest energy (indicated with λ0). In order to permit other magnetic structures,
we obtain the parameters of Eq. (44) from fits to the calculated data and insert these values
in the functionals (42-43). This way, we predict for the system Mn/W(110) a DM-driven left-
handed spin spiral propagating along the [11̄0]-direction with a period |λ| = 7.9 nm. Since we
are describing an antiferromagnet, the mesoscale magnetic structure shows a period of 1

2
|λ|.

We find nice agreement with the experimental result that is presented in Fig. 24.
The studied system nicely illustrates the impact, that the DM interaction can have on magnetic
structures of low symmetry. Here, it is indeed strong enough to compete with the spin stiffness
and anisotropy and induces a so called Dzyaloshinskii spiral on the mesoscopic length scale.
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1 Introduction

One of the hallmarks of strongly correlated electron materials is their extreme sensitivity to
small changes of parameters such as temperature, pressure, structural distortion, or impurity
concentration [1]. This sensitivity is the result of a striking competition between kinetic energy
associated with electron hopping in narrow bands and intra-atomic Coulomb repulsion. It gives
rise to a fascinating range of electronic and magnetic phenomena whose understanding has been
at the focus of fundamental research in condensed matter physics for many years. In addition,
strongly correlated electron systems, in particular, transition metal oxides, are presently of great
interest because of the possibility of utilizing them for technological applications.

An example which illustrates the range of phenomena that are observed due to small changes
of external parameters is Ca2−xSrxRuO4. It has the same layer perovskite structure as the fa-
mous high-Tc superconductors, with transition metal ions at the center of oxygen octahedra (see
Fig. 1, left panel). Although the replacement of Sr via Ca is iso-electronic, the structural distor-
tions caused by the smaller size of Ca indicated in the right panel give rise to a remarkably rich
phase diagram (see Fig. 2, left panel): The pure Sr ruthenate (x = 2) is superconducting with
Tc = 1.5 K, whereas the pure Ca compound (x = 0) is a paramagnetic or anti-ferromagnetic
insulator. At finite x < 0.5, other magnetic phases are observed, while the range x > 0.5 is
paramagnetic.

Density functional theory (DFT) in the local density approximation (LDA) predicts Ca2RuO4

to be metallic rather than insulating. This failure is quite typical for many transition metal
oxides, including V2O3 and LaTiO3. It is caused by the inadequate description of the Coulomb
interaction within the partially filled d electron shell. This interaction is comparable or larger

Fig. 1: Left: Layer perovskite structure of quasi-two-dimensional ruthenate Sr2RuO4 or cuprate
Ba2CuO4. Right: structural distortions in x/y plane of ruthenate due to substitution of Sr via
Ca; blue dots: O2− ions, red dots: Ca/Sr2+ ions, Ru4+ ions are at the center of O octahedra.
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Fig. 2: Left: Iso-electronic phase diagram of Ca2−xSrxRuO4, with superconducting (SC) phase
for x = 2, paramagnetic and canted anti-ferromagnetic insulating phases (PI and CAFI) for
x→ 0 [2]. Right: wide dxy and narrow dxz,yz Ru t2g bands of Sr2RuO4 [3].

than the hopping interaction between atoms and cannot be simply expressed in terms of the local
electron density. In some systems, the combination of LDA with an onsite Coulomb interaction
– the so-called LDA+U method [4] – can explain the insulating behavior observed in long-range
anti-ferromagnetic phases (see lectures by G. Bihlmayer). In general, however, the transition
from metal to insulator requires a more refined formalism that accounts explicitly for quantum
mechanical fluctuations within electron shells. The possibility of a purely correlation driven
transition between paramagnetic metallic and insulating phases was first discussed by Mott
about 60 years ago [5]. A theoretical formulation of such a transition in realistic materials,
where metallic and insulating properties are treated on the same footing, can be achieved via
the Dynamical Mean Field Theory (DMFT) [6, 7, 8] which is the subject of this lecture.

The unit cells of strongly correlated materials tend to have complex shapes, with several dif-
ferent types of atoms (see Fig. 1). An important first step towards a theoretical description
is therefore the detailed one-electron calculation of the electronic properties within the LDA.
There exist nowadays various codes which provide sophisticated information on many of these
properties. Since many-body calculations become exponentially more time-consuming with in-
creasing number of orbitals, the second step consists in identifying those partially filled bands
near the Fermi level EF in which Coulomb interactions lead to the most dramatic effects. In
the case of Sr2RuO4, these are the three Ru 4d t2g bands where, because of the layer structure,
dxy is a nearly two-dimensional wide band and dxz,yz are nearly one-dimensional narrow bands,
all of which are about 2/3 filled (total filling is n = 4), see Fig. 2 right panel. Because of the
octahedral crystal field, the eg bands (dx2−y2 and dz2) are empty. Although the O 2p bands are
filled, it is important to keep in mind that hopping between Ru 4d orbitals takes place indirectly
via O ions which are located between Ru ions. Sr 5s orbitals form empty bands far above EF .
The bands close to EF can therefore be described in terms of an effective single-particle Hamil-
tonianH(k) (in the present case a 3× 3 matrix) with band energies εm(k), where m is the band
index.

The main changes of the independent-particle band structure due to Coulomb interactions are
shifts of band energies giving rise to band narrowing, life-time broadening, and new excited
states (satellites or Hubbard bands) that do not occur within the single-electron picture. Thus,
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correlations cause a transfer of spectral weight from low to high energies. Another important
consequence of Coulomb interactions occurring in multi-band materials is that orbital occupan-
cies of interacting bands can differ from those of non-interacting bands. As discussed in [9], in
Sr2RuO4 this effect arises since the narrow dxz,yz subbands are more strongly correlated than
the wide dxy band. Of course, the total number of electrons does not change due to Coulomb
effects, but how these electrons are distributed over the various conduction bands depends on
how they interact. Thus, Coulomb correlations can lead to inter-orbital charge transfer, i.e., to
an increase or decrease of orbital polarization. In the following sections we discuss this kind of
correlation induced internal charge transfer in a variety of transition metal oxides.

The phenomena discussed above can be theoretically formulated in terms of a complex self-
energy Σ(k, ω). The Green’s function describing the electron motion through the crystal is

G(k, ω) =
1

ω + μ−H(k)− Σ(k, ω)
, (1)

where μ is the chemical potential insuring the correct total electron count. Neglecting matrix
element effects associated with the frequency and polarization of the incoming light, the imag-
inary part of this Green’s function is proportional to the photoemission intensity for the point
k of the Brillouin Zone. For clarity we omit here orbital indices. Thus all quantities are as-
sumed to be matrices in orbital space. The spin index is also dropped since we consider only
paramagnetic systems. Because of the translational symmetry of the crystal, the lattice Fourier
transform of G is defined as

Gij(ω) =
∑
k

eik(Ri−Rj)
1

ω + μ−H(k)− Σ(k, ω)
, (2)

so that the so-called ‘local’ Green’s function is given by the expression

G(ω) ≡ G00(ω) =
∑
k

1

ω + μ−H(k)− Σ(k, ω)
. (3)

Analogous equations can be written down for the self-energy. Since H(k) is known, the main
task is now to find some (approximate) scheme for the evaluation of Σ(k, ω).

2 Dynamical Mean Field Theory

The great appeal of DMFT is that it is applicable at weak and strong Coulomb interactions, and
that it describes metallic and insulating behavior in a consistent manner. Let us consider the
Hubbard model with on-site Coulomb interactions:

H = −
∑
ijmnσ

timjnc
+
imσcjnσ +

∑
im

Unim↑nim↓ +
1

2

∑
im�=nσσ′

(U ′ − Jδσσ′)nimσninσ′

−
∑
im�=m′

J [ c+im↑cim↓c+im′↓cim′↑ + c+im↑c
+
im↓cim′↑cim′↓], (4)

where m,n are orbital indices, i, j denote lattice sites Ri,j, and timjn is the lattice Fourier
transform of H(k)mn. U and U ′ are intra- and inter-orbital Coulomb matrix elements and J is
the Hund exchange integral. Below we consider mainly systems involving t2g orbitals.
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The key conceptual feature of DMFT is that, instead of solving the hopelessly complicated
Hamiltonian defined above, a simpler version is considered where Coulomb interactions are
retained only at one site (say at i = 0) while at all other sites they are replaced by the local
self-energy. Thus the interacting lattice is approximated by a single interacting site which is
surrounded by a lattice with an extra complex potential given by Σ(ω). The appropriate Green’s
function G′ for this ‘impurity’ problem can be derived by using the Dyson equation which
removes Σ(ω) from the origin. Thus,

G′
ij(ω) = Gij(ω)−Gi0(ω)Σ00(ω)G′

0j(ω). (5)

For the special case i = j = 0, and with the abbreviations Σ(ω) ≡ Σ00(ω), G(ω) ≡ G00(ω),
and G0(ω) ≡ G′

00(ω), we find the important relationships

G0(ω) = [G−1(ω) + Σ(ω)]−1, (6)

Σ(ω) = G−1
0 (ω)−G−1(ω). (7)

The physical meaning of G0(ω) is the following: It describes electronic motion from site i = 0
through the actual crystal and returning to i = 0, with one-electron hopping specified by the
coefficients timjn. This motion, however, takes place within an extra complex potential given
by Σ(ω) at all sites except i = 0.

Graphically we can represent the above approximation as follows:

U U U Σ Σ Σ Σ Σ Σ

U U U Σ U Σ Σ Σ Σ

U U U Σ Σ Σ Σ Σ Σ

The true interacting lattice on the left is simulated via the single-site interacting impurity at the
center. The spectral information to be compared with photoemission data then follows from the
lattice on the right, where all sites have a complex local self-energy. The picture at the center
demonstrates the importance of removing the local self-energy from the origin before starting
the many-body impurity calculation. If G(ω) were used in this step rather than G0(ω), one
would add the Coulomb terms involving U to the local Σ(ω), which would amount to a severe
double-counting of Coulomb interactions.

How do we find the so far unknown self-energy for the impurity calculation at the center? This
is done iteratively, by starting with some reasonable guess, or by putting Σ(ω) = 0. We then
proceed via the following steps:

1. calculate G(ω) via Eq. (3)
2. calculate G0(ω) via Eq. (6)
3. calculate new G(ω) via impurity solver (see below)
4. calculate new Σ(ω) via Eq. (7) and return to step 1.

Typically 10 to 20 iterations are required to achieve convergence, except close to metal insulator
transitions where convergence tends to be slower.

For the quantum impurity calculation a variety of methods is available, such as quantum Monte
Carlo (QMC), exact diagonalization (ED), numerical renormalization group (NRG), density
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Fig. 3: Level scheme for exact diagonalization [11]. ε1,2,3 denote the t2g orbitals at the impurity
site which interact via Coulomb and exchange interactions. Each of these levels hybridizes with
its own set of bath levels. Levels 2 and 3 and their baths are assumed to be degenerate.

matrix renormalization group (DMRG), iterated perturbation theory (IPT), non-crossing ap-
proximation (NCA), etc. The first two are the most accurate and versatile ones for realistic
materials. They are complementary in the sense that their range of applicability and/or com-
putational tractability differs somewhat. Where they overlap they have been shown to be in
excellent numerical agreement. Here we focus on exact diagonalization [10] which during the
recent years has been demonstrated to be a highly useful and efficient method for a variety of
multi-band systems [11]. Compared to QMC it does not suffer from sign problems. Thus, it is
applicable at rather low temperatures, large Coulomb energies, and for full Hund exchange.

In the procedure outlined above we have effectively replaced the true lattice self-energy Σ(k, ω)
by its local version Σ(ω) which may be viewed as lowest order term in a lattice site expan-
sion of Σ(k, ω). To go beyond this ‘single-site’ or ‘local’ approximation one needs to retain
Coulomb interactions explicitly in a (small) cluster of sites rather than only at i = 0. Although
the many-body problem then becomes computationally much more involved, there is currently
considerable interest in cluster extensions of DMFT since the momentum dependence of the
self-energy can have a significant influence on the nature of the metal insulator transition (see
Section 10).

3 Multi-Band Exact Diagonalization

To solve the single-site quantum impurity problem within ED/DMFT, the true lattice environ-
ment of the impurity at i = 0 is simulated via a discrete set of non-interacting ‘bath’ levels.
Thus, instead of H defined in Eq. (4) we consider the finite ‘cluster’ sketched in Fig. 3:

Hcl =
∑
mσ

εmnmσ +
∑
kσ

εknkσ +
∑
mkσ

Vmk[c
+
mσckσ + H.c.] +

∑
m

Unm↑nm↓

+
1

2

∑
m�=m′σσ′

(U ′ − Jδσσ′)nmσnm′σ′ −
∑
m�=m′

J [ c+m↑cm↓c+m′↓cm′↑ + c+m↑c
+
m↓cm′↑cm′↓]. (8)

The levels representing the impurity orbitals are εm, the levels of the surrounding bath are
εk, and the Vmk specify the hybridization interactions between impurity and bath levels. The
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remaining Coulomb and exchange interactions at the impurity site are identical to those of the
original lattice Hamiltonian in Eq. (4). The site index i = 0 is dropped for convenience. The
total number of cluster levels is denoted as ns. (The term ‘cluster’ refers here in ED to impurity
+ bath and should not be confused with cluster extensions of DMFT.)

The non-interacting cluster Green’s function is given by

Gcl
0 = (iωn + μ−Hcl

0 )−1, (9)

where Hcl
0 represents the first three terms of Hcl. Since we are interested in correlation effects

at finite temperatures we evaluate Green’s functions and self-energies at Matsubara frequencies
ωn = (2n + 1)π/β, where n ≥ 0 and β = 1/T [12]. If Gcl

0 is diagonal in orbital space this
expression can be easily reduced to

Gcl
0,m(iωn) =

(
iωn + μ− εm −

∑
k

|Vmk|2
iωn + μ− εk

)−1

. (10)

The energy levels and hopping terms appearing in the cluster Hamiltonian Eq. (8) do not have
any physical meaning. Their sole purpose is to achieve an accurate ‘cluster’ representation of
the corresponding lattice impurity Green’s function G0,m(iωn). A standard conjugate gradient
fitting routine can be used to find the cluster parameters, such that G0,m(iωn) ≈ Gcl

0,m(iωn),
where we assume again diagonality in orbital space.

Once the non-interacting cluster parameters are found, the eigenvalues Eν and eigenstates |ν〉
of the many-body cluster Hamiltonian are evaluated via exact diagonalization. The finite tem-
perature interacting cluster Green’s function is given by [12]

Gcl
m(iωn) =

1

Z

∑
νμ

|〈μ|c+mσ|ν〉|2
Eν − Eμ + iωn

[e−βEν + e−βEμ]

=
1

Z

∑
ν

e−βEν

(∑
μ

|〈μ|c+mσ|ν〉|2
(Eν −Eμ) + iωn

+
∑
μ

|〈μ|cmσ|ν〉|2
(Eμ −Eν) + iωn

)
, (11)

where Z =
∑

ν e
−βEν is the partition function. Applying Eq. (7) to the cluster, we find

Σcl
m(iωn) = Gcl

0,m(iωn)
−1 −Gcl

m(iωn)
−1. (12)

The key assumption is now that this ‘cluster’ self-energy is a physically reasonable represen-
tation of the lattice self-energy, Σcl

m(iωn) ≈ Σm(iωn), which can then be inserted in Gm(iωn).
Evidently, at each iteration step two projections are carried out: (i) The lattice impurity Green’s
function G0 is projected onto the corresponding cluster Green’s function Gcl

0 , and (ii) the clus-
ter self-energy Σcl is projected onto the lattice self-energy Σ. In ED, each iteration therefore
involves the following steps:

Σ→ G→ G0 → Gcl
0 → Gcl → Σcl → Σ. (13)

To illustrate the quality of the projection G0 → Gcl
0 we show in Fig. 4 ImG0,m(iωn) obtained

from

G0,m(iωn) =

∫
dω ρm(ω)/(iωn − ω), (14)

which corresponds to Eq. (6) in the non-interacting limit Σ = 0 for diagonal G. [Note that
ImG0,m(iωn → 0) → −iπρm(0) and ImG0,m(iωn → ∞) → 1/iωn.] As density of states
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Fig. 4: Upper left: ag and e′g density of states components of V2O3 [13]; upper right: spectral
distributions at real ω derived from Eq. (10) after fit along Matsubara axis. Bottom: com-
parison of Green’s functions at imaginary frequencies for two temperatures. Solid red curves:
ImG0,m(iωn), Eq. (14); blue dots: ImGcl

0,m(iωn), Eq. (10).

ρm(ω) we take the ag and e′g components corresponding to V2O3 [13] (see Section 7). These
lattice impurity Green’s functions G0,m(iωn) are compared with fits achieved via Eq. (10),
where each impurity orbital is assumed to hybridize with three bath levels, as sketched in
Fig. 3. At real frequencies G0,m has a continuous spectral distribution given by the den-
sity of states component ρm(ω), whereas Gcl

0,m is discrete by construction (a small artificial
broadening is included for illustrative purpose). Nevertheless, along the Matsubara axis both
are seen to be in excellent agreement. This comparison demonstrates that, for finite clusters,
the representation at Matsubara frequencies is not unique. In fact, within a certain accuracy,
G0,m(iωn) derived from a continuous real-ω spectrum can be represented via an infinite num-
ber of discrete spectra corresponding to different cluster sizes ns. Because of the projections
lattice → impurity → lattice indicated in Eq. 13, continuous lattice and discrete cluster
versions of Green’s function and self-energies are assumed to exist at each iteration of the
ED/DMFT procedure (see also Sections 4 and 8).

Because of the Boltzmann factor in Eq. (11), at low T only a small number of eigenstates
of Hcl are needed. Moreover, Hcl is block-diagonal in spin sectors, consisting of extremely
sparse submatrices. The eigenstates can therefore be efficiently evaluated by using the Arnoldi
algorithm [14]. Basis vectors are of the form |n1↑, . . . , nns↑, n1↓, . . . , nns↓〉, where niσ = 0 or
1. For ns = 12, the largest spin sector corresponds to n↑ = n↓ = 6, yielding matrix dimension
N = d(n↑) × d(n↓) = 9242 = 853776, where d(nσ) = ns!/[nσ!(ns − nσ)!]. The sums over
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μ in Eq. (11) can be readily obtained via a Lanczos procedure after applying cmσ and c+mσ to
the excited states |ν〉. Most of the examples discussed in the subsequent sections are for t2g
bands, where each orbital couples to only two bath levels, giving ns = 9 with N = 1262. Since
the baths of the impurity levels interact indirectly via the on-site Coulomb interaction, the level
spacing of excited states is very small. Thus, convergence with cluster size is achieved far more
quickly than in the single-band case which requires 3 . . . 5 bath levels. As a result, ED/DMFT
can be used to investigate realistic multi-band materials. For ns = 9, one iteration then takes
only a few minutes. Additional details concerning the multi-band ED/DMFT approach can be
found in Ref. [11].

4 Ca2−xSrxRuO4

Fig. 5 illustrates the typical modifications of the one-electron bands of Sr2RuO4 due to Coulomb
interactions. There is an overall narrowing of bands by about a factor of two which is consis-
tent with data obtained using angle-resolved photoemission spectroscopy (ARPES) [15]. Also,
due to their finite lifetime the quasi-particle states acquire intrinsic broadening. Moreover, or-
bital occupancies differ from those of the bare tight-binding bands. As discussed in Ref. [9],
charge is transferred from the more strongly correlated narrow dxz,yz bands to the wider dxy
band, implying correlation induced enhancement of orbital polarization as a result of the planar
geometry. The dxy van Hove singularity at M is therefore shifted very close to EF . While in
LDA it is about 50 meV above EF [3], correlations reduce this value to about 10 meV. Thus,
the topology of the Fermi surface remains the same as predicted in LDA and confirmed in de
Haas-van Alphen (dHvA) measurements. If the van Hove singularity would sink below EF , the
dxy Fermi surface would change from electron-like to hole-like, in contradiction to the dHvA
data. Similar Coulomb driven internal charge redistributions are found in the systems discussed
in the following sections.
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The topology of the Fermi surface of Sr2RuO4 was controversial for several years since early
photoemission data had observed the dxy van Hove singularity below EF . This conflict was
resolved when it was demonstrated [16] that the surface layer of Sr2RuO4 exhibits a reconstruc-
tion similar to the distortion shown in the right panel of Fig. 1. This causes a downward shift of
the dxy band relative to the dxz,yz bands which is detected in surface sensitive ARPES measure-
ments. A similar reconstruction takes place when Sr is replaced by Ca at x = 0.5, with the dxy
van Hove singularity below EF , as observed in ARPES [17].

As pointed out in the Introduction, Sr2RuO4 is metallic, but iso-electronic Ca2RuO4 is insu-
lating. To understand this striking difference, it is necessary to take into account the structural
distortions that occur when Sr ions are replaced by the smaller Ca ions. Similar to the surface re-
construction mentioned above, this substitution induces rotations of Oxygen octahedra, and for
x < 0.5 also tilting and flattening of octahedra. As discussed in Ref. [18], these deformations
cause hybridization among the Ru t2g bands, an effective narrowing of the main dxy component,
and, most importantly, a lowering of the dxy band due to inter-orbital charge transfer from dxz,yz
to dxy. This structure induced splitting is denoted here as Δ = εxz,yz − εxy. Thus, Δ = 0 for
the pure Sr compound (x = 2) and Δ ≈ 0.4 . . . 0.5 eV for Ca2RuO4. Note that the Ca induced
splitting enhances the crystal field splitting Δ0 ≈ 0.26 eV present already at x = 0 as a result
of the planar geometry [9].

Fig. 6 illustrates the enhancement of Ru t2g orbital polarization due to Coulomb correlations
as calculated within ED/DMFT for Hund exchange J = U/4 and U ′ = U − 2J [19]. Δ = 0
yields only mild polarization enhancement. Thus, even at sizable Coulomb energies Sr2RuO4

remains metallic (see QMC/DMFT spectra in Fig. 5, left panel; ED/DMFT spectra support
this conclusion). For Δ > 0, however, orbital polarization increases strongly, until for Δ ≈
0.4 . . . 0.5 eV and U ≈ 3 . . . 4 eV, it becomes complete: nxy → 1 and nxz,yz → 0.5 (per spin),
i.e., the dxy band is pushed below EF , while the dxz,yz bands are half-filled. The spectra shown
in the lower panels suggest that at U ≈ 3 eV Ca2RuO4 is metallic, whereas at U ≈ 4.5 eV it
is insulating, with a filled dxy band and dxz,yz bands split into lower and upper Hubbard bands.
Thus, because of the structural anisotropy of this layer material, Coulomb interactions modify
the Ru t2g valence bands in qualitatively different ways.

Since the insulating phase shown in the lower right panel of Fig. 6 is paramagnetic, it corre-
sponds to the high-temperature PI phase for x→ 0 in the phase diagram presented in Fig. 2. For
T < 100 K, a (canted) anti-ferromagnetic phase is observed which has been analyzed within
the LDA+U method [20].

These results show that the metal insulator transition in multi-band systems can be quite com-
plex. Similar combinations of filling or emptying of subbands, with other subbands becoming
half-filled, are found in other transition metal oxides, such as LaTiO3 [21] and V2O3 [13, 22]
which are discussed in subsequent sections. Thus, in Ca2−xSrxRuO4 there does not appear to
occur a so-called orbital-selective Mott transition, as had been proposed in [20]. In the presence
of narrow and wide bands, it is conceivable that these bands undergo separate Mott transitions,
at different critical Coulomb energies Uc. As a result of correlation driven charge transfer be-
tween subbands, however, enhancement of orbital polarization appears to dominate the metal
insulator transition in Ca2−xSrxRuO4. On the other hand, in the special case of half-filled
particle-hole symmetric bands, orbital polarization is precluded. Narrow and wide subbands
then indeed exhibit sequential, ‘orbital selective’ transitions, implying an intermediate phase in
which bad-metallic behavior in the wide band coexists with insulating behavior in the narrow
band [23, 24]. Depending on the nature of the Coulomb interaction between these bands, both
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Fig. 6: Top panel: Correlation induced change of orbital occupancies for Ca2−xSrxRuO4 [19].
Δ denotes the splitting between dxz,yz and dxy levels due to structural distortions when Sr
is replaced by Ca. Bottom panels: ED/DMFT spectral distributions for Δ = 0.4 eV; solid
(dashed) curves: dxy (dxz,yz) components; left: metallic phase; right: insulating phase.

transitions can be first-order, or a combination can occur of first-order transition for the narrow
band and a T = 0 quantum phase transition for the wide band [25].

The spectral distributions shown in Fig. 6 are obtained from the interacting cluster Green’s
function, Eq. (11), at real ω. (For illustrative purposes, a small artificial broadening is included.)
To distinguish metallic from insulating phases, the inspection of cluster spectra is sufficient.
To compare with photoemission data, it would be desirable to generate the equivalent lattice
spectra via Eq. (3). This can be achieved via analytical continuation of Gm(iωn) ≈ Gcl

m(iωn) or
Σm(iωn) ≈ Σcl

m(iωn) to real ω. The latter is preferable since one can then use Σm(ω) directly
in Eq. (3), thereby avoiding the back-transformation of single-particle features stemming from
H(k). As discussed in Section 3, the extrapolation from Matsubara frequencies to real ω is
not unique. Nevertheless, in principle, one could derive from the discrete cluster spectra shown
in Fig. 6 the equivalent continuous spectra, in analogy to the non-interacting example given
in Fig. 4. In the case of QMC/DMFT, real-ω spectra are usually generated via the maximum
entropy method [26] which accounts for statistical uncertainties of the calculated results. In
ED/DMFT inaccuracies originate from the small finite size of the bath surrounding the quantum
impurity. Extrapolations of Σm(iωn) or Gm(iωn) to real ω can be done, for example, using the
routine ‘ratint’ [27], as discussed in [11] for NaxCoO2 (see Section 8).



A4.12 Ansgar Liebsch

Fig. 7: Left: Comparison of photoemission spectra for SrVO3 and CaVO3 at low and high
photon energies [28]. Right: QMC/DMFT spectra for SrVO3 and CaVO3 [29].

5 SrVO3 and LaTiO3

In the preceding section we have seen that Sr2RuO4 and Ca2RuO4 have fundamentally differ-
ent electronic properties, even though both have four electrons in the Ru 4d t2g valence shell.
Evidently small differences of single-particle interactions due to structural distortions can lead
to qualitatively different results once strong local Coulomb interactions are taken into account,
with metallic (superconducting) behavior in one limit and paramagnetic or anti-ferromagnetic
insulating behavior in the opposite limit.

Analogous qualitative differences exist in 3d1 materials, such as SrVO3 and LaTiO3 [21]. The
former system is a cubic perovskite. Thus all six V t2g spin bands are perfectly degenerate, with
occupancy 1/6. Coulomb correlations do not affect this degeneracy, i.e., orbital polarization
remains zero. Thus, although the on-site Coulomb energy of V ions is much larger than the
single-particle band width (U ≈ 5.55 eV, J ≈ 1.0 eV, compared to W ≈ 2.5 eV), the only
effects that occur due to correlations are band narrowing of the quasi-particle peak near EF ,
broadening of quasi-particle states due to finite lifetime, and satellite formation associated with
lower and upper Hubbard bands [29].

Fig.7 shows these effects for SrVO3 and CaVO3. The latter exhibits slight deviations from
cubic symmetry due to the smaller size of Ca ions compared to Sr. The occupied part of the
spectrum can be compared with the photoemission data shown in the left panel. The unoccupied
range can be compared to inverse photoemission spectra. A crucial point here is to be aware
of the surface sensitivity of photoemission data. As the experimental data indicate, bulk-like
spectra taken at high photon energies tend to be less correlated than data at low energies which
contain more surface contributions due to the shorter electronic escape depth. As discussed
in [30] the local density of states at the surface of SrVO3 is effectively narrowed compared
to the bulk, as a result of the reduced coordination. (This band narrowing affects the dxz,yz
bands more than the mainly intra-planar dxy band.) Thus, surface quasi-particle distributions
calculated within QMC/DMFT [30] exhibit more pronounced narrowing of the main peak near
EF and stronger Hubbard bands, in agreement with the experimental spectra shown in Fig. 7.
A detailed discussion of correlation effects at SrVO3 surfaces is given in [31].



Highly Correlated Electron Systems: Dynamical Mean Field Theory A4.13

 0

 1

 2

-1 -0.5  0  0.5  1  1.5

 D
en

si
ty

 o
f S

ta
te

s 
 (

1/
eV

) 

 ω (eV) 

LaTiO3
orthorhombic

ag

e'g

 0

 0.5

 1

 1.5

-1 -0.5  0  0.5  1  1.5  2

 D
en

si
ty

 o
f s

ta
te

s 
 (

1/
eV

) 

 ω  (eV) 

LaTiO3

tetragonal

xy

xz,yz

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 3  4  5  6

 o
rb

ita
l o

cc
up

an
cy

   
n i

 

 U  (eV) 

LaTiO3

nag

ne'g

nxz,yz

nxy

orthorhombic

tetragonal

insulator
       

metal
       

   

Fig. 8: Upper row: Orthorhombic LaTiO3 density of states components and QMC/DMFT quasi-
particle spectra [21]. Lower left: Density of states components for tetragonal LaTiO3; right:
orbital polarization for orthorhombic and tetragonal LaTiO3, calculated within ED/DMFT
[32]. For UTi ≈ 5 . . . 6 eV orthorhombic (tetragonal) LaTiO3 is insulating (metallic).

In contrast to SrVO3 and CaVO3, LaTiO3 exhibits sizable orthorhombic distortions, giving
rise to substantially different t2g subband occupancies [21]. Fig. 8 shows the density of states
components, indicating larger ag than e′g occupancy. QMC/DMFT quasi-particle spectra for
this structure demonstrate that Coulomb correlations greatly enhance this orbital polarization.
In fact, for U = 5 eV, J = 0.7 eV, the e′g bands are nearly empty, whereas the ag band is
half-filled, with a Mott gap between lower and upper Hubbard bands. Effectively, therefore the
t2g subband degeneracy is reduced from three to one. A similar orbital polarization is obtained
for YTiO3 which exhibits even stronger non-cubic distortions than LaTiO3 [21].

In view of this striking enhancement of orbital polarization due to correlations it is interesting to
inquire what happens when thin layers of a material such as LaTiO3 are placed in artificial envi-
ronments. In fact, heterostructures consisting of LaTiO3 and SrTiO3 layers have recently been
observed to be metallic [33] although both systems in their bulk forms are insulating. (SrTiO3

with 3d0 is a band insulator.) The natural explanation of the observed metallicity appears to be
the interface layer of Ti ions with 3d0.5 occupancy. On the other hand, it is likely that the first
few layers of LaTiO3 grow in a tretragonal fashion, with the a/b plane dictated by the cubic
SrTiO3 substrate. The lower left panel of Fig. 8 shows that the crystal field splitting of a hypo-
thetical tetragonal LaTiO3 structure has the opposite sign compared to the usual orthorhombic
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version. Moreover, the band width is appreciably larger. ED/DMFT calculations then indicate
that correlations enhance this reversed orbital polarization, with a Mott transition at consider-
ably larger Uc > 6 eV within the quarter-filled doubly degenerate dxz,yz bands and the dxy band
empty [32]. Although the true structure of interlayer LaTiO3 has not yet been determined, these
results suggest that the tetragonal compound is a strongly correlated metal rather than a Mott
insulator. Thus, the observed metallicity of LaTiO3/SrTiO3 heterostructures should arise not
only from the interface Ti 3d0.5 ions but from the entire LaTiO3 layer.

6 La1−xSrxTiO3

The remarkable orbital polarization close to the Mott transition of Ca2RuO4 and LaTiO3 dis-
cussed in Sections 4 and 5, in particular, its sensitivity to structural distortions, raises the ques-
tions: How robust are these metal insulator transitions against doping, i.e., deviations from
integer occupancy? How do the different t2g subbands participate in the doping process? Of
course, if all bands are identical as in cubic SrVO3, doping affects all subbands in the same
way. Fig. 9 suggests a fundamentally different picture in the case of La1−xSrxTiO3. The nearly
complete orbital polarization of the Mott phase is greatly diminished, giving rise to a large flow
of charge from the half-filled ag band to the empty e′g bands. For instance, at 5 % hole dop-
ing (n = 0.95), nag ≈ 0.32 and ne′g ≈ 0.08 per spin band, increasing the total e′g occupancy
from near zero to 0.31 and decreasing the total ag occupancy from near unity to 0.64. Thus,
the internal charge flow is six times larger than the external charge transfer. Evidently external
hole doping takes place via simultaneous electron and hole doping of t2g subbands. Analogous
results are found for electron doping [34].

This behavior may be understood by analyzing the variation of the subband occupancies with
chemical potential. As shown in the right panel of Fig. 9, the subband charge compressibili-
ties κm = ∂nm/∂μ have opposite signs and their magnitudes are much larger than the average
charge compressibility. Near the Mott transition the κm become singular, permitting large in-
ternal charge rearrangements. These result indicate that the combined effect of charge and
orbital degrees of freedom leads to a non-trivial generalization of the one-band picture close to
half-filling and of the multi-band picture involving identical orbitals.
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7 V2O3

The transition between paramagnetic metallic and insulating phases of V2O3 observed at T ≈
150 . . . 400 K [36] has been studied using DMFT by several groups [13, 22]. As in the case
of SrVO3, the partially occupied valence bands correspond to V 3d t2g orbitals. Because of
the corundum lattice structure, these orbitals are split into singly-degenerate ag and doubly-
degenerate e′g components, whose densities of states are shown in Fig. 4 [13]. Within LDA, the
subband occupancies are nag = 0.275 and ne′g = 0.362 per spin band (total occupancy n = 2).
Fig. 10 shows that in the presence of local Coulomb interactions, this orbital polarization is
amplified, until, in the range U ≈ 5.1 . . . 5.6 eV (for J = 0.7 eV), it becomes complete: The
e′g bands are half-filled and the ag band is empty. As shown by the spectral distributions on the
right [22], the e′g bands exhibit lower and upper Hubbard bands, while the ag band is pushed
above EF .

The V2O3 subband occupations as functions of U reveal slight differences between full Hund
exchange in the quantum impurity calculation and the more approximate Ising-like exchange.
In particular, the critical Uc is about 10 % smaller for Ising exchange. The latter amounts to
the neglect of spin-flip and pair-exchange terms in the Hamiltonians H and Hcl, i.e., the last
terms in Eqs. (4) and (8). Thus, only density-density Coulomb and exchange interactions are
included. This approximation is usually made in QMC/DMFT calculations to avoid sign prob-
lems. In ED/DMFT these problems do not arise. Thus, both Hund and Ising-like exchange can
be included. The solid and red dots in the left panel of Fig. 10 are for identical LDA density of
states input and for the same Ising-like exchange, demonstrating excellent agreement between
ED/DMFT [35] and QMC/DMFT [13].

The correlation driven enhancement of orbital polarization in V2O3, Ca2RuO4 and LaTiO3

shown in Figs. 10, 6 and 8, can be illustrated schematically as indicated in Fig. 11. The oc-
cupied part of the uncorrelated density of states of these transition metal oxides has contri-
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Fig. 11: Schematic illustration of correlation driven enhancement of orbital polarization. Up-
per row: crystal field split t2g LDA densities of states for occupancies n = 1, 2, 4, correspond-
ing to LaTiO3, V2O3 and Ca2RuO4, respectively. Blue curves: singly-degenerate ag band, red
curves: doubly-degenerate e′g bands. In the case of Ca2RuO4, a refers to dxy, e to dxz,yz. The
vertical bars denote the Fermi level. Lower row: orbitally polarized Mott phase. n = 1 : empty
e′g bands, lower and upper Hubbard peaks of half-filled ag band; n = 2 : empty ag band, lower
and upper Hubbard peaks of half-filled e′g bands; n = 4 : filled ag band, lower and upper
Hubbard peaks of half-filled e′g bands.

butions from all t2g components. In the strongly correlated metallic phase, this remains true,
except that orbital polarization is increased. In the insulating Mott phase, however, some sub-
bands are completely empty or filled, while the remaining ones are half-filled and split into
lower and upper Hubbard bands. The Mott gap therefore involves transitions between states
of opposite symmetry character. Note, however, that other materials can exhibit a different be-
havior. The hypothetical tetragonal structure of LaTiO3 shown in Fig. 8 reveals a Mott phase
with nxz,yz → 1/4 and nxy → 0 [32]. Moreover, orbital polarization in BaVS3 was shown to
decrease with increasing local Coulomb interaction [37]. Also, the Mott transition in LaVO3

and YVO3 occurs before orbital polarization is complete [38]. Finally, in Section 4 we pointed
out the possibility of orbital selective Mott transitions. Thus, 60 years after Mott first discussed
the paramagnetic, correlation induced metal insulator transition, multi-band DMFT treatments
reveal that these transitions in realistic transition metal oxides can be highly complex.

8 Na0.3CoO2

In Section 4 we have seen that Coulomb correlations in Sr2RuO4 give rise to a charge transfer
between t2g orbitals, so that the dxy van Hove singularity at the M point of the Brillouin Zone is
pushed very close to the Fermi level. A slight reduction of the band width, as induced via Sr→
Ca substitution, together with moderate Coulomb interactions, shifts this singularity below EF ,
so that the topology of the dxy Fermi surface sheet changes from electron-like to hole-like. The
Fermi surface of the layer compound NaxCoO2 has remained controversial for several years,
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raising the question whether Coulomb correlations might be the origin of the discrepancies
between LDA predictions [39] and photoemission data [40]. As shown in Fig. 12, because of
the hexagonal structure of this material, the LDA Fermi surface exhibits six small hole pockets
arising from the partially filled Co e′g subbands which have not yet been observed using ARPES.
NaxCoO2, with 3d5+x occupancy of the Co 3d bands, as a function of Na doping reveals a
remarkably rich phase diagram, ranging from Mott insulator at x = 0, superconductor at x =
0.3 (if hydrated), charge disproportionation at x = 0.5, pronounced Curie-Weiss behavior near
x = 0.7, and band insulator at x = 1. The presence of the hole pockets is believed to have a
strong influence on the nature of the superconductivity at x = 0.3. Thus, it is clearly important
to understand the topology of the Fermi surface.

Early attempts to reproduce these measurements by taking into account strong local Coulomb
interactions within the Co 3d shells failed since QMC/DMFT results revealed stabilization of
the e′g pockets, rather than their disappearance [41]. An extensive analysis within ED/DMFT
demonstrated that orbital polarization between Co t2g subbands may increase or decrease, de-
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Fig. 13: Quasi-particle spectra of Na0.3CoO2 calculated within ED/DMFT [11]. Left panel: ag
states, right panel: e′g states. Solid red curves: spectra derived from Gm(ω) after extrapolating
Σm(iωm) to real ω; dashed blue curves: spectra derived by extrapolating Gm(iωm) to real ω;
dotted curves: bare density of states.

pending on the details of the input single-particle Hamiltonian [42], as shown in the lower
panel of Fig. 12. A crucial parameter is the t2g crystal field splitting, Δ = εag − εe′g . As long
as Δ ≤ −0.1 eV as predicted within LDA, Coulomb correlations within single-site DMFT
consistently yield e′g pockets, whereas Δ > 0.1 eV pushes the e′g bands sufficiently down so
that the pockets disappear [43]. Thus, the fate of the e′g pockets is more strongly influenced by
single-particle effects governing the sign and magnitude of Δ than by correlation effects. Re-
cent quantum chemical calculations, with special focus on the strong Co 3d – O 2p covalency,
yield Δ ≈ 0.3 eV [44], suggesting filled e′g pockets. On the other hand, surface effects might
also shift the e′g bands down [45], which could explain surface sensitive ARPES data. More
theoretical and experimental work is needed to clarify the Fermi surface of Na0.3CoO2.

We close this section by discussing the analytical continuation from Matsubara frequencies to
the real-ω axis. As pointed out in Section 3, quasi-particle spectra at real frequencies can be
derived by transforming the solid Green’s function Gm(iωn) to real ω, or by first transforming
Σm(iωn) and then applying Eq. (3) at real ω. The comparison shown in Fig. 13 proves that
both methods are consistent, and that the latter scheme retains finer spectral details originating
from the single-particle Hamiltonian. For instance, the e′g spectrum obtained via Eq. (3) and
Σm(ω) shows two peaks below EF which evidently are the shifted and broadened density of
states features near 0.4 and 0.8 eV below the Fermi level. Also, the peak close to EF exhibits
some of the fine structure of the single-particle density of states. These details are lost if the
spectrum is instead derived via extrapolation of Gm(iωn) to real ω.

9 DMFT for Heterostructures

So far we have discussed bulk properties of strongly correlated transition metal oxides. The
analysis of these properties using photoemission is nevertheless non-trivial because of surface
induced changes of the electronic structure, such as band narrowing due to reduced coordina-
tion, surface crystal field splitting of t2g orbitals, lateral surface reconstruction, etc. Frequently,
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surface contributions to photoemission spectra tend to be more correlated, with stronger Hub-
bard satellites than the bulk components. In addition to surfaces, heterostructures made out of
thin layers of transition metal oxides have recently attracted a lot of interest as promising can-
didates for electron-correlation-based devices. In Section 5, we mentioned the example of the
Mott insulator LaTiO3 which exhibits metallicity when it is combined in heterostructures with
the band insulator SrTiO3 [33].

Inhomogeneous correlated layered systems have been studied within DMFT by several groups.
Here we briefly discuss a new embedding approach [46] which permits an efficient applica-
tion of DMFT to semi-infinite surfaces and heterostructures. The semi-infinite substrate leads
connected to both sides of the central region of interest are represented via complex, energy-
dependent embedding potentials that incorporate one-electron as well as many-body effects
within the substrates. As a result, the number of layers which must be treated explicitly in the
layer-coupled DMFT equation is greatly reduced compared to previous schemes. The interface
region is assumed to include the first few surface layers of the actual substrates. Both the central
region and the substrates may exhibit strong correlation effects.

Let us consider for simplicity a simple cubic lattice with nearest neighbor hopping t. The
interface region has layer index 1 ≤ i ≤ N , the left substrate i ≤ 0 and the right substrate
i ≥ N+1. The DMFT calculation for this heterostructure then consists of three steps: First, the
self-energies Σα(iωn) of the infinite substrate bulk materials are calculated, using the formalism
outlined in Sections 2 and 3. The index α = L, R denotes the left or right substrate. Second,
the embedding potentials for the surface layers i = 1 and i = N of the interface region are
derived from the expression

Sα(k, iωn) = (w −
√
w2 − 4t2)/2 (15)

w = iωn + μ− ε(k)− Σα(iωn), (16)

where ε(k) = −2t[cos(kx) + cos(ky)]. The effective Hamiltonian for the interface region is
given by the N ×N matrix

Hij(k, iωn) = −tij + δij [ε(k) + δ1iSL(k, iωn) + δiNSR(k, iωn)]. (17)

The local lattice Green’s function and the corresponding impurity Green’s function are

Gi(iωn) =
∑
k

[iωn + μ−H(k, iωn)− Σ(iωn)]
−1
ii (18)

G0,i(iωn) = [Gi(iωn)
−1 + Σi(iωn)]

−1, (19)

where H(k, iωn) and Σ(iωn) denote the matrices Hij(k, iωn) and δijΣi(iωn). Finally, the
G0,i(iωn) are used as input for the ED/DMFT calculations for each interface layer, providing
the new self-energies Σi(iωn).

Fig. 14 illustrates the layer variation of the quasi-particle weight Zi ≈ 1/(1− Im Σi(iω0)/ω0)
for a model heterostructure consisting of a simple cubic lattice, with local Coulomb interaction
U = 6 for the weakly correlated metallic substrates and U = 10, 12 for the more strongly
correlated interface region i = 1 . . . 4 (energy unit is t = 1). The calculation is carried out
using N = 8 embedded layers, which comprise the central 4-layer film and the two outermost
layers of the substrates. At each layer, the impurity level is surrounded by 7 bath levels in the
ED/DMFT calculation. The quasi-particle weight of the substrate surface layers, Z2,7, is seen
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Fig. 14: Left panel: Quasi-particle weight Zi of the heterostructure consisting of a 4-layer film
(i = 3 . . . 6) sandwiched between two semi-infinite metals, calculated using ED/DMFT [46].
Temperature T = 0.02. Right panel: Layer variation of spectral distribution at metal insulator
interface, calculated using NRG/DMFT [47]. x = 0 : metallic surface layer; x ≥ 1 : successive
layers in insulator. Inset: low-frequency region.

to be reduced whereas at the surfaces of the poor metal it is enhanced. Evidently, the good or
bad metallic character of one metal spills over into the neighboring metal [46].

Analogous layer-dependent DMFT calculations were recently performed for thick slabs using
NRG as impurity solver [47]. The right panel of Fig. 14 shows the layer variation of the spectral
distribution at a metal insulator interface. Metallic states near EF are seen to form exponential
tails within the Mott gap of the insulator. With increasing U in the insulator, the gap gets
progressively wider and the penetration depth of metallic tails in the insulator decreases rapidly.

10 Cluster DMFT: Organic Salts

The influence of spatial quantum fluctuations on the nature of the Mott transition in strongly
correlated systems is currently of great interest. To address this problem within DMFT it is
necessary to go beyond the single-site or local approximation discussed in Sections 2 and 3
and include Coulomb interactions within clusters rather than single atoms [48, 49]. This exten-
sion allows one to study the momentum variation of the self-energy and examine, for instance,
whether the Mott gap opens uniformly across the Fermi surface, or whether it appears first at
the so-called ‘hot spots’ (strongly correlated points or regions of the Brillouin Zone) and only
subsequently (at larger U) at ‘cold spots’ (weakly correlated regions).

A class of materials in which spatial fluctuations can be studied in detail are the layered charge
transfer salts of the κ-(BEDT-TTF)2X family, where X denotes an inorganic anion. The elec-
tronic properties of these compounds have been shown to be highly sensitive functions of hy-
drostatic pressure [50, 51]. As a result, the temperature versus pressure phase diagram is re-
markably rich, exhibiting Fermi-liquid and bad-metallic behavior, superconductivity, as well
as paramagnetic and anti-ferromagnetic insulating phases, with striking analogies to the phase
diagrams of transition metal oxides obtained via chemical doping [1].

A feature of particular interest in these salts is magnetic frustration. Since their structure cor-
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Fig. 15: Upper panels: Phase diagrams of Hubbard model for anisotropic and isotropic tri-
angular lattices (t′ = 0.8t and t′ = t, respectively), evaluated within cluster ED/DMFT for
t = 0.04 eV [53]. Plotted are the first-order metal-insulator phase boundaries as functions
of inverse local Coulomb energy U . In the experimental setup increasing hydrostatic pressure
P implies increasing band width W or decreasing U . Lower panels: Temperature / pressure
phase diagrams for organic salts, κ-Cl [50] (left) and κ-CN [51] (right). The reentrant behavior
observed for κ-Cl is absent for κ-CN.

responds to an anisotropic triangular lattice, with inequivalent nearest neighbor hopping in-
teractions t and t′, long-range magnetic ordering becomes increasingly frustrated for t′ → t,
giving rise to a spin-liquid phase in the absence of symmetry breaking [52]. Such a spin-
liquid phase appears to be realized in κ-(BEDT-TTF)2Cu2(CN)3 (denoted here as κ-CN) with
t′ ≈ 1.06t, whereas κ-(BEDT-TTF)2Cu[N(CN)2]Cl (denoted as κ-Cl) with t′ ≈ 0.75t is an
anti-ferromagnetic insulator.

The minimal model Hamiltonian that captures the interplay between geometrical frustration and
strong Coulomb interaction present in the conducting layers of organic salts is

H = −
∑
ijσ

tij(c
+
iσcjσ + H.c.) + U

∑
i

ni↑ni↓ − μ
∑
iσ

c+iσciσ, (20)

where the sum in the first term is limited to nearest neighbor sites. The hopping integrals in a
unit cell consisting of three sites are t13 = t23 = t and t12 = t′. The chemical potential μ is
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tral weights Ai(0) of cluster sites at EF for anisotropic triangular lattice. Red (blue) curves:
increasing (decreasing) U [53].

fixed at half-filling. Within cluster DMFT the lattice Green’s function is defined as

Gij(iωn) =
∑
k

[iωn + μ− t(k)− Σ(iωn)]
−1
ij , (21)

where k extends over the reduced Brillouin Zone. t(k) denotes the hopping matrix for the
superlattice and Σ(iωn) represents the non-diagonal cluster self-energy matrix.

Fig. 15 shows the ED/DMFT phase diagrams for the anisotropic and isotropic triangular lat-
tices. The critical temperatures, Tc ≈ 50 K are consistent with the measured values for κ-Cl
and κ-CN. For t′ = 0.8t, the phase boundaries separating the Fermi liquid from the Mott insula-
tor show the same kind of reentrant behavior as measured for κ-Cl. For instance, at U = 1/3 eV
and T ≈ 50 K the system is a Mott insulator which turns into a Fermi liquid when T is lowered
to about 20 K. Further reduction of T reverts the system to a Mott insulator, just as seen in the
data. This reentrant behavior is absent in the case of the isotropic triangular lattice. This strik-
ing difference can be understood by analyzing the magnetic correlations < SizSjz > shown in
Fig. 16. The results demonstrate that spin correlations are strongly enhanced as the geometrical
frustration is suppressed. Thus, t′ = 0.8t induces a stronger tendency towards magnetic order
than t′ = t. At low T , therefore, the electron entropy is suppressed for t′ = 0.8t as compared
to t′ = t. As T is increased for t′ = 0.8t, the system lowers its free energy by transforming to a
metal since the entropy of the metal exceeds that of the ordered insulator. At even higher tem-
peratures the system gains entropy of log(2) by transforming back into a paramagnetic insulator.
In the isotropic lattice magnetic ordering is suppressed and the reentrant behavior disappears.

Finally, to illustrate the first-order nature of the metal-insulator transition we show in the right
panel of Fig. 16 the spectral weights at EF = 0 for the three cluster sites as functions of U .
These quantities exhibit hysteresis for increasing and decreasing U , indicating coexistence of
metallic and insulating solutions.



Highly Correlated Electron Systems: Dynamical Mean Field Theory A4.23

11 Summary

DMFT provides a combination of (i) high-quality single-electron Hamiltonians for complex
materials consisting of many electrons per unit cell and (ii) accurate many-body formalisms for
the study of complex quantum impurities. Together with increasingly powerful computational
resources, this combination today allows detailed studies of the electronic properties of strongly
correlated systems, such as transition metal oxides and organic salts. As a result, the nature of
the Mott transition in multi-orbital compounds and its remarkable sensitivity to key parameters,
like doping, temperature, pressure, crystal symmetry, etc., are now much better understood than
only a decade ago.
The examples discussed in this lecture demonstrate that finite temperature exact diagonalization
has emerged as a versatile and efficient tool for the study of highly correlated materials. The cor-
relation induced charge transfer between valence orbitals is now a well established phenomenon
found in a variety of systems. In the future, it should become feasible, via generalizations of
DMFT for inhomogeneous systems, to investigate these kinds of effects at neutral and charged
heterostructures consisting of realistic transition metal oxides. Further studies of spatial fluctu-
ations, by combining exact diagonalization with cluster DMFT, will also be of great interest.
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1 Prelude

Transition metal oxides (TMO) exhibit a variety of useful properties, such as ferromagnetism,
ferroelectricity, half-metallicity, high-temperature superconductivity, colossal magnetoresistance
(CMR), and multiferroelectricity. In this Lecture, we present important ingredients for the elec-
tronic structure of TMO and magnetic-related properties.

2 Atomic orbitals in crystal

2.1 Crystal field effect and chemical bonding

Fig. 1: Possible d-orbital splitting by crystal field effect in ABO3 with perovskite structure.
Crystal structure and atomic orbitals are presented.

The one-electron wavefunctions of atoms or ions are expressed in terms of a product of a radial
wave function Rnl and angular wave functions, the spherical harmonics Ylm.

Ψnlm(r) = Rnl(r)Ylm(θ, φ) (1)

where n is principal quantum number, l is angular quantum number andm is magnetic quantum
number. Transition metals have partially filled d (l=2,m=−2,−1 , 0, 1, 2) states. For simplicity,
we can obtain real angular functions by linear combination of Ψnlm(r) as follows,
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There are two types of angular functions, t2g and eg. The t2g (xy, yz and zx) orbitals have
large amplitudes between the x, y and z axes, while eg (3z2 − r2 and x2 − y2) orbitals have
large amplitudes along these axes. The angular parts of these five wavefunctions are plotted in
Fig. 1. In a free atom or ion, five d-states are degenerate in the energy. However in the crystal,
such degeneracy is lifted up by the electric field derived from surrounding ions, crystal field.
The energy diagram of octahedral crystal field in the perovskite oxides is shown in Fig. 1. We
can intuitively understand that an electron at a transition-metal site can feel different repulsive
potentials due to the oxygen ions.
It is known that the above description of the energy level splitting by a crystal field can explain
experimentally observed results (photoemission spectroscopy etc.) though it is based on a point
charge approximation. However, these results only explain anti-bonding states of transition-
metal d states and oxygen p states. The energy levels reverse if we discuss the bonding states.
Figure 2 shows a schematic diagram of chemical bonding.

pdσ
pdπ

pdπ∗
pdσ∗

d

p

Fig. 2: Schematic diagram of energy level and chemical bonding.
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Fig. 3: Possible spin configurations in Co3+ ion in cubic crystal field.

2.2 Spin polarization
The ground state of an ion is explained by the well-known Hund’s rule as follows [1].

(i) Arrange the electronic wave function to maximize S.
(ii) Arrange the electronic wave function to maximize L.

The first rule minimizes the Coulomb energy because of Pauli exclusion principle. The second
rule minimizes also the Coulomb energy, because electrons with the same rotation direction
avoid each other. These Hund’s rules are not always applicable to ions in a crystal. The reason
lies in the lift of the degeneracy by the crystal field and chemical bonding. For example, the
Co3+(d6) ion has the possibility of three spin arrangements in perovskite LaCoO3, (i) High spin
S = 2, (ii) Intermediate spin S = 1, (iii) Low spin S = 0 shown in Fig. 3. The energy levels are
different for up-spin and down-spin as well as for high-spin and intermediate-spin case. These
differences in energy levels for different spins are called spin polarization. The difference in the
number of up-spin and down-spin electrons becomes the local spin moment of an ion. Figure 4
shows the schematic diagram of the electronic structure and oxygen coordination of different
Co3+ sites in SrCo6O11. The octahedral site is the same as in figure 1. However, in the trigonal
bipyramid case, the symmetry is not octahedral and the notation used is different from eg-t2g
notation. These differences in the crystal field effect in this system gives rise to a novel half-
metallic antiferromagnetic electronic structure.

3 Exchange interactions

3.1 Superexchange
Many of the transition-metal oxides have a ground state which has a ferromagnetic or antifer-
romagnetic order. To discuss the magnetic stability, the interaction between each pair of ions (i
and j) is often represented by a Heisenberg model.

E = −1

2

∑
ij

JijSi · Sj, (8)

where the exchange parameter Jij is positive for ferromagnetic, and negative for antiferromag-
netic interactions. The microscopic origin of Jij is often derived by a perturbation approxima-
tion to the Hubbard model given approximately by

Jij ∝ −
t2eff
U
, (9)
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Fig. 4: Crystal structure of SrCo6O11 and schematic view of electronic structure for ferromag-
netic metal and antiferromagnetic half-metal.

where teff is an effective hopping integral between transition-metal ions, U is on-site Coulomb
interaction. In the transition-metal oxides, the exchange interaction between magnetic metal
ions is mediated by a non-magnetic oxygen. This origin of exchange interaction is called su-
perexchange. The effective transfer integral teff is expressed by the energy difference between
the transition-metal d orbital and oxygen p orbital, ∆pd, and the hopping integral between tran-
sition metal and oxygen tpd as follows,

teff ∝
t2pd
∆pd

. (10)

Figure 2 shows that there are two types of overlap between p orbitals and d orbitals, pdσ and
pdπ which mainly contribute to hopping integrals. The sign and magnitude of the superex-
change coupling parameter depend on the electronic structure and the geometry of magnetic
ions M and oxygen ions. There are rules developed by Goodenough [2, 3] and Kanamori [4],

Fig. 5: Schematic diagram of exchange interactions.
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so called Goodenough-Kanamori rules [5].

Rule 1: The hopping of electrons between ions with the same d orbitals via oxygen
atom give antiferromagnetic exchange.
(i) pdσ type orbitals with 180◦M -O-M angle gives the largest superexchange case.
(ii) pdπ type orbitals with 180◦ M -O-M angle gives antiferromagnetic coupling.
(iii) pdσ and pdπ case with 90◦M -O-M angle gives strong antiferromagnetic cou-
pling.

Rule 2: Combination of different atomic orbitals gives ferromagnetic exchange.
(iv) pdσ and pdπ with 180◦M -O-M angle, there is strong ferromagnetic coupling.

3.2 Double exchange and antisymmetric exchange
There are ferromagnetic exchange interactions which are induced by the carrier in the metallic
compounds of mixed valency. This exchange interaction called double exchange(DE) [6]. The
magnitude of the exchange coupling constant depends on tij , the transfer integral of carriers
and the carrier concentration. When the localized spins Si and Sj are aligned parallel, tij is
maximum and is expressed by t0ij . When Si and Sj are antiparallel, tij=0. More generally,
when Si shares an angle θij with Sj , the transfer integral for carriers of spin 1/2 is θij ,

tij = t0ij cos(θij/2) (11)

The ferromagnetic coupling between carriers and the local magnetic moment is known as
Hund’s coupling JH as mentioned in section 1.2 and shown in Fig. 5(c). The mechanism of
double exchange is explained by kinetic energy gain, because of the relative spin angle of local
moment. For example the canted antiferromagnetism in La1−xSrxMnO3 (LSMO) is explained
by the double exchange mechanism. We also discuss the canted antiferromagnetism of LSMO
from first principles in the Section 3.2. The energy of the double exchange which contributes to
total energy is given as follows,

Ed = −x
2

∑
ij

t0ij cos(θij/2) (12)

where x is carrier concentration. The angular dependence of the relative local magnetic mo-
ments differ between double exchange (DE) and superexchange (SE) terms.
Besides the double exchange mechanism, there is other exchange interactions which give raise
to canted antiferromagnetic or weak ferromagnetic ground states. The exchange interaction
is known as a antisymmetric exchange, or also as the Dzyaloshinskii-Moriya interaction and
anisotropic exchange [7, 8]. The antisymmetric exchange is derived by virtual processes subject
to the spin-orbit interaction −λl · S and the Coulomb interaction. It is known that the energy
gain due to antisymmetric exchange has following expression,

EDM = Dij · Si × Sj. (13)

The vector D vanishes when the crystal field has an inversion symmetry with respect to the
center between the two magnetic ions.



Electronic structures of transition-metal oxides A5.7

3.3 Exchange strictions

The exchange interaction depends on the atomic structure, bond distance, bond angle etc. Ac-
cordingly, the system may have energy gain if the atomic structure changes. Every mechanism
of exchange has the possibility to contribute to an exchange striction mechanism for magneto-
electric or magnetoelastic properties.
Here we demonstrate a simple one-dimensional case of superexchange striction [9, 10].

Etot = −J12(r)S1 · S2 +
κ

2
(r − r0)2 (14)

dEtot
dr

= −J ′(r)S1 · S2 + κ(r − r0) (15)

with J12(r) ' J12(r0) + J ′(r0)(r − r0) (16)

where J12 > 0 for ferromagnetic coupling and J12 < 0 for antiferromagnetic coupling, κ is the
force constant of the harmonic potential, r the is bond length of magnetic ions. From Eqs. (14),
(15) and (16) we obtain an atomic displacement by exchange striction as follows,

δr ≡ r − r0 =
1

κ
J ′(r0)S1 · S2 (17)

Clearly J ′(r0) > 0 for antiferromagnetic configuration and J ′(r0) < 0 for ferromagnetic con-
figuration. The ground state gives always shorter bond length than excited states. The total
energy for a small atomic displacement δr is given by,

Etot ' −J12(r0)S1 · S2 −
1

2κ
J ′(r0)

2(S1 · S2)
2 (18)

Above discussion can be extended to higher dimensions and the bond length r can be replaced
by a generalized coordinate. The microscopic origin of improper ferroelectricity in collinear
multiferroics may originate from this superexchange striction.

3.4 First-principles calculation of exchange coupling parameters

Using the Green function technique [11, 12], we have calculated parameters of the inter-atomic
exchange interaction following the expression,

Jij =
1

π

∫ εF

dε Im TrL

(
Ĝ↑ijV̂jĜ

↓
jiV̂i

)
(19)

where G↑,↓ij in Eq. (19) is a block of real-space Green function with the site indices ij; Vi =

V ↑i − V
↓
i , Tr runs over the localized orbital indices. The method are implemented in OPENMX

code [13]. To discuss the filling dependence of exchange interactions, we have calculated ex-
change coupling parameters for different Fermi energies as discussed by Belhadji et al. [14].
Figure 8 shows the density of states of LaMnO3 and the filling-dependence of the exchange-
coupling constants based on the rigid band approximation. These results can explain qualita-
tively the magnetic ground state of isostructural orthorhombic LaMO3(M=Ti-Fe).
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4 The case of perovskite manganite

4.1 RMnO3(R: rare earth)

RMnO3 systems exhibit a distorted perovskite structure of GdFe03-type. With changing from
La with a large ionic radius to the small ionic radius of Er, the bond angles of Mn-O-Mn de-
crease and the GdFeO3-type distortions increase. It was reported on ground of experiments [15],
that the magnetic ground state changes from A-type antiferromagnetic (AFM-A) (Fig. 7(a))
to incommensurate magnetic (spiral) state (Fig. 7(d)) to E-type antiferromagnetic (AFM-E)
(Fig. 7(c)).
In this section, to explain theoretically the correlation between the lattice distortions and the
magnetic structure, we investigate the exchange interaction between the nearest-neighbor Mn
sites. We perform first-principles collinear and non-collinear density-functional calculation for
perovskite manganites RMnO3 (R = rare-earth elements) varying R. To explore the mechanism
for the appearance of the non-collinear magnetic structure, we calculate the exchange interac-
tions in the nearest-neighbor and next nearest-neighbor Mn sites.
First, we predicted theoretically the transition of the magnetic ground state by focusing on the
exchange interactions between the nearest-neighbor Mn sites. In RMnO3, the double degener-
acy of the eg state of Mn3+ ion is lifted by the Jahn-Teller effect. The electron preferentially
occupies the 3x2 − r2(3y2 − r2) orbitals. The magnetic ordering is caused by the superex-
change interaction between Mn sites. Zhou and Goodenough proposed that the magnetic phase
transition was induced by change in the nearest-neighbor exchange interaction [16]. According
to their paper, 3x2 − r2(3y2 − r2) and y2 − z2(x2 − z2) orbitals mix with increasing GdFeO3

distortions and the ferromagnetic interaction for eg orbital decrease. There is the competition
between the antiferromagnetic interaction for t2g orbital and ferromagnetic interaction for eg

orbital.
If we include the GdFeO3-type distortion, the occupied and unoccupied wave function com-
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Fig. 7: (Color). The magnetic structure of RMnO3. Black arrows and large gray spheres denote
the spin and Mn atoms, respectively. Small gray and red spheres denote the rare earth and O
atoms, respectively. All magnetic structures in this figure consist of AFM coupling along the
c-axis. (a), (b) and (c) are AFM-A, AFM-G and AFM-E, respectively. (d) describes the spiral
magnetic structure. The rotational angle is the 45◦ in this structure.

posed of eg orbitals in the Mn-1 site and Mn-2 site are expressed as follows,

|ψo
1〉 = cos

θ

2

∣∣3x2
1 − r2

1

〉
+ sin

θ

2

∣∣y2
1 − z2

1

〉
(20)

|ψu
2 〉 = cos

θ

2

∣∣x2
2 − z2

2

〉
− sin

θ

2

∣∣3y2
2 − r2

2

〉
(21)

θ describes the material depended lattice distortions. For the non-distorted lattice θ=0. The
ferromagnetic superexchange for eg orbital is expressed as follows,

JσFM =
∣∣cos2 θ

2

〈
3x2

1 − r2
1 |H|x2

2 − z2
2

〉
− sin2 θ

2

〈
y2

1 − z2
1 |H| 3y2

2 − r2
2

〉 ∣∣2 1

∆JT

=
t2eff
∆JT

. (22)

∆JT indicates the energy gap between 3x2− r2(3y2− r2) and y2− z2(x2− z2) orbitals induced
by the Jahn-Teller effect. The antiferromagnetic superexchange for the eg orbital is expressed
as follows,

JσAF =
1

2

(
t2eff

∆ex + ∆JTδθ0
+

t2eff
∆ex + ∆JT

)
. (23)

∆ex indicates the exchange splitting. Schematic diagrams of the superexchange between the
nearest-neighbors are shown in Fig. 9. The exchange interactions for eg in the nearest-neighbor
is expressed as follows,

Jσ = JσFM − JσAF. (24)

teff in Eq. (22) decreases with increasing distortions, while ∆JT increases, because the Jahn-
Teller effect increases with decreasing ionic radius. As a result, JσFM decreases with increasing
distortions. JσAF becomes stronger with orbital mixing induced by distortions. The effective
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Fig. 8: (Color). Schematic density of states (DOS) to explain the exchange-interaction mech-
anism between nearest-neighbor Mn sites due to eg orbitals including Jahn-Teller distortion.
Blue and red DOS are corresponding to 3x2 − r2(3y2 − r2) and y2 − z2(x2 − z2) states, re-
spectively. (a) and (b) denote ferromagnetic interactions. (c) and (d) denote antiferromagnetic
interactions. (a) and (c) denote the DOS excluding the GdFeO3-type distortion, (b) and (d)
denote the DOS taking the GdFeO3-type distortion into account.

exchange interaction between nearest neighbors for eg and t2g orbitals is known according to
Zhou and Goodenough [16]: According to Eq. (24), J1 decreases with increasing distortions and
the ferromagnetic interaction becomes weak. Since non-collinear magnetism can arize due to
the competition between exchange interactions between ions at different neighbors, and since J1

decreases with increasing distortions, it is predicted that non-collinear magnetism appears by the
spin frustration with the competition between J1 and J2. Thus, to explore the appearance of non-
collinear magnetism, we considered also the next nearest-neighbor interaction J2. When AFM-
A is the magnetic ground state, the contribution of J1 is large. However, because of the fact that
the antiferromagnetic J2 contributes more than J1 with increasing distortions, a competition
between J1 and J2 is induced, and hence long-period noncollinear magnetic structure (spiral
state) can be stabilized. We performed first-principles calculation for RMnO3 (R = La∼Er) and
compared the total-energy differences among different magnetic structures. φ is the Mn-O-
Mn bond angle, which decreases from La to Er. The magnetic structures were restricted to the
AFM-A, AFM-G, AFM-E, and the spiral state (SP) shown in Fig. 7. Although we calculated the
ferromagnetic (FM) and AFM-C state, both magnetic structures were not stable at any range of
φ. Figure 9 shows the total-energy difference per Mn atom for the AFM-A order as a function of
φ. According to the experiment by T. Kimura et al. [15], AFM-A is ground state in the range of
148◦ < φ < 156◦, magnetically incommensurate in the range of 145.5◦ < φ < 148◦, and AFM-
E is ground-state in the range of φ < 145.5◦. Even though we use a La pseudopotential for
all R in RMnO3 with the respective experimental crystal structures, the transition of magnetic
ground state is consistent with experimental results. This means that the lattice structures play a
crucial role in determining the magnetic ground state. AFM-A is stable in the range of 153o <
φ < 155o, Sp-45◦ is stable in the range of 148.5o < φ < 153o, and AFM-E is stable in the
range of φ < 148.5o. According to the experiment by T. Arima et al. [17], it was reported
that a SP state of about 45 degree appears. Our first-principles results are consistent with the
experimental result.
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4.2 La1−xSrxMnO3

We show our first-principles results for the double exchange mechanism in carrier-doped per-
ovskite manganite [18]. Perovskite manganites La1−xSrxMnO3 (LSMO) exhibit novel physical
properties such as colossal magnetoresistance [19] and half-metallicity [20]. These novel phys-
ical properties originate from a variety of magnetic configurations in LSMO such as ferromag-
netic (FM), A-type (inter-plane antiferromagnetic (AFM) and intra-plane FM orders), C-type
(inter-plane FM and intra-plane AFM orders) and G-type (inter-plane AFM and intra-plane
AFM orders) AFM states (see Fig. 10 (a)). These magnetic states are controlled by the carrier
concentrations and lattice distortions in LSMO [21, 22]. An experimental study revealed that
the magnetic phase changes as AFM-A→ FM→ AFM-A→ AFM-C→ AFM-G states with
increasing carrier concentrations in LSMO [23].
The magnetic states around the phase boundary in carrier-doped manganite have been exten-
sively discussed on the basis of the long-range ordered noncollinear spin-canting magnetic
states or the coexistence of AFM and FM states, i.e., phase separation. While the spin-canting
magnetic state was suggested as a possible ground state with competition between magnetic
interactions [6, 24, 25], the FM–AFM phase separation was also suggested as a stable phase
by an experimental study and model calculations [26, 27, 28]. Despite the extensive stud-
ies on the magnetic state around the phase boundary, the issue remains unresolved. Simi-
lar problems are encountered in the interface of artificial superlattices [29, 30, 31] such as
(LaMnO3)m/(SrMnO3)n where inhomogeneous carriers are introduced. To design magnetic
states in the artificial superlattice, a detailed systematic study of the carrier-dependence of mag-
netism in LSMO is of great importance.
We have performed first-principles calculations on La1−xSrxMnO3 (0.0 ≤ x ≤ 1.0) by the
noncollinear density functional theory (DFT) [32, 33]. A generalized gradient approximation
(GGA) [34] is adopted to determine the exchange correlation potential after the diagonalization
of the noncollinear spin-density matrix. The norm-conserving pseudopotential method [35]
with a partial core correction [36] is used and wavefunctions are expanded by a linear com-
bination of multiple pseudo-atomic orbitals (LCPAO) [37, 38]. We neglected the spin-orbit
interactions in all calculations. The calculations were done for a four-formula unit cell, i.e.,
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20 atoms in the unit cell. The hole carrier doping x is performed by a shift in the Fermi level
and a uniform background charge is introduced to balance the charge neutrality of the system.
Noncollinear spin orientations are fixed by using constrained DFT, where the penalty functions
are introduced in the total-energy functional [39, 40]. All the above methods are implemented
in the OPENMX code [13]. We use the atomic coordinates of orthorhombic LaMnO3 (x = 0.0)
and the cubic SrMnO3 (x = 1.0) determined by experimental studies [41, 42]. In the region of
0.0 < x < 1.0, we assumed that the lattice structure is continuously changed from LaMnO3 to
SrMnO3.
We study the stability of the collinear magnetic states in LSMO. The calculated collinear mag-
netic states are the FM, AFM-A, AFM-C and AFM-G states (Fig. 10 (a)). Figure 10 (b) shows
the total energy difference per Mn atom from the stable state as a function of x. When x = 0.0
and 0.5 ≤ x < 0.8, the AFM-A state becomes stable. The FM state becomes stable in the
region of 0.1 ≤ x < 0.5. The AFM-C state becomes stable around x = 0.8. The AFM-G state
becomes stable in the region of 0.8 < x ≤ 1.0. The AFM order becomes favorable with in-
creasing x in the region of 0.5 ≤ x ≤ 1.0. This result is consistent with the previous theoretical
and experimental studies [22, 23].
We extended the calculation of magnetic states for noncollinear configurations, as shown in
Fig. 11 (a). In Fig. 10, x = 0.5 is the carrier concentration at which the total energies of the FM
and AFM-A states are nearly degenerate within 1.0 meV/Mn. Figure 11 (b) indicates the total
energy difference per Mn atom from the stable state as a function of θ. θ is the inter-plane spin-
canting angle, i.e., θ = 0o and θ = 180o correspond to the FM and AFM-A states, respectively.
We found that the spin-canting magnetic state (θ = 105o) is stable for x = 0.5.
We also investigated the carrier dependence of the noncollinearity in the spin-canting magnetic
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state of LSMO (0.3 ≤ x ≤ 0.6). Figure 10 (c) shows the magnetic phase stability as a function
of x and θ. ∆E denotes the total energy difference per Mn atom from the stable state. The
spin-canting magnetic state is stable in the region of 0.3 ≤ x ≤ 0.6. With increasing x, stable θ
continuously increases from the FM (θ = 0o) state and AFM-A (θ = 180o) state.
We discuss the stability of noncollinear magnetism around the magnetic phase boundary. It is
understood that the carrier-induced magnetism in perovskite manganites is governed by the dou-
ble exchange (DE) interaction [5, 6, 43]. The spin-canting magnetic state has been explained by
de Gennes [6] in terms of the DE mechanism. According to his theory, in addition to the AFM
superexchange (SE) interaction, the FM interaction is caused by electron hopping from a half-
filled eg state to an empty eg state with Hund’s coupling. Then, the spin-canting magnetic states
are stable because of the competition between the FM DE and AFM SE interactions in LSMO.
Although de Gennes restricted his discussions to low carrier concentrations, Solovyev and Ter-
akura extended de Gennes’s theory to a wide range of carrier concentrations [24] and predicted
that the spin-canting magnetic state may be stable around the half-doped concentration (x =
0.5). Our first-principles results are consistent with this prediction, and the spin-canting mag-
netic state is stable in the region of 0.3 ≤ x ≤ 0.6. We suggest that a noncollinear magnetic
state may appear in a wide range of hole-doped perovskite manganites.
We discuss the effect of lattice distortions at x = 0.5. We have performed a calculation of the
cubic LSMO with an averaged lattice constant. The total energy difference between the FM
and AFM-A states is 9.8 meV/Mn at x = 0.5. The corresponding energy difference in the
orthorhombic structure is 0.8 meV/Mn. We predict that the spin-canting magnetic state is more
stable in the orthorhombic structure than in the cubic structure. We also discuss why the total
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energy difference is large in the cubic structure. We attribute this difference to a decrease in
the AFM SE interaction at the inter-plane. The average lattice constant in the cubic structure
(3.873 Å) is larger than that in the orthorhombic structure (3.826 Å). The larger lattice constant
leads to a decrease in the overlap between the wavefunctions of the inter-plane Mn atoms, i.e.,
the AFM SE interaction decreases at the inter-plane. Therefore, the lattice distortion may affect
the stability of the noncollinear magnetic phase. We propose that the control of the noncollinear
magnetic states is possible by the superlattice composition.
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[33] J. Kübler, Hock, J. Sticht, and A. R. Williams, J. Phys. F: Metal Phys. 18, 469 (1988).

[34] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[35] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

[36] S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B 26, 1738 (1982).

[37] T. Ozaki, Phys. Rev. B 67, 155108 (2003).

[38] T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).

[39] P. Kurz, F. Förster, L. Nordström, G. Bihlmayer, and S. Blügel, Phys. Rev. B 69, 024415
(2004).

[40] R. Gebauer and S. Baroni, Phys. Rev. B 61, R6459 (2000).



A5.16 Fumiyuki Ishii

[41] J. A. Alonso, M. J. Martinez-Lope, M. T. Casais, and M. T. Fernandez-Diaz, Inorg. Chem.
39, 917 (2000).

[42] T. Negas and R. S. Roth, J. Phys. Chem. Solids 1, 409 (1970), ISSN 0022-4596.

[43] C. Zener, Phys. Rev. 82, 403 (1951).



A 6 Introduction to Multiferroics

Marjana Ležaić

Institut für Festkörperforschung

Forschungszentrum Jülich GmbH
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1 Introduction

Multiferroic materials [1] are in broad sense defined as materials possessing, in a single phase,
two or more ferroic orders:

• Ferromagnetic materials are characterized by a spontaneous magnetization, switchable
hysteretically by an applied magnetic field. A lattice of a magnetic atoms can also be
formed in a way that all moments are aligned, but neighboring moments point in opposite
directions. If the resulting magnetization in such a lattice is zero, the material is antifer-
romagnetic; in the case of a non-vanishing resulting magnetization, we are dealing with
a ferrimagnetic material.

• Ferroelectric materials are characterized by a spontaneous electric polarization, switch-
able hysteretically by an applied electric field. If a material possesses ordered dipole
moments which cancel each other completely within each crystallographic unit cell, it is
said to be antiferroelectric.

• Ferroelastic materials are characterized by a spontaneous deformation, switchable hys-
teretically by an applied stress.

• Ferrotoroidic materials are the newest addition to the family of ferroics. They are char-
acterized by an order parameter which is taken to be the curl of a magnetization or po-
larization. It is anticipated that this order parameter, referred to as toroidization [2], is
hysteretically switchable.

Fig. 1: Symmetry of a dipole (p) and a magnetic (m) moment: spatial inversion reverses the
direction of the dipole, but leaves the magnetic moment unchanged; on the contrary, time inver-
sion switches the magnetic moment and leaves the dipole unchanged.

Ferroic materials have certain symmetry properties which originate in the nature of the order
parameters characterizing them. Let us observe how the spatial and time inversion act on the
local magnetic and dipole moment (Fig. 1). Local magnetic moments originate in spins of
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the electrons and in orbital angular momenta. Their symmetry properties, however, can be
understood from a classical example of the magnetic moment of a current loop: spatial inversion
will map the current vector i to its antipode on the current loop and will change its direction,
leaving so the magnetic moment unchanged; time inversion will reverse the direction of the
current and the magnetic moment will also be reversed. A dipole moment is produced by
spatially separated positive and negative charge. Spatial inversion will obviously reverse its
direction; since the charge separation is static in time, the dipole moment will be invariant
under the time reversal. The symmetry of ferroic materials, summed up in Fig. 2, reflects these
simple observations.

Fig. 2: Symmetry of ferroic materials; note that a multiferroic which is at the same time ferro-
magnetic and ferroelectric cannot have either of the inversion symmetries.

Order parameters which characterize ferroic materials can often exhibit weaker or stronger cou-
pling to different external fields (Fig. 3):
Magnetoelectric coupling describes the change of magnetization (polarization) of a material
when an external electric (magnetic) field is applied.
Piezoelectric coupling is what brings change to polarization (deformation) when an external
stress (electric field) is applied.
Piezomagnetic coupling changes magnetization (deformation) upon application of stress (mag-
netic field).
Both piezomagnetism and piezoelectricity describe changes of order parameters which are lin-
ear functions of applied fields. Changes in deformation which are quadratic functions of applied
magnetic (electric) fields are caused by the phenomenon of magnetostriction (electrostriction).
It should be noted that strong couplings need not be a characteristic of a multiferroic material,
neither are they restricted to multiferroics [3].
Although the broad definition of a multiferroic material involves coexistence of any two (or
more) ferroic orders, the term multiferroic is in practice used when referring to a material which
orders magnetically and ferroelectrically in a single phase (we will also restrict ourselves to this
meaning from now on). Such materials offer new possibilities to information storage applica-
tions, such as the possibility of encoding information in the magnetization and the polarization
state independently, in a single multiferroic element. Experimentally, four-state memory has al-
ready been demonstrated [4] (the current technology uses a 2-state, i.e. 2-bit, memory). Using
materials where magnetization and polarization are coupled, it was suggested that information
could be written by electric and read out by magnetic field. In this way, a couple of important
problems one meets in the developing MRAM (magnetic random access memory) and FeRAM
(ferroelectric random access memory) would be avoided. Namely, a large, spatially localized
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Fig. 3: Coupling of order parameters to applied external fields.

magnetic field would be needed for writing in a MRAM, while the readout action of a FeRAM
destroys the read information. Due to the multifunctional character and easy manipulation of
possible devices based on ferroelectric magnetic materials, it is exactly this class of multifer-
roics that has attracted most of the attention in the recent years.

2 Ferroelectricity and ferromagnetism

While ferromagnetic materials have been known for a long time, the study of the first material
identified as a ferroelectric, the Rochelle salt [5, 6], started only a bit over a century ago. The
observed spontaneous polarization which can be reversed when an external electric field is
applied, led to the term ferroelectricity, by analogy with the known ferromagnetism.
Both classes of materials are characterized by hysteresis loops (Fig. 4a). In case of a ferro- or
ferrimagnet the hysteresis connects the applied magnetic field H and the magnetization M (or
magnetic induction B). In case of a ferroelectric there is a hysteresis between the applied elec-
tric field E and the polarization P (or the dielectric displacement D). The work done in reversing
the magnetization (polarization) is in both cases given by the area enclosed by the hysteresis. A
common feature of ferromagnetic and ferroelectric materials is the formation of domains, areas
with unidirectional magnetization (polarization), which is why the as-prepared samples often
lack a measurable macroscopic ferroic order; this state corresponds to the coordinate origin in
Fig. 4a and to the middle panel of the Fig. 4b. When a sufficiently strong external magnetic
(electric) field is applied, the sample reaches the saturation magnetization Ms (polarization Ps)
(Fig. 4b, right). When the field is reduced to zero after saturation, the magnetization (polariza-
tion) decreases from Ms (Ps) to Mr (Pr), called the residual magnetization (polarization). The
reversed field needed to reduce the magnetization (polarization) to zero is called the coercive
field (Hc, Ec).
Another phenomenological similarity is that both ferromagnets and ferroelectrics have a char-
acteristic Curie temperature TC , beyond which the magnetic moments (electric dipoles) are no
more aligned and the material is in a paramagnetic (paraelectric) phase. In both classes of
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Mr, Pr

H, E

M, P

0

Hc, Ec

-Mr, -Pr

Ms, Ps

-Ms, -Ps

H, E-H, -E

(a)

(b)

Fig. 4: (a) Hysteresis loop in a ferromagnet or a ferroelectric. (b) Domains in a ferromagnet
or in a ferroelectric; middle: disordered, without an external field; left/right: fully ordered, at
the saturation points.

materials, the ferroic order appears because it is energetically favorable, but this is where the
analogy ends. The physical origins of the two phenomena are quite different. While magnetism
originates in the interaction of electronic spins, ferroelectricity involves lattice distortions due
to the interaction between electrons and nuclear displacements (vibronic interactions).

3 Ferromagnetism

Many properties of ferromagnets can be explained by two phenomenological theories, the
Curie-Weiss localized moment theory and the Stoner band theory of ferromagnetism. Both
theories show that localized electrons, such as transition metal d or rare earth f , are the basic
requirement for magnetism to occur. This is an important point and we will come to it later
again, when considering the conditions for simultaneous existence of magnetism and ferroelec-
tricity in multiferroics.

Curie-Weiss theory developed on a postulate of Weiss [7] that there is an internal molecular
field which acts on the magnetic moments in ferromagnetic materials and aligns them. Today
this molecular field is understood to originate in the quantum mechanical exchange energy: due
to the Pauli principle, electrons with parallel spins will stay away from each other, lowering in
this way their energy due to the smaller Coulomb repulsion; exchange, however, does not limit
the proximity of two electrons with antiparallel spins. Above the ordering temperature TC , the
alignment energy of the molecular field becomes smaller than the thermal energy kT and the
directions of the magnetic moments become random, i.e. the material shows a paramagnetic
behavior. The Curie-Weiss law,



A6.6 Marjana Ležaić

Metal Na Al Cr Mn Fe Co Ni Cu Pd Pt

n(EF) [(eV)−1] 0.23 0.21 0.35 0.77 1.54 1.72 2.02 0.14 1.14 0.79

I [eV] 1.82 1.22 0.76 0.82 0.93 0.99 1.01 0.73 0.68 0.63

In(EF) [eV] 0.41 0.25 0.27 0.63 1.43 1.70 2.04 0.11 0.78 0.50

Table 1: Bulk density of states n(EF ) at the Fermi energy (EF ) as calculated from nonmagnetic
calculations, the Stoner parameter I , and the product of both, In(EF ). All results are obtained
with the density functional theory in the local density approximation [9, 10].

χ =
C

T − TC , (1)

where χ is the magnetic susceptibility, C material-specific Curie constant and T temperature,
successfully predicts the experimentally observed fact that at the ordering temperature, T = TC ,
the magnetic susceptibility in many ferro- and antiferromagnetic materials diverges. However
this theory also predicts magnetic moments on each atom to be formed by an integer number
of electrons and this value should remain the same irrespective on whether the material is it a
ferro- or antiferromagnetic state. Neither of the two is observed experimentally. The discrep-
ancy is especially striking in metallic systems, where the Stoner band theory of ferromagnetism
provides a better description.

Stoner theory [8] expresses a competition between the exchange interaction and the kinetic
energy, where the former is described by the exchange integral I , and the latter by the density
of electronic states at the Fermi energy n(EF ), in the non-magnetic state. The exchange energy
will again act as an aligning force on the electronic spins. However, the electrons which have to
stay far away from each other will have an increased kinetic energy, since each of them will be
more localized in space, much like an electron in a potential well the energy of which increases
when the well width is reduced.
The exchange integral I is the measure of energy gained by aligning the electronic spins. The
kinetic energy is higher for broad, dispersive bands, i.e. for a low density of states n(E). The
higher the value of n(EF ), the lower is the kinetic energy of electrons at the Fermi level. Thus,
what we need for magnetism to appear is a large I and a high density of states n(EF ). This
analysis is summed up in the simple Stoner criterion for ferromagnetism:

In(EF ) > 1. (2)

Table 1 lists the exchange integral I , the local DOS at the Fermi energy n(EF ) derived from
nonmagnetic calculations and the product In(EF ) for a number of elemental metals. It shows
that the Stoner condition for ferromagnetism is only fulfilled for Fe, Co, and Ni, precisely those
metals that show itinerant ferromagnetism.

Predicting the magnetic ground state of a magnetic system can be a highly nontrivial problem.
In cases, for example, where competing exchange interactions between neighboring atoms exist,
a multitude of possible spin-structures arises. A relatively simple model often used to describe
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the magnetism of complex spin structures is the classical Heisenberg Hamiltonian,

H = −
∑

i,j
i>j

Jij Mi ·Mj . (3)

The magnetic moments localized on the lattice sites i, j are considered as classical vectors M,
with the assumption that their magnitudes M are constant. The exchange interaction between
the magnetic moments is described by the pair interaction Jij . From the first-principles calcu-
lations one can extract the pair interactions and then e.g. use a Monte Carlo method to obtain,
from the Hamiltonian (3), the magnetization of the material as a function of temperature and
determine the TC . In localized spin systems the Jij can often be restricted to the ferromagnetic
(J1 > 0) or antiferromagnetic (J1 < 0) nearest-neighbor (n.n.) interaction, i.e. Jij = 0 for all i,
j, except for Jn.n. = J1. Also in itinerant magnets J1 often dominates over the rest of the further
distant pairs. However, in this case the electrons that are responsible for the formation of the
magnetic state participate in the formation of the Fermi-surface and hop across the lattice. Thus,
the validity of the Heisenberg model here becomes questionable, although usually reasonable
values of ordering temperatures TC are obtained.

4 Ferroelectricity

In contrast to the structural phase transitions that involve significant diffusion of atoms, the
ferroelectric transition belongs to the displacive phase transitions, which only require small
collective displacements of individual atoms (amounting to fractions of the nearest neighbour
interatomic distances). Displacive transitions occur spontaneously and reversibly at specific
pressure and temperature conditions.

4.1 Displacive phase transitions

A well-studied structure which presents a series of different displacive phase transitions is that
of the perovskite materials with a general chemical formula ABX3 [11, 12, 13]. A and B are
cations of different sizes, while X is an anion which bonds to both. This structure is adopted
by many oxides ABO3 (Fig. 5 left), where the Oxygen atoms form octahedra in the centers of
which the B-site cation is positioned, while the A-site cation occupies the cube corner positions.
For example, SrTiO3 undergoes a displacive phase transition where the TiO6 octahedra make
a small rotation about the [001] axis. Similarly, in CaTiO3 and MgSiO3, the octahedra tilt by
different amounts about all three axes. Another type of displacive phase transition is seen in
PbTiO3 [14, 15], where the Pb2+ and Ti4+ cations move off-center along [001], generating a
ferroelectric phase transition (Fig. 5 right) . This results in a tetragonal unit cell with c > a,
where c is the hight of the unit cell, while a is the lattice parameter in the plane perpendicular
to the shift.
The ferroelectric phase transition in BaTiO3 [16, 17], however, is peculiar: although it appears
to be very similar to PbTiO3, the behavior is qualitatively different: here the Ti4+ ions appear to
occupy a central site in the high temperature cubic phase only on average, whereas in practice
that site is always a potential-energy maximum. The potential-energy minima for the Ti4+

cations are located away from the central site along the eight 〈111〉 directions, so that in the high-
temperature phase the Ti4+ cations are hopping among the eight different sites. The ferroelectric
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centrosymmetric ferroelectric

A

B
O

Fig. 5: Perovskite structure ABO3 in its centrosymmetric phase (left) and in one of possible
ferroelectric phases (right).

phase transition occurs when the Ti4+ cations begin to localize preferentially in the sites in the
e.g. positive c direction. There are still four of these sites, so there are subsequent phase
transitions when the material is cooled, till the Ti4+ cations all occupy the same one site in the
unit cell.
Often, only the first type of phase transitions if tagged displacive, while the phase transitions
like the one taking place in BaTiO3 are referred to as the order-disorder transitions. It is not
always easy to draw a line between the two. We will consider a simple model to investigate the
factors which influence the nature of a transition [18]. The model consists of a 1-dimensional
array of atoms, interacting with each other via harmonic forces, represented in Fig. 6 by the
springs connecting the atoms. We will assume that each atom feels a double-well potential,
without going into details of origin of such a potential shape (we will deal with this question
later). For the moment, let us consider how our system is influenced by the two parameters
which characterize it: one is the depth of the potential well V0, and the other is the strength of
the interaction between neighboring atoms (harmonic force constant) J . If the displacement of
each atom i from the center of the potential well it is in is ui, the local double-well potential can
be expressed as

Vi ≡ V (ui) = −1

2
k2u

2
i +

1

4
k4u

4
i , (4)

where the parameters k2 and k4 are positive constants. The energy of each atom (of mass m)

V0

J

Fig. 6: A one-dimensional model of a crystal which undergoes a displacive phase transition.
Each atom is in a double-well potential of depth V0 and interacts with its neighbors by harmonic
forces represented by springs of stiffness J .
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also includes the kinetic term, Ti ≡ T (u̇i) = mu̇2
i /2 and the harmonic energy term due to the

interactions of the atom i with its neighbor j, Wij = J(ui − uj)2/2, i.e. the Hamiltonian H of
the system is

H =
∑
i

Ti+
∑
i

Vi+
∑
i�=j

Wij =
∑
i

Ti+
∑
i

(
−1

2
k2u

2
i +

1

4
k4u

4
i

)
+

1

2

∑
i�=j

J(ui−uj)2. (5)

Let us now see what the relative strengths of the two last terms in Eq. 5 can tell us about the
system. The minima of the potential 4 are at ui = ±u0, where u2

0 = k2/k4, yielding the depth
of the potential well,

V0 =
1

4
k2u

2
0 (6)

(we drop the subscript i since all the potential wells of the model are the same). The transition
is determined by the strength of the interatomic interaction J . A stronger interaction means a
higher transition temperature (J ∝ kBTC). There are two limiting cases to the model:

V0 � J means that the atoms tend to remain near the minima of the potential wells, due to the
very high potential barrier compared to the interaction between the neighboring atoms. Even at
a temperature well above the transition TC , the atoms will reside in one or the other minimum of
the double potential well (because V0 � kBTC), although the choice of the specific minimum
will be random at first. This is the order-disorder case, an example of which is BaTiO3. The
ordering sequence for this case in presented in Fig. 7 on the left-hand side.

V0 � J is the displacive limit. Here the forces between atoms are much larger than the forces
due to the local potential. Since now V0 � kBTC , the atoms will not be forced to sit in one of
the minima, but will vibrate about the origin instead. On cooling, the influence of the double
potential well will become more important, and atoms start spending more time on one side of
the origin. Because of the strong interatomic interactions, at the TC these displacements will be
in the same direction on all atoms (Fig. 7 right).

order-disorder limit displacive limit

T> TC>

T>TC

T<TC

T <TC<

Fig. 7: Ordering sequence in order-disorder (left) and in the displacive limit (right). The limits
differ in strength of interatomic interactions relative to the depth of potential wells.

One can also think of this case in the so-called soft mode picture [21]: the harmonic prefactor
−k2 in Eq. (4) is also equivalent to the square of the harmonic component of the oscillator
frequency, ω2. Since we assumed that k2 is a positive constant, this means that the frequency
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ω is imaginary. The oscillation mode the frequency of which becomes zero at TC is called the
soft mode and is said to freeze in at the transition temperature. At T < TC the frequency of the
soft mode is imaginary. Phonon spectra of materials can be calculated from the first principles
and the soft modes can be identified. This is a powerful tool in determining the ground-state
structure. A phonon spectrum from Ref. [20] of PbTiO3 is shown in Fig. 8, where the imaginary
values identify the soft modes.

Fig. 8: Phonon spectrum of PbTiO3 (from Ref. [20]). Imaginary values indicate soft modes,
the one with the lowest energy being at the center of the Brillouin zone (Γ-point phonon) and
causing a ferroelectric distortion of the compound.

4.2 Landau theory: proper and improper phase transitions

A theoretical treatment of phase transitions usually involves a construction of the associated
(excess) free energy. The terms involved in the free-energy potential have to be chosen to
fulfil certain restrictions imposed by symmetry. Such a phenomenological model uses ther-
modynamic variables to describe the macroscopic state of the crystal structure, irrespective of
the actual microscopic properties (the actual topology of the crystal structure and the physical
interactions between atoms). We have already met with this approach in Sec. 3.
A phase transition can be characterized by an order parameter, which quantifies the deviation
from the high-symmetry phase (paraphase). Thus, the order parameter is zero by definition
for the paraphase, while, provided appropriate normalization with respect to the ground-state
structure is carried out, the order parameter is 1 at 0 K. In Landau theory, the free energy
is expressed as a low-order Taylor expansion in terms of the order parameter, together with
terms that couple the order parameter with other physical quantities (such as strain). From the
free energy, with coefficients that are usually obtained by fitting experimental data, a lot of
information about the system can be derived.
Assuming that the system under investigation can be described with only one order parameter
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η, the excess Gibbs free energy of a phase transition (also called Landau free energy), GL(η) =
G(η)−G(η = 0) can be expressed as

GL(η) =
1

2
Aη2 +

1

3
bη3 +

1

4
Bη4 + ... (7)

In the first approximation, A = a(T − TC), where T is temperature (TC is the ordering tem-
perature), while all the other parameters are assumed to be constant. We will assume that GL is
symmetric with respect to η reversal and drop the odd terms in the expansion (7). In a simple
case, the expansion can be truncated after the fourth-order term:

GL(η) =
1

2
Aη2 +

1

4
Bη4. (8)

From this expression, various thermodynamic quantities can be obtained, such as the (excess)
entropy S(η) = ∂GL(η)/∂T , the specific heat cp = T∂S/∂T , and the equilibrium order pa-
rameter η(T ) = ±√a(Tc − T )/B. The second derivative of GL(η) with respect to the order
parameter yields the inverse susceptibility of η,

1

χ
= a(T − Tc) + 3Bη2, (9)

corresponding to the curvature of the potential. For T < Tc this can be simplified to χ−1 =
2a(Tc − T ). When T > Tc, at η = 0, χ−1 = a(T − Tc) is obtained. We see that if χ is
the magnetic susceptibility, this result reproduces the Curie-Weiss law (Eq. (1)). In the case of
a ferroelectric material, the order parameter is the electric polarization P. The susceptibility
relates this polarization to an electric field E as P = ε0χE (ε0 is the permittivity of vacuum)
and is hence related to the static dielectric constant ε of the material: ε = 1 + χ. Thus, at the
ferroelectric phase transition the dielectric constant diverges.
A divergence of the susceptibility at the phase transition is what defines the driving (intrinsic)
order parameter. If the system is characterized by other, coupled (or extrinsic) order parameters,
their associated response functions (susceptibilities) usually do not show such a divergence [22].

Order parameter coupling

In systems described by two or more coupled order parameters, each one provides its own
contribution to the Landau free energy and in addition coupling terms arise that may lower or
raise GL. We will see later (Sec. 5) that such a coupling of magnetization and polarization can
be the driving force for the occurrence of multiferroicity. We denote the driving order parameter
η1 and the coupled order parameter η2 and write:

GL(η1, η2) =
1

2
A1η

2
1 +

1

4
B1η

4
1 + ...+

1

2
A2η

2
2 +

1

4
B2η

4
2 + ...+ ληn1

1 η
n2
2 + ..., (10)

where λ contains the energy associated with the coupling of the order parameters. We assume
that only A1 = a(T − TC) contains a temperature dependence and we exclude the odd-order
terms. The exponents n1 and n2 have to be chosen such that they fulfill the symmetry require-
ments. The biquadratic coupling, n1 = n2 = 2, is always allowed since the square of the order
parameter is invariant under the parameter’s inversion, but it will rarely be the leading order
term in coupling energy.
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The bilinear coupling (n1 = n2 = 1) is allowed when both order parameters are associated
with the same irreducible representation of the symmetry group of the paraphase. In this case,
the transition observed in η2 is termed pseudo-proper. The linear-quadratic coupling (n1 = 2,
n2 = 1) occurs when the irreducible representations associated with η1 and η2 differ and the
transition is labelled improper with respect to η2. Finally, a proper transition is the transition
in the driving order parameter η1. For example, the phase transition in PbTiO3 is a proper
ferroelectric and improper ferroelastic at the same time. Further details of different types of
transitions can be found in Ref. [22].

4.3 Vibronic theory of ferroelectricity

We will now slide down to the microscopic scale and look for the origin of the local double-
well potential (Fig. 6) which is needed for a displacive phase transition to occur. The physical
idea behind it can be traced back to the pseudo Jahn-Teller effects [23] and is expressed in the
vibronic theory of ferroelectricity [24]. The basic statement of this theory is that, under certain
conditions, the mixing of the electronic ground state with the near-lying excited ones caused by
the dipole type nuclear displacements lead to an instability (or softening) of the high-symmetry
nuclear configuration with regard to these displacements, resulting in a spontaneous polarization
of the crystal.
We consider a system of electrons and nuclei oscillating about their equilibrium positions. The
oscillation is described by a set of normal coordinates Q. We can write down the full Hamilto-
nian of the system as

H = Hr +HQ + V (r,Q), (11)

where r stands for the set of electronic variables, Hr is the electronic and HQ the nuclear
part, while V (r,Q) describes the electron-nuclear interaction. We now expand the latter in a
series with respect to the normal displacement of nuclei around the high symmetry configuration
Q = 0:

V (r,Q) = V (r, 0) +
∑
α

(
∂V

∂Qα

)
0

Qα +
1

2

∑
αβ

(
∂2V

∂Qα∂Qβ

)
0

QαQβ + ... (12)

One can first solve the adiabatic part of the Hamiltonian (11), HA = Hr + V (r, 0). Let us
assume its solutions are two energy levels, E1 (the ground state) and E2 (the excited state) with
the corresponding wavefunctions ψ1, ψ2. The higher order terms in Eq. (12) we will take into
account as perturbations, obtaining from the perturbation theory the secular equation

∣∣∣∣ Δ1,2 − ε F1,2Q

F ∗
1,2Q −Δ1,2 − ε

∣∣∣∣ = 0, (13)

where 2Δ1,2 = E2 − E1. The linear vibronic coupling constant,

F1,2 =

〈
ψ1

∣∣∣∣
(
∂V

∂Qα

)
0

∣∣∣∣ψ2

〉
(14)

is non-zero only for the coordinate Q of the correct symmetry: the product of symmetry repre-
sentations of ψ1,ψ2 and Q must contain the unit representation.
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Fig. 9: Adiabatic potential sheets (Eq. (15)) for a simple model-system with two energy levels

The roots of Eq. (13) are ε±(Q) = ±
√

Δ2
1,2 + F 2

1,2Q
2. Together with the ionic-core harmonic

interaction term, KQ2/2, where K is the force constant, these roots determine the adiabatic
potential sheets (Fig. 9),

W± =
1

2
KQ2 ±

√
Δ2

1,2 + F 2
1,2Q

2. (15)

We can now easily find the instability condition: the lower sheet W−(Q) will have a maximum
at Qmax = 0 and two minima at Qmin = ±√(F1,2/K)2 − (Δ1,2/F1,2)2 if

K <
F 2

1,2

Δ1,2
. (16)

In the case of many possible excited states, their effect on the instability is additive (this is the
case of a multilevel pseudo Jahn-Teller effect). We label the excited states with i > 1, and write
the instability condition under the influence of the normal displacements Qα for this case as

Kα <
∑
i

F 2
1,i

Δ1,i
. (17)

The symmetry condition (selection rule) for a non-zero vibronic coupling constant mentioned
earlier imposes restrictions on the transitions that can destabilize the system [25]. In addition
to this, for higher excited states Δ1,i is large thus reducing their contribution. Usually one or a
few excited states contribute significantly to the instability of polyatomic systems.

4.4 Typical examples

Let us first consider the case of BaTiO3. An analysis following the steps described on the
simple example of Sec. 4.3 is also valid in this more complex case and yields eight minima
of the adiabatic potential sheet along the 〈111〉 directions of BaTiO3 lattice [25] (recall that Ti
atoms in this compound off-center along the 〈111〉 directions in the low temperature phase).
Using first-principles calculations, we can investigate the change of the electronic structure
of BaTiO3 due to a displacement of Ti. Let us compare the density of states (DOS) of the
centrosymmetric cubic structure (Fig. 10 up) and the one where the lattice is kept cubic, but
the Ti atom is shifted towards one of the surrounding oxygens (in [001] direction) by 2% of the
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lattice parameter (Fig. 10 down) [26]. In order to emphasize the distortion effect, this shift was
here exaggerated with respect to the ones usually observed in ferroelectrics. First, note that the
d states of Ti hybridize with the O 2p states. The electrons are in the ground state occupying
the lowest energy levels, residing in this way mostly on O which thus becomes a negatively
charged ion, O2−; Ti, on the other hand, ends up as a Ti4+ ion, formally in a d0 state. The
lowest unoccupied energy levels have the character of Ti d-states, while the highest occupied
ones have the O p-states character. Even in the cubic undistorted structure, the hybridization
results in a partial occupation of the Ti eg and t2g states: the ionic configuration calculated in
Ref. [26] is Ba1.98+Ti1.71+O1.24−

3 .

Fig. 10: Density of states of O p and Ti d in BaTiO3 (from Ref. [26]) in centrosymmetric cubic
structure (up) and in a polar structure where the Ti atom was shifted along [001] direction by
2% of the lattice parameter (down). The zero of energy is at the Fermi level.

The DOS changes significantly upon distortion (Fig. 10 down). The reduction of the cubic
symmetry leads to a splitting of t2g orbitals into one singlet (dxy, lying in the plane perpendicular
to the shift) and one doublet (dxz and dyz). Similarly, the eg states are split into two singlets,
dz2 and dx2−y2 which is, like the dxy, perpendicular to the shift. The oxygen p states assume
different energies depending on whether the O atom lies in the plane perpendicular to the shift
or on the axis of the shift (on-top). In Fig. 10, the states which are affected by the shift are
shown: the oxygen p, and the Ti dxz (dyz are the same) and dz2 . The states perpendicular to the
shift stay mostly unaffected. Analysis of the DOS reveals two kinds of hybridizations between
O p and Ti d states: a pdσ hybridization mixing pz and dz2 orbitals, and a pdπ hybridization
involving px, py, dxz and dyz states [37].
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It is very important to note that the shift causes a charge transfer from O to Ti and the occupan-
cies of Ti dz2 , dxz and dyz (the orbitals oriented in the direction of the displacement) increase
(this event is also referred to as the charge-transfer vibronic mixing [27]). The fact that all the d
states of Ti are (formally) empty (or, as it is often called, the d0-ness of Ti) means that the charge
transfer can occur for the shifts along every direction. This is consistent with the observation
of several different phases of BaTiO3 with Ti shifts along different directions. Figure 11 visu-
alizes the formation of the new covalent bonds under the lattice distortion at the center of the
Brillouin zone: in the high symmetry configuration the total overlap of the unoccupied Ti 3dπ
and O 2pπ is zero. However, when the Ti atom is displaced the overlap is non-zero, resulting in
the additional covalency and the charge transfer.

+ -

z z

2pπ

2pπ

3dπ

x

+ - + -

+ -

-

-

+

+

-

-

+

+

displacement

Fig. 11: Formation of new covalent bonds under the lattice distortion: when the Ti atom shifts
along the z-axis, overlap of Ti 3dπ and O 2pπ is non-zero and new bonds are formed.

We will turn now to an other perovskite ferroelectric material mentioned earlier, PbTiO3. Its
ground-state structure is tetragonal, with a ferroelectric off-centering of Ti along [001] direction.
The hybridization mechanism leading to the off-centering is the same as that in BaTiO3, but
in the case of PbTiO3 the tetragonal structure is stable, while BaTiO3 undergoes a series of
transitions from the high-temperature cubic to tetragonal to orthorombic to rhombohedral with
the low-temperature polarization along [111]. A comparison of the two sheds some light on the
role of the A-site cation (here Ba2+ or Pb2+).
Figure 12 compares the DOS of the two compounds [28], using the experimental ferroelectric
PbTiO3 structure for both, so that the differences are entirely due to the A-site cation properties.
An obvious difference is that while the Ba 2p states do not hybridize with the valence band, the
Pb 6s show a strong hybridization with the oxygen 2p. This bonding, along with the smaller
ionic radius of Pb2+ compared to that of Ba2+, leads to the larger strain in PbTiO3, stabilizing
the tetragonal lattice. An indirect effect of the Pb-O bonding on the Ti-O hybridization is that
the Ti 3d states are in PbTiO3 lower than in BaTiO3, even for the same Ti displacement.
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Fig. 12: Comparison of densities of states in BaTiO3 (vertical lines) and PbTiO3 (horizontal
lines). Up: total density of states; middle: density of states on the Ti atom; down: density of
states of Pb s in comparison to the Ba p (from Ref. [28]). Both compounds were taken to have
the same, experimental ferroelectric PbTiO3 structure. The zero of energy is at the Fermi level.

It should be noted that in many IV-VI semiconductors a structural distortion can actually be
driven solely by the ns2 valent electrons of the cation [29, 30, 31]. The ns2, usually referred
to as the lone pair, can lose inversion symmetry due to a mixing of the ns2 ground state with
the low-lying excited ns1np1 state. This mixing can only occur if the ionic site does not have
inversion symmetry [32] and so when the energy gain due to the mixing is larger than the inter-
ionic repulsion which opposes the ionic shift, the crystal distorts.

5 Magnetic ferroelectrics

We have now established that for magnetism the partially filled d-states are needed, while
the ferroelectricity requires the “d0-ness”. This chemical incompatibility was pointed out by
Hill [33] in 2000 as the reason for the rarity of both orders in a single material. This argument
initiated a big search for alternative mechanisms which could lead to multiferroicity. Although
several mechanisms have been identified [34, 35], a room temperature multiferroic is still a
challenge: magnetic ordering temperatures are mostly lower than the ferroelectric ones, and
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while the ferroelectricity might still hang on well above the room temperature, for the magnetic
ordering to also occur the samples have to be cooled.
In this section we will see on examples how the mentioned chemical incompatibility is cir-
cumvented and ferroelectricity induced in several magnetic materials. We will start with the
examples where the electronic pairing is the driving force for a structural distortion, similarly
to the cases of BaTiO3 and PbTiO3. The ferroelectrics with this kind of distortion mechanism
are called proper. However, ferroelectricity can also occur as an accidental by-product of a
different kind of ordering. In this case, the resulting ferroelectric is tagged improper.

An example of a proper magnetic ferroelectric is BiMnO3 in perovskite structure, where the
6s2 lone pair on the Bi ion plays a role in stabilizing the ferroelectric order [39, 40]. Bi cations
move in the direction opposite to oxygen-manganese cage, the shift being induced by the Bi-O
covalency. It should be noted that, surprisingly, this compound is also a ferromagnet, although
an antiferromagnetic state would be expected due to the superexchange interaction. [43] One
possible explanation [26] is that the electronegativity of Bi enhances Bi-O hybridization and
in turn reduces the amount of Mn-O hybridization. The combination of structural distortion
and reduced Mn 3d-O 2p overlap reduces the strength of the antiferromagnetic superexchange
interaction, making the observed ferromagnetic coupling more favorable. Although several
experiments seem to confirm the ferroelectricity of BiMnO3 [42], recent first-principles calcu-
lations [41] suggest that the bulk compound should actually be antiferroelectric. The experi-
mentally observed ferroelectricity could be a consequence of strain or defects. This question is
still open.
An other case of (proper) ferroelectricity driven by the 6s2 lone pair on Bi is BiFeO3 [44, 45],
with the polarization oriented along [111] direction. The magnetic moments on Fe atoms are
coupled ferromagnetically in the (111) planes and antiferromagnetically between the adjacent
planes. On the top of this antiferromagnetic magnetic structure, a long-wavelength spin-spiral
is superimposed.
Because magnetism and ferroelectricity in these two compounds are due to different ions (re-
sponsible for ferroelectricity is Bi, while magnetism is introduced by the transition-metal ions),
the coupling between the two order parameters is weak, limiting their possible technological
applications. For this reason, the improper ferroelectrics are getting into focus of current re-
search in multiferroics: it is understandable that if an ordering is a consequence of an other (the
order parameter is extrinsic), it should be easily manipulated by the field corresponding to the
driving order parameter.

There are several known mechanisms of inducing ferroelectricity as a secondary order [34].
One way is charge ordering: in many metals with strong electronic correlations charge carri-
ers become localized at low temperatures, forming periodic superstructures, and the material
undergoes a metal-insulator transition. If the charges order in a non-symmetric fashion, they
induce electric polarization. An example of ferroelectricity induced by charge ordering is ferri-
magnetic LuFe2O4, which has a bilayered structure with a triangular lattice of Fe ions in each
layer. Below ∼ 350 K, the charge ordering creates alternating layers with Fe2+:Fe3+ ratios of
2:1 and 1:2 and a net polarization is induced (Fig.13) [34, 46, 47].
Another kind of improper ferroelectricity is geometric ferroelectricity, such as the one in hexag-
onal YMnO3. This compound is experimentally established to be ferroelectric, with the hexag-
onal perovskite structure[36]. The magnetic ordering is A-type AFM, with noncollinear Mn
spins oriented in a triangular arrangement. Due to the changes in the phonon spectrum at the
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Fig. 13: Ferroelectricity induced by charge ordering in LuFe2O4 (from Ref. [34]): charge is
transferred from the upper to the lower layer resulting in electric polarization.

antiferromagnetic transition [38], a coupling of ferroelectric and magnetic ordering occurs. Fer-
roelectricity in this case appears as a product of the nonlinear coupling to nonpolar lattice dis-
tortions, such as the buckling of Y-O planes and the tilts of Mn-O bipyramids [48].

Improper ferroelectricity which is most interesting from the technological point of view is the
kind induced by magnetic ordering, enabling manipulation of electric polarization by an ex-
ternal magnetic field. This has been proven to be experimentally possible: the small electric
polarization of perovskite TbMnO3 was successfully rotated by 90◦ using a magnetic field [49].
The onset of ferroelectricity in TbMnO3 correlates with the transition to a spiral spin-density
wave. In order to understand the underlying mechanism, let us consider the case of cubic
symmetry and the part of the thermodynamic potential due to magneto-electric coupling (P is
polarization and M magnetization),

Φme(P,M) = λP · [M(∇ ·M)− (M · ∇)M + ...] (18)

(the omitted terms do not contribute to the uniform polarization) [50]. We assume that there
is no ferroelectric instability in the absence of magnetism and thus we keep only the quadratic
part in the electric part of the thermodynamic potential, Φe = P 2/(2χ), χ being the electric
susceptibility in the absence of magnetic order. From the variation of Φe + Φme with respect to
P,

P = λχ[M(∇ ·M)− (M · ∇)M]. (19)

Let us assume now that a spin-density wave with a wave vector q is present:

M = e1M1 cos(q · r) + e2M2 sin(q · r) + e3M3, (20)

where e1,2,3 are orthogonal unit vectors. From Eq. (19) and (20), the space-average polarization
is found to be independent of M3 and orthogonal both to e3 and q,

P = λχM1M2[e3 × q]. (21)
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Note that, if only M1 or only M2 is non-zero, Eq. (20) defines a sinusoidal spin-density wave.
For this case from Eq. (21) follows that no polarization is induced. The resulting polarization
is non-zero only for a helicoidal spin-spiral, i.e. when M1, M2 
= 0 (Fig. 14). Here one should
pay attention to the terminology: many authors refer to a spin-spiral as helical only in the case
when the wavevector q is perpendicular to the plane of spiraling (defined by the two vectors, e1

and e2), i.e. parallel to e3. From Eq. (21) one can see that this spiral induces no polarization.
When the wavevector lies in the spiraling plane, a polarization is induced and the spin-spiral is
labeled cycloidal.

P=0

q

(a)

P

q

(b)

e
3

Fig. 14: A sinusoidal (a) and a cycloidal (b) spiral defined by Eq. (20) According to Eq. (21),
only the cycloidal spiral induces polarization [50].

It has been experimentally observed [49] that in TbMnO3 a transition to a phase with a sinu-
soidal spin-density wave at T = 41 K does not yield polarization. Ferroelectricity is induced
only at the transition from the phase with sinusoidal to the one with helical spin-density wave
at T = 28 K. This observation is consistent with the result above. Mostovoy [50] also showed
that, due to the same mechanism, electric polarization can also be induced in domain walls and
magnetic vortices.
Finally, it should also be noted that a non-collinear spin arrangement is not a necessary condition
for magnetically induced improper ferroelectricity. Recently, Picozzi et al. have demonstrated
that certain collinear antiferromagnetic configurations of spins in orthorombic HoMnO3 and
TbMnO3 also induce electric polarization [51, 52].
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1 Anholonomy in geometry

Before introducing the Berry phase, we review the elegant mathematical framework behind it.
It helps explaining why the Berry phase is often also called the geometric phase.

1.1 Parallel transport and anholonomy angle

Consider a two-dimensional curved surface embedded in a three dimensional Euclidean space.
At each point x = (x1, x2) on the surface, there is a vector space Tx formed by the tangent
vectors at that point. For an ant living on the surface, is it possible to judge if two vectors at
different locations (1 and 2) of the surface are nearly parallel or far from it?
One possible way to calibrate the difference between two vectors at different locations is as
follows: Starting from point 1, the ant can carry the vector around in such a way that it makes
a fixed relative angle with the tangent vector along a path between 1 and 2 (see Fig. 1a). Such
a vector is said to be parallel transported. One can then compare the vector already at point 2
with the parallel transported vector for difference.
Notice that, if we follow this rule, then “being parallel” is a path-dependent concept. That is,
one cannot have a global definition of “being parallel” on the curved surface. The other way to
say the same thing is that, if you parallel transport a vector along a closed loop on the surface,
then the final vector vf is generically different from the initial vector vi (see Fig. 1b).
The angle between these two vectors is called the anholonomy angle (or defect angle). Such
an angle is an indication of how curved the surface is. One can use it to define the intrinsic
curvature of the surface. For example, for a sphere with radius R, the defect angle α for a
vector transported around a spherical triangle is equal to the solid angle Ω subtended by this
triangle,

α = Ω =
A

R2
, (1)

where A is the area enclosed by the triangle.
One can define the curvature at point x as the ratio between α and A for an infinitesimally
closed loop around x. According to this definition, the sphere has a constant curvature 1/R2

everywhere on the surface.
You can apply the same definition to find out the intrinsic curvature of a cylinder. The result
would be zero. That is, the cylinder has no intrinsic curvature. That is why we can cut it open
and lay it down on top of a desk easily without stretching.

1.2 Moving frame and curvature

In practice, apart from a few simple curved surfaces, it is not easy to determine the curvature
without using algebraic tools. At this point, it helps introducing the method of the moving
frame. We follow a very nice article by M. Berry (see Berry’s introductory article in Ref. [1])
and apply this method to calculate the curvature.
Instead of moving a vector, one now moves an orthonormal frame (a triad) along a path C
between two points. At the starting point, the triad is (r̂, ê1, ê2), where r̂ is the unit vector along
the normal direction and (ê1, ê2) is an orthonormal basis of the tangent vector space Tx.
As a rule of parallel transport, we require that, when moving along C, the triad should not twist
around r̂. That is, if ω is the angular velocity of the triad, then

ω · r̂ = 0. (2)
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Fig. 1: (a) Parallel transport of a vector from 1 to 2. It offers a way to compare v1 and v2 on a
curved surface. (b) A vector is parallel transported around a closed path. When the surface is
curved, the final vector would point to a different direction from the initial vector. The angle of
difference α is called the anholonomy angle.

Using the identity ˙̂e1 = ω × ê1 it follows from this requirement that ˙̂e1 · ê2 = 0:

ω · r̂ = ω · ê1 × ê2
= ω × ê1 · ê2 = ˙̂e1 · ê2 = 0. (3)

Likewise also the relation ˙̂e2 · ê1 = 0 is shown easily.
To make further analogy with the complex quantum phase in the next section, let us introduce
the following complex vector,

ψ =
1√
2

(ê1 + iê2) . (4)

Then the parallel transport condition can be rephrased as,

Im
(
ψ∗ · ψ̇

)
= 0, or iψ∗ · ψ̇ = 0. (5)

Notice that the real part of ψ∗ · ψ̇ is always zero since ê1 · ê1 and ê2 · ê2 are time independent.
Instead of the moving triad, we could also erect a fixed triad, (r̂, û, v̂), at each point of the
surface and introduce

n =
1√
2

(û+ iv̂) . (6)

Assuming these two triads differ by an angle α(x) (around the r̂-axis), then ψ(x) = n(x)e−iα(x).
It follows that

ψ∗ · dψ = n∗ · dn− idα. (7)

Because of the parallel transport condition in Eq. (5), one has dα = −in∗ ·dn. Finally, the twist
angle accumulated by the moving triad after completing a closed loop C is,

α(C) = −i
∮
C

n∗ · dn
dx
dx, (8)

where we have changed the variable of integration to the coordinate on the surface. Therefore,
the defect angle can be calculated conveniently using the fixed-triad basis.
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With the help of the Stokes theorem, one can transform the line integral to a surface integral,

α(C) =

∫
S

1

i

(
dn∗

dx1

· dn
dx2

− dn∗

dx2

· dn
dx1

)
dx1dx2, (9)

where S is the area enclosed by C. In the case of the sphere, one can choose (x1, x2) to be
the spherical coordinates (θ, φ), and choose û and v̂ to be the unit vectors θ̂ and φ̂ in spherical
coordinates. That is, û = (cos θ cosφ, cos θ sin φ,− sin θ) and v̂ = (− sin φ, cosφ, 0). It is not
difficult to show that the integrand in Eq. (9) is sin θdθdφ. Therefore, α(C) is indeed the solid
angle of the area S.
The integral in Eq. (9) over the whole sphere (the total curvature) is equal to its solid angle,
4π. In fact, any closed surface that has the same topology as a sphere would have the same
total curvature 2π × 2. The value of 2 (Euler characteristic) can thus be regarded as a number
characterizing the topology of sphere-like surfaces. In general, for a closed surface with g holes,
the Euler characteristic is 2− 2g. For example, the total curvature of a donut (g = 1) is 0. This
is the beautiful Gauss-Bonnet theorem in differential geometry.

2 Anholonomy in quantum mechanics

Similar to the parallel transported vector on a curved surface, the phase of a quantum state (not
including the dynamical phase) may not return to its original value after a cyclic evolution in
parameter space. This fact was first exposed clearly by Michael Berry [3] in his 1984 paper. In
this section, we introduce the basic concept of the Berry phase, in later sections we will move
on to examples of the Berry phase in condensed matter.

2.1 Introducing the Berry phase

Let us start from a time-independent system described by a HamiltonianH(r,p). We denote the
eigenstates by |m〉 and the eigenvalues by εm. For simplicity, the energy levels are assumed to be
non-degenerate. An initial state |ψ0〉 =

∑
am|m〉 evolves to a state |ψt〉 =

∑
ame

−i/�εmt|m〉
at time t. The probability of finding a particle in a particular level remains unchanged, even
though each level acquires a different dynamical phase e−i/�εmt. In particular, if one starts with
an eigenstate of the Hamiltonian, |ψ0〉 = |n〉, with am = δm,n, then the probability amplitude
does not “leak” to other states.
Let us now consider a slightly more complicated system with two sets of dynamical variables
H(r,p;R,P). The characteristic time scale of the upper-case set is assumed to be much longer
than that of the lower-case set. For example, the system can be a diatomic molecule H+

2 . The
electron and nuclei positions are represented by r and R respectively. Because of its larger
mass, the nuclei move more slowly (roughly by a thousand times) compared to the electron. In
the spirit of the Born-Oppenheimer approximation, one can first treat R as a time-dependent
parameter, instead of a dynamical variable, and study the system at each “snapshot” of the
evolution. The kinetic part of the slow variable is ignored for now.
Since the characteristic frequency of the nuclei is much smaller than the electron frequency, an
electron initially in an electronic state |n〉 remains essentially in that state after time t,

|ψt〉 = eiγn(R)e−i/�
R t
0 dtεn(Rt)|n;R〉. (10)
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Table 1: Anholonomies in geometry and quantum state

geometry quantum state
fixed basis n(x) |n;R〉

moving basis ψ(x) |ψ;R〉
parallel-transport condition iψ∗ · ψ̇ = 0 i〈ψ|ψ̇〉 = 0

anholonomy anholonomy angle Berry phase
classification of topology Euler characteristic Chern number

Apart from the dynamical phase, one is allowed to add an extra phase eiγn(R) for each snapshot
state. Such a phase is usually removable by readjusting the phase of the basis |n;R〉 [2]. In
1984, almost six decades after the birth of quantum mechanics, Berry [3] pointed out that this
phase, like the vector in the previous section, may not return to its original value after a cyclic
evolution. Therefore, it is not always removable.
To determine this phase, one substitutes Eq. (10) into the time-dependent Schrödinger equation.
It is not difficult to get an equation for γn(t),

γ̇n(t) = i〈n|ṅ〉. (11)

Therefore, after a cyclic evolution, one has

γn(C) = i

∮
C

〈n| ∂n
∂R
〉 · dR =

∮
C

A · dR, (12)

where C is a closed path in the R-space. The integrand A(R) ≡ i〈n| ∂n
∂R
〉 is often called the

Berry connection.
If the parameter space is two dimensional, then one can use Stokes’ theorem to transform the
line integral to a surface integral,

γn(C) = i

∫
S

〈 ∂n
∂R
| × | ∂n

∂R
〉 · d2R =

∫
S

F · d2R. (13)

The integrand F(R) ≡ ∇R × A(R) is usually called the Berry curvature. For parameter
spaces with higher dimensions, such a transformation can still be done using the language of
the differential form.
By now, the analogy between Eqs. (8,9) and Eqs. (12,13) should be clear. Notice that |n〉 is a
normalized basis with 〈n|n〉 = 1. Therefore, 〈n|ṅ〉 should be purely imaginary and i〈n|ṅ〉 is a
real number. The basis state |n〉 plays the role of the fixed triad n in the previous subsection.
Both are single-valued. On the other hand, the parallel transported state |ψ〉 and the moving
triad ψ are not single-valued.
A point-by-point re-assignment of the phase of the basis state, |n;R〉′ = eig(R)|n;R〉, changes
the Berry connection,

A′ = A− ∂g

∂R
. (14)

However, the Berry curvature F and the Berry phase are not changed. This is similar to the
gauge transformation in electromagnetism: one can choose different gauges for the potentials,
but the fields are not changed. Such an analogy will be explored further in the next subsection.
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Fig. 2: A long solenoid hinged at the origin is slowly rotating around the z-axis. At each instant,
the spin at the origin aligns with the uniform magnetic field inside the solenoid.

A short note: It is possible to rephrase the anholonomy of the quantum state using the mathemat-
ical theory of fiber bundles, which deals with geometrical spaces that can locally be decomposed
into a product space (the “fiber” space times the “base” space), but globally show nontrivial
topology. The Möbius band is the simplest example of such a geometric object: Locally it is a
product of two one-dimensional spaces but globally it is not (because of the twisting). In our
case, the fiber is the space of the quantum phase γ(R) and the base is the space of R. The con-
cept of the parallel transport, the connection, and the curvature all can be rephrased rigorously
in the language of fiber bundles [4]. Furthermore, there is also a topological number (similar to
the Euler characteristic) for the fiber bundle, which is called the Chern number.
The analogy between geometric anholonomy and quantum anholonomy is summarized in Ta-
ble 1.

2.2 A rotating solenoid

To illustrate the concept of the Berry phase, we study a simple system with both slow and fast
degrees of freedom. Following M. Stone [5], we consider a rotating (long) solenoid with an
electron spin at its center. The solenoid is tilted with a fixed angle θ and is slowly gyrating
around the z-axis (see Fig. 2). Therefore, the electron spin feels a uniform magnetic field that
changes direction gradually. This example is a slight generalization of the spin-in-magnetic-
field example given by Berry in his 1984 paper. The Hamiltonian of this spin-in-solenoid system
is,

H =
L2

2I
+ μBσ ·B, (15)

where L and I are the angular momentum and the moment of inertia of the solenoid, respec-
tively, and the Bohr magneton is μB = e�/2mc.
The magnetic field B along the direction of the solenoid is our time-dependent parameter R. In
the quasi-static limit, the rotation energy of the solenoid is neglected. When the solenoid rotates
to the angle (θ, φ), the spin eigenstates are

|+; B̂〉 =

(
cos θ

2

eiφ sin θ
2

)
, |−; B̂〉 =

( −e−iφ sin θ
2

cos θ
2

)
. (16)
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Table 2: Analogy between electromagnetism and quantum anholonomy

Electromagnetism quantum anholonomy
vector potential A(r) Berry connection A(R)

magnetic field B(r) Berry curvature F(R)

magnetic monopole point degeneracy
magnetic flux Φ(C) Berry phase γ(C)

These states can be obtained, for example, from the spin-up (-down) states |±〉 by a rotation
e−iσ·θ̂(θ/2), in which the rotation axis θ̂ = (− sinφ, cosφ, 0) is perpendicular to both ẑ and B̂.
Using the definitions of the Berry connection and the Berry curvature in Eqs. (12) and (13), one
obtains

A± = ∓1

2

1− cos θ

B sin θ
φ̂ (17)

F± = ∓1

2

B̂

B2
. (18)

They have the same mathematical structure as the vector potential and the magnetic field of a
magnetic monopole. The location of the “monopole” is at the origin of the parameter space,
where a point degeneracy occurs. The strength of the monopole (1/2) equals the value of the
spin (this is true for larger spins also). That is why the Berry connection and the Berry curvature
are sometimes called the Berry potential and the Berry field. In this picture, the Berry phase is
equal to the flux of the Berry field passing through a loop C in parameter space. It is easy to
see that,

γ±(C) = ∓1

2
Ω(C), (19)

where Ω(C) is the solid angle subtended by loop C with respect to the origin. The similarity
between the theory of Berry phase and electromagnetism is summarized in Table 2.
The Berry phase of the fast motion is only half of the story. When the quantum state of the fast
variable acquires a Berry phase, there will be an interesting “back action” to the slow motion.
For example, for the rotating solenoid, the wave function of the whole system can be expanded
as

|Ψ〉 =
∑
n=±

ψn(R)|n;R〉, (20)

in which ψn(R) describes the slow quantum state. From the Schrödinger equation, H|Ψ〉 =
E|Ψ〉, one can show that,

[
�

2

2I sin2 θ

(
1

i

d

dφ
−An

)2

+ εn

]
ψn = Eψn, (21)

where εn is the eigen-energy for the fast degree of freedom, and An ≡ i〈n;R| d
dφ
|n;R〉. The

off-diagonal coupling between |+〉 and |−〉 has been ignored. Therefore, the effective Hamil-
tonian for the slow variable acquires a Berry potential An(R). Such a potential could shift
the spectrum and results in a force (proportional to the Berry curvature) upon the slow motion,
much like the effect of vector potential A(r) and magnetic field on a charged particle.
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Fig. 3: (a) A metal ring in a non-uniform magnetic field. The spin of the electron that is circling
the ring would align with the magnetic field and trace out a solid angle in its own reference
frame. (b) A ferromagnetic ring in a non-uniform magnetic field. The spins on the ring are bent
outward because of the magnetic field.

3 Berry phase and spin systems

A natural place to find the Berry phase is in spin systems. Numerous researches related to this
subject can be found in the literature [6]. Here we only mention two examples, one is related
to the persistent spin current in a mesoscopic ring, the other relates to quantum tunneling in a
magnetic cluster.

3.1 Persistent spin current

We know that an electron moving in a periodic system feels no resistance. The electric resis-
tance is a result of incoherent scatterings from impurities and phonons. If one fabricates a clean
one-dimensional wire, wraps it around to form a ring, and lowers the temperature to reduce the
phonon scattering, then the electron inside feels like living in a periodic lattice without electric
resistance.
For such a design to work, two ingredients are essential: First, the electron has to remain phase
coherent (at least partially) after one revolution. Therefore, a mesoscopic ring at very low tem-
perature is usually required. Second, to have a traveling wave, there has to be a phase advance
(or lag) after one revolution. This can be achieved by threading a magnetic flux φ through the
ring, so that the electron acquires an Aharonov-Bohm (AB) phase (e/�)φ = 2π(φ/φ0) after
one cycle, where φ0 is the flux quantum h/e. When this does happen, it is possible to observe
the resulting persistent charge current in the mesoscopic ring.
Soon after this fascinating phenomenon was observed [7], it was proposed that, in addition to
the AB phase, a spinful electron can (with proper design) acquire a Berry phase after one cycle,
and this can result in a persistent spin current [8]. The design is as follows: Instead of a uniform
magnetic field, a textured magnetic field is used, so that during one revolution, the electron spin
follows the direction of the field and traces out a non-zero solid angle Ω (see Fig. 3a). According
to Eq. (19), this gives rise to a spin-dependent Berry phase γσ(C) = −(σ/2)Ω, where σ = ±.
After combining this with the (spin-independent) AB phase, spin-up and spin-down electrons
have different phase shifts, generating different amounts of persistent particle current I+, I−.
Therefore, a spin current defined as Is = (�/2)(I+ − I−) is not zero.
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Fig. 4: Persistent spin current as a function of the solid angle. At non-zero temperature, the
sharp edges of the sawtooth become smooth.

To illustrate the physics just mentioned, consider a ring that allows only angular motion. Before
applying the magnetic flux, the electron with wave vector k picks up a phase kL from circling
the ring, where L = 2πR and R is the radius of the ring. Because of the periodic boundary
condition, one has kL = 2πn (n ∈ Z). After adding the AB phase and the Berry phase, it
becomes kL = 2πn + 2π(φ/φ0) − σ(Ω/2). Therefore, the energy of an electron in the n-th
mode is

εnσ =
�

2k2

2m
+ μBBσ =

�
2

2mR2

(
n+

φ

φ0

− σφΩ

φ0

)2

+ μBBσ, (22)

where φΩ/φ0 ≡ Ω/4π.
The spin current can be calculated from

Is =
1

L

∑
n,σ

(
�

2
σ

)
∂εnσ
�∂k

Pnσ, (23)

where Pnσ = exp(−εnσ/kBT )/Z is the probability of the electron in the (n, σ)-state, and Z =∑
n,σ e

−εnσ/kBT . For a particular k and φ, the current can also be written as

Is = −
∑
n,σ

∂εnσ
∂Ω

Pnσ. (24)

To get a rough understanding, we consider the simplest case, where the n = 1 mode is populated
with equal numbers of spin-up and -down electrons (if the Zeeman splitting is negligible). The
higher modes are all empty at low enough temperature. In this case, the spin current Is =
−(�2/4πmR2)(Ω/4π) is proportional to the solid angle of the textured magnetic field (see
Fig. 4). At higher temperature, the sawtooth curve will become smooth.
The mesoscopic ring considered above is a metal ring with moving electrons that carry the spins
with them. A different type of spin current has also been proposed in a ferromagnetic ring with
no moving charges [9]. Again the ring is subject to a textured magnetic field, such that when
one moves round the ring, one sees a changing spin vector that traces out a solid angle Ω (see
Fig. 3b). As a result, the spin wave picks up a Berry phase when traveling around the ring,
resulting in a persistent spin current. So far neither type of persistent spin current has been
observed experimentally.
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3.2 Magnetic cluster

Berry phase plays a dramatic role in the quantum tunneling of nano-sized magnetic clusters.
The tunneling between two degenerate spin states of the cluster depends on whether the total
spin of the particle is an integer or a half-integer. In the latter case, the tunneling is completely
suppressed because different tunneling paths interfere destructively as a result of the Berry
phase [10].
Consider a single-domain ferromagnetic particle without itinerant spin. Its total spin J can be
of order ten or larger, as long as tunneling is still possible. Assume that the particle lives in an
anisotropic environment with the Hamiltonian,

H = −k1
J2
z

J2
+ k2

(
J2
x

J2
− J2

y

J2

)
, (k1 > k2). (25)

That is, the easy axis is along the z-axis and the easy plane is the yz-plane. The cluster is in
the ground state when the spin points to the north pole or to the south pole of the Bloch sphere.
Even though these two degenerate states are separated by a barrier, the particle can switch its
direction of spin via quantum tunneling.
To study the Berry phase effect on the tunneling probability, the best tool is the method of path
integrals. In the following, we give a brief sketch of its formulation.
The fully polarized spin state |n̂, J〉 along a direction n̂ with spherical angles (θ, φ) can be
written as,

|n̂, J〉 = |n̂,+〉 ⊗ |n̂,+〉 · · · ⊗ |n̂,+〉

=
2J∏
l=1

e−i
θ
2
σl·θ̂|ẑ,+〉l, (26)

where |n̂,+〉 is the spin-1/2 “up” state along the n̂-axis and θ̂ is a unit vector along the ẑ× n̂ di-
rection. Such a so-called spin coherent state can be used to “resolve” the identity operator [11],

I =
2J + 1

4π

∫
dΩ|n̂〉〈n̂|, (27)

where |n̂〉 is an abbreviation of |n̂, J〉.
In order to calculate the transition probability amplitude 〈n̂f | exp[−(i/�)HT ]|n̂i〉, one first di-
vides the time evolution into steps, exp(−i/�HT ) = [exp(−i/�Hdt)]N , dt = T/N , then insert
the resolution of identity in Eq. (27) between neighboring steps. The transition amplitude then
becomes a product of factors with the following form,

〈n̂(t+ dt)|e− i
�
Hdt|n̂(t)〉 
 〈n̂(t+ dt)|n̂(t)〉 − i

�
〈n̂(t+ dt)|H(J)|n̂(t)〉dt


 1− 〈n̂| ˙̂n〉dt− i

�
H(Jn̂)dt. (28)

In the final step, we have replaced the quantum Hamiltonian by a classical Hamiltonian. That
is, 〈H(J)〉 = H(〈J〉). This holds exactly if the Hamiltonian is linear in J, but is only an
approximation in general. The correction due to the non-commutativity of the spin operator is
roughly of the fraction 1/J and can be ignored for large spins.
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Fig. 5: According to the Hamiltonian in Eq. (25), the z-axis and the x-axis are the easy axis and
the hard axis, respectively. There are two (degenerate) ground states at the north pole and the
south pole of the Bloch sphere. Tunneling from one ground state to the other follows the dashed
line on the y − z plane. Applying a magnetic field along the x-direction moves the locations of
the ground states and shrinks the tunneling path to a smaller loop.

Finally, by summing over paths in the n̂-space, one has

〈n̂f |e− i
�
HT |n̂i〉 =

∫
[Dn̂] exp

{
i

�

∫ tf

ti

[
i�〈n̂| ˙̂n〉 −H(Jn̂)

]
dt

}
. (29)

Notice that the first integral in the exponent generates a Berry phase for a path (see Eq. (12)). In
the semiclassical regime, the functional integral in Eq. (29) is dominated by the classical path
n̂c with least action, which is determined from the dynamical equation of n̂ (see below). During
tunneling, the paths under the barrier are classically inaccessible and n̂ becomes an imaginary
vector. It is customary to sacrifice the reality of time t to keep n̂ real. The good news is that the
final result does not depend on which imaginary world you choose to live in.
Define τ = it, then the transition amplitude dominated by the classical action is,

〈n̂f |e− i
�
HT |n̂i〉 ∝ ei

R f
i

A·dn̂ce−1/�
R f
i
H(Jn̂c)dτ , (30)

where A = i〈n̂|∇n̂〉 is the Berry potential. The integral of the Berry potential is gauge depen-
dent if the path is open. It is well defined for a closed loop, such as the classical path on the
yz-plane in Fig. 5. The Berry phase for such a loop is 2πJ since it encloses an area with solid
angle 2π (Cf. Eq. (19)). This is also the phase difference between the two classical paths from
the north pole to the south pole. Therefore,

〈−ẑ|e− i
�
HT |ẑ〉 ∝ cos(πJ)e−1/�

R f
i
H(Jn̂c)dτ . (31)

When J is a half integer, the transition process is completely suppressed because of the Berry
phase. The conclusion remains valid if one considers classical paths with higher winding num-
bers [10].
As a reference, we also write down the equation of motion for n̂c that is determined from the
classical action in Eq. (30),

J
dn̂

dt
= n̂× ∂H(Jn̂)

∂n̂
. (32)
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Fig. 6: An one-dimensional solid with infinite length. Different choices of the unit cell give
different electric polarization vectors ((a), (b)). On the other hand, the change of polarization
does not depend on the choice of the unit cell (c).

This is the Bloch equation for spin precession, in which ∂H/∂n̂ plays the role of an effective
magnetic field.
One comment is in order: One can apply a magnetic field along the x-axis that shifts the energy
minima along that direction and shrinks the classical loop (see Fig. 5). In an increasingly
stronger field, the size of the loop C eventually would shrink to zero. That is, the Berry phase
γC would decrease from the maximum value of 2πJ to zero. During the process, one expects
to encounter the no-tunneling situation several times whenever γC/2π hits a half-integer. Such
a dramatic Berry phase effect has been observed [12].

4 Berry phase and Bloch state

In the second half of this article, we focus on the Berry phase in periodic solids. It has been play-
ing an ever more important role in recent years due to several discoveries and “re-discoveries”,
in which the Berry phase either plays a crucial role or offers a fresh perspective.

4.1 Electric polarization

It may come as a surprise to some people that the electric polarization P of an infinite periodic
solid (or a solid with periodic boundary conditions) is generically not well defined. The reason
is that, in a periodic solid, the electric polarization depends on your choice of the unit cell
(see Fig. 6a,b). The theory of electric polarization in conventional textbooks applies only to
solids consisting of well localized charges, such as ionic or molecular solids (Clausius-Mossotti
theory). It fails, for example, in a covalent solid with bond charges such that no natural unit cell
can be defined.
A crucial observation made by R. Resta [13] is that, even though the value of P may be am-
biguous, its change is well defined (see Fig. 6c). It was later pointed out by King-Smith and
Vanderbilt [14] that ΔP has a deep connection with the Berry phase of the electronic states.
The outline of their theory below is based on one-particle states. However, the same scheme
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applies to real solids with electronic interactions, as long as one replaces the one-particle states
by the Kohn-Sham orbitals in the density functional theory.
We will use λ to label the degree of ion displacement. It varies from 0 to 1 as the ions shift
adiabatically from an initial state to a final state. The difference of polarizations between these
two states is given by

∫ 1

0
dλdP/dλ, where

P(λ) =
q

V

∑
i

〈φi|r|φi〉. (33)

The summation runs over filled Bloch states φi (with λ-dependence) and V is the volume of
the material. For an infinite crystal, the expectation value of r is ill-defined. Therefore, we
consider a finite system at first, and let V → ∞ when the mathematical expression becomes
well-defined.
The Bloch states are solutions of the Schrödinger equation,

Hλ|φi〉 =

(
p2

2m
+ Vλ

)
|φi〉 = εi|φi〉, (34)

where Vλ is the crystal potential. From Eq. (34), it is not difficult to show that, for j �= i, one
has

(εi − εj) 〈φj|∂φi
∂λ
〉 = 〈φj|∂Vλ

∂λ
|φi〉. (35)

Therefore,
dP

dλ
=

q

V

∑
i

∑
j �=i

[
〈φi|r|φj〉〈φj|V

′
λ|φi〉

εi − εj +H.c.

]
. (36)

There is a standard procedure to convert the matrix elements of r to those of p: Start with the
commutation relation, [r, Hλ] = i�p/m, and sandwich it between the i-state and the j-state
(again j �= i), we can get an useful identity,

〈φi|r|φj〉 =
i�

m

〈φi|p|φj〉
εj − εi . (37)

With the help of this identity, Eq. (36) becomes the following expression derived by Resta [13],

dP

dλ
=

q�

imV

∑
i

∑
j �=i

[〈φi|p|φj〉〈φj|V ′
λ|φi〉

(εi − εj)2
−H.c.

]
. (38)

Now all of the matrix elements are well-defined and the volume V can be made infinite. After
integrating with respect to λ, the resulting ΔP is free of ambiguity, even for an infinite covalent
solid.
For Bloch states, the subscripts are i = (m,k) and j = (n,k), where m,n are the band indices
and k is the Bloch momentum defined in the first Brillouin zone. Eq. (38) can be transformed to
a very elegant form, revealing its connection with the Berry curvature [14]. One first defines a
k-dependent Hamiltonian, H̃ = e−ik·rHeik·r. It is the Hamiltonian of the cell-periodic function
unk. That is, H̃|unk〉 = εnk|unk〉, where φnk = eik·runk. It is then straightforward to show that,

〈φmk|p|φnk〉 =
m

�
〈umk|

[
∂

∂k
, H̃

]
|unk〉 =

m

�
(εnk − εmk)〈umk|∂unk

∂k
〉. (39)
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With the help of this equation and another one very similar to Eq. (35) (just replace the φi’s by
the ui’s), we finally get (α = x, y, z)

dPα
dλ

= −iq
V

∑
nk

(〈
∂unk
∂kα
|∂unk
∂λ

〉
−
〈
∂unk
∂λ
|∂unk
∂kα

〉)

= − q
V

∑
nk

Ωn
kαλ(k), (40)

where Ωn
kαλ
≡ i

(
〈 ∂u
∂kα
|∂u
∂λ
〉 − c.c.

)
is the Berry curvature for the n-th band in the parameter

space of kα and λ (Cf. Eq. (13)).
Let us take a one-dimensional system as an example. Assuming the lattice constant is a. Then
the difference of polarization is (q = −e),

ΔP =
e

2π

∑
n

∫ 2π/a

0

dk

∫ 1

0

dλΩn
kλ. (41)

The area of integration is a rectangle with lengths 1 and 2π/a on each side. The area integral
can be converted to a line integral around the boundary of the rectangle, which gives the Berry
phase γn of such a loop. Therefore,

ΔP = e
∑
n

γn
2π
. (42)

In the special case where the final state of the deformation V1 is the same as the initial state V0,
the Berry phase γn can only be integer multiples of 2π [14]. Therefore, the polarization P for a
crystal state is uncertain by an integer charge Q.
One the other hand, this integer chargeQ does carry a physical meaning when it is the difference
ΔP between two controlled states. For example, when the lattice potential is shifted by one
lattice constant to the right, this Q is equivalent to the total charge being transported. Based
on such a principle, it is possible to design a quantum charge pump using a time-dependent
potential [15].

4.2 Quantum Hall effect

The quantum Hall effect (QHE) has been discovered by K. von Klitzing et al. [16] in a two-
dimensional electron gas (2DEG) at low temperature and strong magnetic field. Under such
conditions, the Hall conductivity σH develops plateaus in the σH(B) plot. For the integer QHE,
these plateaus always locate at integer multiples of e2/h to great precision, irrespective of the
samples being used. Such a behavior is reminiscent of macroscopic quantum phenomena, such
as the flux quantization in a superconductor ring.
To explain the integer QHE, Laughlin wraps the sheet of the 2DEG to a cylinder to simulate
the superconductor ring, and studies the response of the current with respect to a (fictitious)
magnetic flux through the cylinder (see Fig. 7). He found that, as the flux increases by one
flux quantum h/e, integer charges Q = ne are transported from one edge of the cylinder to
the other [17]. This charge transport in the transverse direction gives the Hall current, and the
integer n can be identified with the integer of the Hall conductance ne2/h [18].
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Fig. 7: In Laughlin’s argument, the 2DEG is on the surface of a cylinder. The real magnetic
field B now points radially outward. In addition, there is a fictitious flux threading through the
cylinder. When the fictitious flux changes by one flux quantum, integer number of electrons are
be transported from one edge of the cylinder to the other.

Soon afterwards, Thouless et al. (TKNdN) [19] found that the Hall conductivity is closely
related to the Berry curvature (not yet discovered by Berry at that time) of the Bloch state. We
now briefly review the TKNdN theory.
Consider a 2DEG subject to a perpendicular magnetic field and a weak in-plane electric field.
In order not to break the periodicity of the scalar potential, we choose a time-dependent gauge
for the electric field. That is, E = −∂AE/∂t, AE = −Et. The Hamiltonian is,

H =
(π − eEt)2

2m
+ VL(r), (43)

where π = p+ eA0 has included the vector potential of the magnetic field, and VL is the lattice
potential. Similar to the formulation the in previous subsection, it is convenient to use the k-
dependent Hamiltonian H̃ and the cell-periodic function unk in our discussion. They are related
by H̃|unk〉 = Enk|unk〉.
We will assume that the system can be solved with known eigenvalues and eigenstates, H̃0|u(0)

nk〉 =

E
(0)
nk |u(0)

nk〉 in the absence of an external electric field [20]. The electric field is then treated as a
perturbation. To the first-order perturbation, one has

|unk(t)〉 = |n〉 − i�
∑
n′ �=n

|n′〉〈n′| ∂
∂t
|n〉

εn − εn′
, (44)

where k(t) = k0 − eEt/�, and |n〉 and εn are abbreviations of |u(0)
nk(t)〉 and E(0)

nk(t).

The velocity of a particle in the n-th band is given by vn(k) = 〈unk|∂H̃/�∂k|unk〉. After
substituting the states in Eq. (44), we find

vn(k) =
∂εn
�∂k

− i
∑
n′ �=n

(
〈n|∂H̃

∂k
|n′〉〈n′|∂n

∂t
〉

εn − εn′
− c.c.

)
. (45)

The first term is the group velocity in the absence of the electric perturbation. With the help of
an equation similar to Eq. (39),

〈n|∂H̃
∂k
|n′〉 = (εn − εn′) 〈∂n

∂k
|n′〉, (46)
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one finally gets a neat expression,

vn(k) =
∂εn
�∂k

− i
(〈

∂n

∂k
|∂n
∂t

〉
−
〈
∂n

∂t
|∂n
∂k

〉)
. (47)

By a change of variable, the second term becomes Ωn × k̇ = −(e/�)Ωn × E, where Ωnα =
iεαβγ〈 ∂n∂kβ

| ∂n
∂kγ
〉 is the Berry curvature in momentum space.

For a 2DEG, Ωn = Ωnẑ. All states below the Fermi energy contribute to the current density,

j =
1

V

∑
nk

−evn(k) =
e2

�

∑
n

∫
d2k

(2π)2
Ωn(k)× E. (48)

Notice that the first term in Eq. (47) does not contribute to the current. From Eq. (48), it is clear
that the Hall conductivity is given by,

σyx =
e2

h

∑
n

1

2π

∫
d2kΩn(k). (49)

Thouless et al. have shown that the integral of the Berry curvature over the whole BZ di-
vided by 2π must be an integer cn. Such an integer (the Chern number mentioned in Sec. 2.2)
characterizes the topological property of the fiber bundle space, in which the base space is the
two-dimensional BZ, and the fiber is the phase of the Bloch state (see the discussion near the
end of Sec. 2.1). Therefore, the Hall conductivity of a filled band is always an integer multiple
of e2/h. Such a topological property is the reason why the QHE is so robust against disorders
and sample varieties. Even though the discussion here is based on single-particle Bloch states,
the conclusion remains valid for many-body states [21].
Some comments are in order. First, the formulas behind the change of electric polarization ΔP
in Sec. 4.1 and those of the quantum Hall conductivity here look very similar. Both are based
on the linear response theory. In fact, the analogy can be carried further if ΔP is considered as
the time integral of a polarization current jP = ∂P/∂t. The latter, similar to the quantum Hall
current in Eq. (48), can be related to the Berry curvature directly.
Second, if a solid is invariant under space inversion, then the cell-periodic state has the symme-
try,

un−k(−r) = unk(r). (50)

On the other hand, if the system has time-reversal symmetry, then

u∗n−k(r) = unk(r). (51)

As a result, if both symmetries exist, then one can show that the Berry potential An = i〈n|∂n
∂k
〉

(and therefore the Berry curvature) is zero for all k. The conclusion, however, does not hold if
there is band crossing or spin-orbit interaction (not considered so far).
That is, the Berry potential (or curvature) can be non-zero if (i) the lattice does not have space
inversion symmetry. This applies to the polarization discussed in the previous subsection. (ii)
Time-reversal symmetry is broken, e.g., by a magnetic field. This applies to the quantum Hall
system in this subsection. In the next subsection, we consider a system with spin-orbit interac-
tion, in which the Berry curvature plays an important role.
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Fig. 8: When one increases the magnetic field, the Hall resistivity of a ferromagnetic material
rises quickly. It levels off after the sample is fully magnetized.

4.3 Anomalous Hall effect

Soon after Edwin Hall discovered the effect that bears his name in 1879 (at that time he was
a graduate student at Johns Hopkins university), he made a similar measurement on iron foil
and found a much larger Hall effect. Such a Hall effect in ferromagnetic materials is called the
anomalous Hall effect (AHE).
The Hall resistivity of the AHE can be divided into two terms with very different physics (pro-
posed by Smith and Sears in 1929) [22],

ρH = ρN + ρAH = RN (T )B + RAH(T )μ0M(T,H), (52)

where B = μ0(H + M). The first (normal) term is proportional to the magnetic field in the
sample. The second (anomalous) term grows roughly linearly with the magnetization M and
the coefficient RAH is larger than RN by one order of magnitude or more. If the applied field
is so strong that the material is fully magnetized, then there is no more enhancement from the
anomalous term and the Hall coefficient suddenly drops by orders of magnitude (see Fig. 8).
Since the normal term is usually much smaller than the anomalous term, we will neglect it in
the following discussion.
Unlike the ordinary Hall effect, the Hall resistivity in the AHE increases rapidly with tempera-
ture. However, the Hall conductivity,

σH =
ρH

ρ2
L + ρ2

H


 ρH
ρ2
L

(if ρL � ρH), (53)

shows less temperature dependence, where ρL is the longitudinal resistivity. The reason will
become clear later.
Since the AHE is observed in ferromagnetic materials, the magnetization (or the majority spin)
must play a role here. Also, one needs the spin-orbit (SO) interaction to convert the direction of
the magnetization to a preferred direction of the transverse electron motion.
Among many attempts to explain the AHE, there are two popular explanations [23], both involve
the SO interaction,

HSO = − �

4m2c2
σ · (p×∇V ). (54)

The first theory was proposed by Karplus and Luttinger (KL) in 1954 [24]. It requires no
impurity (the intrinsic scenario) and the V in Eq. (54) is the lattice potential. The Hall resistivity
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ρAH is found to be proportional to ρ2
L. The other explanation is proposed by Smit in 1958 [25].

It requires (non-magnetic) impurities (the extrinsic scenario) and V is the impurity potential. It
predicts ρAH ∝ ρL. When both mechanisms exist, one has

ρAH = a(M)ρL + b(M)ρ2
L. (55)

The Smit term is a result of the skewness of the electron-impurity scattering due to the SO
interaction. That is, the spin-up electrons prefer scattering to one side, and the spin-down
electrons to the opposite side. Because of the majority spins of the ferromagnetic state, such
skew-scatterings produce a net transverse current. Smit’s proposal started as an opposition to
KL’s theory and gained popularity in the early years. As a result, the KL scenario seems to have
been ignored for decades.
At the turn of this century, however, several theorists picked up the KL theory and put it under
the new light of the Berry curvature [26]. Subsequently, increasing experimental evidences
indicate that, in several ferromagnetic materials, the KL mechanism does play a much more
important role than the skew-scattering. These works published in renowned journals have
attracted much attention, partly because of the beauty of the Berry curvature scenario.
KL’s theory, in essence, is very similar to the ones in the previous two subsections. One can
first regard the Hamiltonian with the SO interaction as solvable, then treat the electric field as a
perturbation. To the first order of the perturbation, one can get the electron velocity with exactly
the same form as the one in Eq. (47). The difference is that the state |n〉 now is modified by
the SO interaction and the solid is three dimensional. That is, one simply needs to consider a
periodic solid without impurities and apply the Kubo formula, which (in these cases) can be
written in Berry curvatures,

σAH =
e2

�

1

V

∑
n,k

Ωn(k). (56)

However, not every solid with the SO interaction has the AHE. The transverse velocities (also
called the anomalous velocity) in general have opposite signs for opposite spins in the spin-
degenerate bands. Therefore, these two Hall currents will get canceled. Again the ferromagnetic
state (which spontaneously breaks the time reversal symmetry) is crucial for a net transverse
current.
From Eq. (53), one has ρH 
 ρAH = σHρ

2
L. Also, the anomalous current generated from the

Berry curvature is independent of the relaxation time τ . This explains why the Hall conductivity
in the KL theory is proportional to ρ2

L.
In dilute magnetic semiconductors, one can show that A(k) = ξS× k for the conduction band
of the host semiconductor, where ξ is the strength of the SO coupling (more details in Sec. 5.2).
Therefore, Ω = ∇ × A = 2ξS. In this case, the coefficient b(M) in Eq. (55) is proportional
to M . In ferromagnetic materials with a more complex band structure, the Berry curvature
shows non-monotonic behavior in magnetization. For one thing, in density-functional-theory
calculations, the Berry curvature can be dramatically enhanced when the Fermi energy is near a
small energy gap [27]. However, spin fluctuations may smear out the erratic behavior and lead
to a smooth variation (see Fig. 9) [28].
The Berry curvature is an intrinsic property of the electronic states. It appears not only at the
quantum level, but also in the semiclassical theory of electron dynamics. In the next section,
we will see that the QHE, the AHE, and the spin Hall effect can all be unified in the same
semiclassical theory.
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(a) (b)

Fig. 9: (a) Calculated anomalous Hall conductivity (the intrinsic part) versus magnetization
for Mn5Ge3 using different relaxation times. (b) After averaging over long-wavelength spin
fluctuations, the calculated anomalous Hall conductivity becomes roughly linear in M . The
initials S.S. refers to skew scattering. The figures are from Ref. [28].

5 Berry phase and wave-packet dynamics

When talking about electron transport in solids, people use two different languages: It is either
particle scattering, mean free path, cyclotron orbit ..., or localized state, mobility edge, Landau
level ... etc. In this section, we use the first language and treat the electrons as particles with
trajectories. Besides being intuitive, this approach has the following advantage: The electro-
magnetic potentials in the Schrödinger equation are often linear in r and diverge with system
size. Such a divergence can be avoided if the wave function of the electron is localized.

5.1 Wave-packet dynamics

Consider an energy band that is isolated from the other bands by finite gaps. Also, the energy
band is not degenerate with respect to spin or quasi-spin. The energy band with internal (e.g.,
spin) degrees of freedom is the subject of the next subsection. When inter-band tunneling can
be neglected, the electron dynamics in this energy band can be described very well using a
wave-packet formalism.
The wave packet can be built by a superposition of Bloch states ψnq in band n (one band
approximation),

|W 〉 =

∫
BZ

d3qa(q, t)|ψnq〉. (57)

It is not only localized in position space, but also in momentum space,

〈W |r|W 〉 = rc;

∫
BZ

d3qq|a(q)|2 = qc, (58)

where rc and qc are the centers of mass. The shape of the wave packet is not crucial, as long as
the electromagnetic field applied is nearly uniform throughout the wave packet.
Instead of solving the Schrödinger equation, we use the time-dependent variational principle to
study the dynamics of the wave packet. Recall that in the usual (time-independent) variational
principle, one first proposes a sensible wave function with unknown parameters, then minimizes
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its energy to determine these parameters. Here, the wave packet is parametrized by its center
of mass (rc(t),qc(t)). Therefore, instead of minimizing the energy, one needs to extremize the
action S[C] =

∫
C
dtL, which is a functional of the trajectory C in phase space.

One starts from the following effective Langrangian,

L(rc,qc; ṙc, q̇c) = i�〈W | d
dt
|W 〉 − 〈W |H|W 〉. (59)

Notice the resemblance between this S[C] and the the action in the coherent-state path integral
(Eq. (29)). The Hamiltonian for a Bloch electron in an electromagnetic field is

H =
1

2m
(p + eA)2 + VL(r)− eφ(r) 
 H0 − eφ+

e

2m
r× p ·B, (60)

in which H0 = p2/2m + VL and φ and A = 1
2
B × r are treated as perturbations. The fields

are allowed to change slowly in space and time, as long as it is approximately uniform and
quasi-static (adiabatic) from the wave packet’s perspective.
To evaluate the Lagrangian approximately, one can Taylor-expand the potentials with respect to
the center of the wave packet and keep only the linear terms. Using this gradient approximation,
the wave-packet energy 〈W |H|W 〉 is evaluated as [29],

E = E0(qc)− eφ(rc) +
e

2m
L(qc) ·B, (61)

where E0 is the unperturbed Bloch energy of the band under consideration, and L(kc) =
〈W |(r− rc)× p|W 〉 is the self-rotating angular momentum of the wave packet.
On the other hand, the first term in Eq. (59) can be written as

i�〈W | d
dt
|W 〉 = �〈u|idu

dt
〉+ �qc · ṙc, (62)

in which |u〉 is the unperturbed cell-periodic function. Therefore, the effective Lagrangian is

L = �k̇c ·Rc + (�kc − eAc) · ṙc −E(rc,kc), (63)

where �kc = �qc + eAc is the gauge-invariant quasi-momentum, Rc = i〈n| ∂n
∂kc
〉 is the Berry

potential, and Ac = A(rc).
Treating both rc and kc as generalized coordinates and using the Euler-Lagrange equation, it
is not very difficult to get the following (coupled) equations of motion (EOM) for the wave
packet [29],

�k̇c = −eE − eṙc ×B, (64)

�ṙc =
∂E

∂kc
− �k̇c ×Ωc, (65)

where Ωc = ∇kc ×Rc is the Berry curvature of the band under consideration.
Compared to the usual semiclassical EOM in textbooks, there are two new quantities in Eqs. (64,65),
and both lead to important consequences. The first is the Berry curvature Ω. It generates the
so-called anomalous velocity. In the presence of a perturbing electric field, the anomalous ve-
locity is eE ×Ω, which is perpendicular to the driving electric field and gives rise to, e.g., the
AHE.
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The second is the spinning angular momentum L in Eq. (61). It is closely related to the orbital
magnetization of a solid [30]. For a spinful wave packet (Sec. 5.2), this L modifies the elec-
tron spin and is the origin of the anomalous g-factor in solids. In fact, starting from Dirac’s
relativistic electron theory (which has no explicit spin in the Hamiltonian), we have shown that,
the wave packet in the positive-energy branch of the Dirac spectrum has an intrinsic spinning
angular momentum [31]. That is, it explains why an electron has spin.
In the semiclassical theory of electron transport, the current density is given by

j = − e
V

∑
nk

f ṙ, (66)

where f = f0+δf is the distribution function away from equilibrium. The distribution function
f is determined from the Boltzmann equation,

ṙ · ∂f
∂r

+ k̇ · ∂f
∂k

= −δf
τ
, (67)

where τ is the relaxation time. For a homogeneous system in an electric field, δf 
 τ e
�
E · ∂f0

∂k
,

and

j 
 − e
V

∑
nk

(
δf
∂En
�∂k

+ f0
e

�
E×Ωn

)
. (68)

The usual current (the first term) depends on carrier relaxation time τ through the change of the
distribution function δf . On the other hand, the second term gives the Hall current. Clearly, this
Ω is also the one in the Kubo formula of QHE and AHE. (The latter involves spin-degenerate
band and belongs more properly to the next subsection.)
We emphasize that, just like the Bloch energy E0(k), both Ω(k) and L(k) are intrinsic to the
energy band (not induced by the applied field). They are the three main pillars of band theory.
Unlike the Bloch energy that has been around for a very long time, the other two quantities are
relatively new players, but their importance should increase over time.
If there is only a magnetic field, then combining Eq. (64) and Eq. (65) gives

�k̇c =
− e

�

∂E
∂kc
×B

1 + e
�
B ·Ω . (69)

It describes a cyclotron orbit moving on a plane perpendicular to the magnetic field. The orbit
is an energy contour on the Fermi surface. Its size can change continuously, depending on the
electron’s initial condition.
One can apply a Bohr-Sommerfeld quantization rule to get quantized orbits, which have dis-
crete energies (the Landau levels). The EOM in momentum space, Eq. (69), follows from the
effective Lagrangian,

L(kc; k̇c) =
�

2

2eB
kc × k̇c · B̂ + �k̇c ·Rc − E(kc). (70)

This gives the generalized momentum,

π =
∂L

∂k̇c
= − �

2

2eB
kc × B̂ + �Rc. (71)
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Fig. 10: The quantized cyclotron orbits on two different energy surfaces. The one on the left is
a paraboloid near its band edge; the one on the right is a conical surface. Without Berry phase
correction, the Landau-level energies are En = (n + 1/2)�ωc and En = vF

√
2eB�(n+ 1/2)

respectively. In graphene, an orbit circling the Dirac point acquires a Berry phase of π, which
cancels the 1/2 in the square root.

The quantization condition is given by
∮

π ·dkc = (m+γ)h, wherem is a non-negative integer
and γ = 1/2 for the cyclotron motion. Therefore, we have

B̂

2
·
∮
Cm

(kc × dkc) = 2π

(
m+

1

2
− Γ(Cm)

2π

)
eB

�
, (72)

where Γ(Cm) =
∮
Cm

Rc · dkc is the Berry phase for orbit Cm.
This equation determines the allowed size (and therefore energy) of the cyclotron orbit. The
Berry phase correction slightly shifts the Landau-level energies. For example, the orbit around
the Dirac point of graphene picks up a Berry phase of π due to the monopole at the origin.
This cancels the other 1/2 in Eq. (72) and results in a zero-energy level at the Dirac point (see
Fig. 10). This agrees nicely with experimental measurements [32].

5.2 Non-Abelian generalization

In the one-band theory without internal degrees of freedom, the Bloch state has only one com-
ponent and the gauge structure of the Berry phase is Abelian. When the band has internal
degrees of freedom (henceforth simply called the spin), the Bloch state has several components
and the gauge structure becomes non-Abelian. This happens, for example, in energy bands with
Kramer’s degeneracy. By extending the semiclassical dynamics to such cases, one is able to
investigate problems involving spin dynamics and spin transport.
The scheme for building such a theory is the same as the one in the previous subsection. There-
fore, we only give a very brief outline below. One first constructs a wave packet from the Bloch
states ψnq,

|W 〉 =
D∑
n=1

∫
BZ

d3qa(q, t)ηn(q, t)|ψnq〉. (73)

Here n is a spinor index for an isolated band with D-fold degeneracy, η = (η1, · · · , ηD)T is a
normalized spinor at each q, and a(q, t) is again a narrow distribution centered at qc(t).
Similar to the non-degenerate case, there are three basic quantities in such a formalism, the
Bloch energyH0(q), the Berry connection R(q) (and related curvature, now written as F(q)),
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and the spinning angular momentum L(q) [33]. They all become matrix-valued functions and
are denoted by calligraphic fonts. The Bloch energy is simply an identity matrix multiplied by
E0(q) since all spinor states have the same energy.
The matrix elements of the Berry connection are,

Rmn(q) = i

〈
umq|∂unq

∂q

〉
. (74)

The Berry curvature is given by,

F(q) = ∇q ×R− iR×R. (75)

Recall that the Berry connection and Berry curvature in the Abelian case are analogous to the
vector potential and the magnetic field in electromagnetism (see Sec. 2.1). Here, R and F
also are analogous to the gauge potential and gauge field in the non-Abelian SU(2) gauge field
theory [34].
The expectation value of the third basic quantity, the spinning angular momentum, is again
given by L(qc) = 〈W |(r− rc)×p|W 〉. However, it is often written in an alternative (Rammal-
Wilkinson) form easier for evaluation,

L(q) = i
m

�

〈
∂u

∂q

∣∣∣×
[
H̃0 −E0(q)

]∣∣∣ ∂u
∂q

〉
, (76)

where the cell-periodic function without a subscript is defined as |u〉 =
∑D

n=1 ηn|un〉 and H̃0 is
the Hamiltonian for |u〉. The corresponding matrix-valued function L therefore has the matrix
elements,

Lnl(q) = i
m

�

〈
∂un
∂q

∣∣∣×
[
H̃0 − E0(q)

]∣∣∣ ∂ul
∂q

〉
. (77)

Obviously, after taking the spinor average, one has the angular momentum in Eq. (76), L =
〈L〉 ≡ η†Lη =

∑
nl η

∗
nLnlηl.

Equations of motion
So far we have laid out the necessary ingredients in the non-Abelian wave packet theory. Similar
to Sec. 5.2, we can use Eq. (59) to get the effective Lagrangian for the center of mass, (rc,kc),
and the spinor η. Afterwards, the Euler-Lagrange equation for this effective Lagrangian leads
to the following EOM [33],

�k̇c = −eE− eṙc ×B, (78)

�ṙc =

〈[ D
Dkc

,H
]〉
− �k̇c × F, (79)

i�η̇ =
( e

2m
L ·B− �k̇c ·R

)
η, (80)

where F = 〈F〉, and the covariant derivative D/Dkc ≡ ∂/∂kc − iR. The semiclassical
Hamiltonian inside the commutator in Eq. (79) is

H(rc,kc) = H0(kc)− eφ(rc) +
e

2m
L(kc) ·B, (81)

where kc = qc + (e/�)A(rc).
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Even though these equations look a little complicated, the physics is very similar to that of the
simpler Abelian case in Sec. 5.1. There are two differences, however. First, the anomalous
velocity in Eq. (79) is now spin-dependent in general. In some interesting cases (see below), F
is proportional to the spin vector S = 〈S〉, where S is the spin matrix. Therefore, if one applies
an electric field to such a system, the spin-up and spin-down electrons will move to opposite
transverse directions. This is the cause of the AHE and the spin Hall effect.
Second, we now have an additional equation (Eq. (80)) governing the spinor dynamics. From
Eq. (80) we can derive the equation for S,

i�Ṡ =
〈[

S,H− �k̇c ·R
]〉
. (82)

The spin dynamics in Eq. (82) is influenced by the Zeeman energy in H, as it should be. We
will demonstrate below that the term with the Berry connection is in fact the spin-orbit energy.
Such an energy is not explicit inH, but only reveals itself after H is being re-quantized.

Re-quantization
As we have shown in Sec. 5.1, re-quantization of the semiclassical theory is necessary when
one is interested in, for example, the quantized cyclotron orbits that correspond to the Landau
levels. Here we introduce the method of canonical quantization, which is more appropriate for
the non-Abelian case compared to the Bohr-Sommerfeld method.
In this approach, one needs to find variables with canonical Poisson brackets,

{rα, rβ} = 0,

{pα, pβ} = 0,

{rα, pβ} = δαβ, (83)

then promote these brackets to quantum commutators. As a result, the variables become non-
commutating operators and the classical theory is quantized.
An easier way to judge if the variables are canonical is by checking if they satisfy the canonical
EOM,

ṙ =
∂E

∂p
; ṗ = −∂E

∂r
. (84)

The variables rc and kc that depict the trajectory of the wave packet are not canonical variables
because their EOM are not of this form. This is due to the vector potential and the Berry
connection, A(rc) and R(kc), in the Lagrangian (see Eq. (63)).
In fact, if one can remove these two gauge potentials from the Lagrangian by a change of
variables,

L = p · ṙ−E(r,p), (85)

then these new variables will automatically be canonical. Such a transformation is in general
non-linear and cannot be implemented easily. However, if one only requires an accuracy to
linear order of the electromagnetic fields (consistent with the limit of our semiclassical theory),
then the new variables can indeed be found.
The canonical variables r and p accurate to linear order in the fields are related to the center-
of-mass variables as follows [35],

rc = r + R(π) + G(π),

�kc = p + eA(r) + eB×R(π), (86)
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where π = p+eA(r), and Gα(π) ≡ (e/�)(R×B) ·∂R/∂πα. The last terms in both equations
can be neglected in some cases. For example, they will not change the force and the velocity in
Eqs. (78) and (79). These relations constitute a generalization of the Peierls substitution.
When expressed in the new variables, the semiclassical Hamiltonian in Eq. (81) becomes,

H(r,p) = H0(π)− eφ(r) + eE ·R(π)

+ B ·
[
e

2m
L(π) + eR× ∂H0

∂π

]
, (87)

where we have used the Taylor expansion and neglected terms nonlinear in the fields. Finally,
one promotes the canonical variables to quantum conjugate variables to convert H to an effec-
tive quantum Hamiltonian.
The dipole-energy term eE ·R is originates from the shift between the charge center rc and the
canonical variable r. We will show below that for a semiconductor electron, the dipole term is
in fact the spin-orbit coupling.
The correction to the Zeeman energy is also related to the Berry connection. Near a band edge,
where the effective mass approximation is applicable and E0 = π2/2m∗, this term can be writ-
ten as eR · v × B, where v = π/m∗. We know that an electron moving in a static magnetic
field feels an effective electric field Eeff = v×B. Therefore, this term arises as a result of the
electric dipole energy in electron’s own reference frame.

Semiconductor electron
A necessary requirement for the non-Abelian property is that the Bloch electron has to have
internal degrees of freedom. In a semiconductor with both space-inversion and time-reversal
symmetries, every Bloch state is two-fold degenerate due to Kramer’s degeneracy. But where
do we expect to see the non-Abelian Berry connection and curvature?
Instead of the full band structure, one can start from a simpler band structure using the k · p
expansion. Assuming the fundamental gap is located at k = 0, then for small k, one has an
effective Hamiltonian with 4 bands, 6 bands, 8 bands, or more, depending on the truncation.
In the following discussion, we use a 8-band Kane Hamiltonian that includes the conduction
band, the HH-LH bands, and the spin-orbit (SO) split-off band, each with 2-fold degeneracy
(see Fig. 11). The explicit Kane Hamiltonian can be found in Ref. [36].
We focus only on the wave packet in the conduction band. Without going into details, we first
show the Berry connection that is essential to the wave packet formulation. The result correct
to order k1 and up to a gauge rotation is [35],

R =
V 2

3

[
1

E2
g

− 1

(Eg + Δ)2

]
σ × k, (88)

where V = �

m
〈S|p̂x|X〉, Eg is the energy gap, and Δ is the SO gap. Therefore, the dipole term

eE ·R in Eq. (87) becomes,

Hso = eE ·R = αE · σ × k, (89)

where α ≡ (eV 2/3)[1/E2
g−1/(Eg+Δ)2]. It coincides precisely with the spin-orbit coupling of

a conduction electron. This shows that the SO coupling has a very interesting connection with
the Berry connection. This is also the case for the SO coupling in Dirac’s relativistic electron
theory [37].
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4-band 

Luttinger
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8-band 
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E(k)

Eg

Δ
HH

LH
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Fig. 11: One can use the 4-band Luttinger model or the 8-band Kane model to approximate the
energy bands near the fundamental gap.

The Berry curvature calculated from Eq. (75) gives (to the lowest order) F = α/eσ, which is
proportional to spin. Therefore, the anomalous velocity eE× F in Eq. (79) is αE× 〈σ〉. That
is, spin-up and spin-down electrons acquire opposite transverse velocities. In non-magnetic
materials, these two species have the same population and we do not expect to see a net trans-
verse current. However, “if” one defines a spin current as the difference of these two transverse
currents, then there will be a net spin current, giving rise to the spin Hall effect [38].
One can also calculate the spinning angular momentum of the conduction electron from Eq. (77).
The result is,

L = −2mV 2

3�

(
1

Eg
− 1

Eg + Δ

)
σ. (90)

Through the Zeeman energy in Eq. (87), the orbital magnetic moment generated from Eq. (90)
contributes an extra g-factor,

δg = −4

3

mV 2

�2

(
1

Eg
− 1

Eg + Δ

)
. (91)

This is the anomalous g-factor of the conduction electron [39]. Therefore, the anomalous g-
factor in solid is indeed a result of the self-rotating motion of the electron wave packet.
Finally, the effective quantum Hamiltonian in Eq. (87) for the conduction band has the following
form,

H(r,p) = E0(π)− eφ(r) + αE · σ × π +
δg

2
μBB · σ, (92)

where E0 includes the Zeeman energy from the bare spin, α is given below Eq. (89), δg is given
in Eq. (91), and the correction to the Zeeman energy has been neglected. This Hamiltonian
agrees with the one obtained from block diagonalization [36]. The wave packet approach is not
only simpler, but also reveals the deep connections between various effective couplings and the
Berry potential.
Some comments are in order: First, we emphasize again that it is necessary to include the
Berry curvature and orbital moment in order to account for physical effects to first order in
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external fields. Furthermore, from the discussions above, we can see that these quantities are
also sufficient for building a correct quantum theory.
Second, starting from a quantum theory, one can construct a semiclassical theory in a specific
subspace. This theory can later be re-quantized. The re-quantized effective theory applies to a
smaller Hilbert space compared to the original quantum theory. Nevertheless, it can still have
its own semiclassical theory, which in turn can again be re-quantized. As a result, a hierarchy
of effective theories and gauge structures can be produced, all within the wave packet approach
(see Ref. [35] for more discussions).

6 Concluding remarks

In this review, selected topics related to Berry phase in solid state physics are reported. Many
of these topics have been fully developed over the years. The exposition here only serves as
an introduction, without going into details and more recent development. Readers interested
in certain topics can consult some of the following books or review articles: [1] and [40] on
Berry phase in general, [41] and [42] on electric polarization, [43] on quantum Hall effect, [44]
and [45] on anomalous Hall effect, [46] and [47] on dynamics of Bloch electrons, and [35] on
non-Abelian wave packet dynamics.
In optics, the Berry curvature is related to a transverse shift (side jump) of a light beam reflected
off an interface.[48] The shift is roughly the order of the wavelength. Its direction depends
on the circular polarization of the incident beam. This is called the optical Hall effect, or the
Imbert-Federov effect,[49] which is not covered here. The side jump of a light beam is similar to
the analogous “jump” of an electron scattering off an impurity in the anomalous Hall effect [22].
A more detailed study of the optical transport involving spin can be found in Ref. [50].
Several topics not covered here can be found in an upcoming review on Berry phase in solid state
physics [51]. These topics include the orbital magnetization of a solid, dipole moment of the
wave packet, anomalous thermoelectric transport, and inhomogeneous electric polarization. It is
amazing that the Berry phase plays such a versatile role in so many solid-state phenomena. On
the other hand, several challenging subjects still remain largely unexplored. For example, the
effect of the Berry phase in systems in which non-adiabatic processes or many-body interaction
is crucial. Therefore, one can expect to see more of the intriguing Berry phase effects in solid
state systems.
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1 Stern-Gerlach experiments 
1.1 History 
The discovery of the electron as a charged particle has been attributed to J.J. Thomson, who 
received the Nobel Prize in 1906 for this achievement. The electron spin has been discovered 
in 1925 by Goudsmit, Uhlenbeck, and Pauli while trying to understand the optical spectra of 
alkali halides. Already in 1922 Stern and Gerlach had performed an experiment with a clear 
signature of the spin but had misinterpreted it by the assumption that they had verified 
experimentally the quantization of orbital angular momentum. The Nobel Prize was never 
awarded to the discovery of the spin per se.  
Nevertheless the Stern-Gerlach (SG) experiment has become one of the key experiments for 
the detection of spin polarization and its spatial quantization. It is often used to introduce 
quantum mechanics and to discuss the Einstein-Podolsky-Rosen (EPR) paradox in the Bohm 
version. This is relevant in the context of quantum teleportation and quantum computing, 
which are topics of this school. We therefore discuss the SG-experiment and the EPR paradox 
in some more detail. However as will be seen, the answer to the EPR paradox comes from 
optical experiments using polarized light and not from SG experiments. 
 
1.2 Detection of the quantization of spin-polarization by Stern-Gerlach 

experiments 
Figure 1 shows a schematic of the general SG setup. Ag atoms carry a magnetic moment, 
which is due to an unpaired s-electron. In an inhomogeneous magnetic field a beam of Ag 
atoms therefore experiences a deflection, which according to Sz = ±1/2 (as displayed on the 
right-hand side) is in the direction of the field gradient or opposite to it thus demonstrating the 
spatial quantization. 
 
1.3 The EPR paradox in the Bohm version 
For the following discussion we represent an SG device by the magnets with their peculiar 
shape. The letter z in Fig. 2 indicates that the field gradient and separation of the two spins is 
in the z-direction, likewise for y that it is in the y-direction. The ball indicated in pink is meant 
to be a source of entangled electrons, which are the result of a decay of some other particle 

 
 

Fig. 1: The Stern-Gerlach experiment. 
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with zero angular momentum. Under these conditions a certain spin component of an electron 
going to the right (Sr) must be the same but with reversed sign of an electron going to the left 
Sl, i.e. Sr = -Sl. That means if we know Sy for the electron going to the right we know it also 
for the electron going to the left. With the other SG device we can measure in the same way 
Sz, so we know it also for both electrons. With this result we can reach the conclusion that it is 
possible to measure simultaneously both Sy and Sz, here even for both electrons. 
However, simultaneous knowledge of non-commuting variables violates the uncertainty 
principle of quantum mechanics. The reason why the thought experiment by EPR was 
invented in the first place was to disprove this principle, i.e. the statistical nature of quantum 
mechanics. The idea to consider spin components came from Bohm. The inventors were 
aware that an obvious way out could be that measurement of e.g. Sy could destroy information 
about Sz gained just an instant before. But since the two SG setups of Fig. 2 could basically be 
arbitrarily far away, it could mean that information under certain conditions would have to be 
transmitted faster then with the speed of light. Einstein called it “spooky action at a distance” 
and never believed it. As we will see, Einstein was wrong in that case, but the „spooky 
action“ does in fact not violate the mentioned law on the maximum speed of signals. 
 

2 Optical experiments 
2.1 Some important features of polarized light 
 

(1) Light energy is quantized and comes in the form of multiples of an elemental quantum 
hν called photon. 

(2) Suppose a polarizer P1 is set at angle α and the light then passes an analyzer P2 set at 
β. The probability normalized to 1 that a photon is transmitted is then given by 

 
ptrans(α−β) = cos2(α−β)      (1a) 

 
  and the probability that it is blocked by   

 
pblock(α−β) =1 - cos2(α−β) = sin2(α−β)    (1b) 

 
 

Fig. 2: The EPR thought experiment. 
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(3) The statement given under (2) is true for the statistical average. For the individual 

event a photon due to its quantum nature is either completely absorbed or completely 
transmitted.  

(4) In the case of transmission through a polarizer the photon acquires the direction of E 
given by the polarizer. 

 
2.2 Distinction between local realism and quantum theory: Bell’s 

inequality  
We follow a lecture presented in the internet [1] and discuss now the experimental situation 
displayed in Fig. 3. Suppose there is a source of entangled photons Q characterized further by 
the assumption that the total angular momentum is zero. Then at the source the two outgoing 
photons must have opposite linear momenta and the same polarization. However due to the 
rotational symmetry of the experimental setup around the optical axis the polarization is 
undetermined. On the other hand due to statement (4) photons (ph1) after passage of P1 will 
have polarization α and photons ph2 after transmission through P2 will have polarization β. 
Two scenarios have been discussed for what happens to the photons between the source and 
the polarizers P1 and P2. 
 
In the classical picture also called „local realism“ at source Q both photons have some 
unknown, but well-defined or real polarization. It is assumed that –provided all parameters of 
influence were known– passage of a photon at the analyzer would be predictable and 
reproducible. As will be seen below, this situation could be characterized by an inequality 
relation named after John Bell.  
In the quantum mechanical picture the unknown angle α is not assumed to exist in the 
traditional sense. It is not part of reality. Then what kind of prediction can we make? If we 
assume that ph1 arrives at P1 earlier than ph2 at P2, then ph1 after passage has polarization α. 
Since ph1 and ph2 are entangled, ph1 immediately also acquires α but after passage of P2 
acquires β. This is the situation assumed in Fig. 3, hence Eqs. (1a) and (1b) should be valid. 
A further mathematical criterion to distinguish between the two cases was suggested by Bell. 
He found that „local realism“ leads to an inequality relation, which can be –but doesn’t have 
to be– violated by the quantum picture. However, in case of violation “local realism” is led ad 
absurdum and the quantum picture is true. 

 
 

Fig. 3: The EPR thought experiment with photons. 
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For a plausibility argumentation we consider first only a single analyzer set at a fixed angle α 
and photons impinging on it. If for the transmitted or reflected photons a statistical 
distribution is found, then Einstein would ascribe this to a hidden parameter attaining different 
values. The relation between parameter and transmission is still believed to be causal. 
Suppose we knew the parameter we could then arrange its values in the form of a chart as in 
Fig. 4, where the color of each little square stands for a certain value of the hidden parameter. 
Without loss in generality we can arrange the squares such that a continuous area for each 
color is obtained. After laying two such charts upon each other we obtain intersections as in 
the lower part of Fig. 5. and we consider what they represent.  
For example the red area n(α+,β+) represents the number of events that in the case shown in 
the upper part of Fig. 5 one photon passes at P1 set at α and another at P2 set at β. This would 
be a coincidence because they are generated by the source at the same time. Likewise 
n(α+,γ+) counts the events that one photon passes P1 set at α and P2 set at γ. Finally, the red 
area n(α+,γ-) corresponds to transmission of a photon at one of the polarizers set at α and 
blockage at the other set at γ. Comparison of the red areas demonstrates Bell’s inequality 
relation 
 

n(α+,β+) ≤ n(α+,γ+) + n(β+,γ-)    (2) 
 

Quantum mechanics has led us to Eqs. (1). Lets see if they fulfill Bell’s relation (2). From 

 
 

Fig. 4: Local realism: Depending on the value of the 
hidden parameter (here the color) a photon is transmitted 

(green) or not (red). 

 
 

Fig. 5: Presentation of Bell‘s inequality by means of areas. 
 



B1.6  P. Grünberg 

Eqs. (1) follows  
 

n(α+,β+) = cos2(α−β) 
n(α+,γ+) = cos2(α−γ)  
n(β+,γ-) = sin2(α−γ)  

 
hence 

 
cos2(α−β) ≤ cos2(α−γ) + sin2(β−γ).    (3) 
 

For most values of α,β, and γ Eq. (3) is fulfilled but not for α=0°, β=30°, and γ=60° because 
3/4 ≤1/4+1/4 is not true. Hence, the quantum-mechanical prediction here is at variance with 
local realism. This statement is supported by most experiments. 
 

3 Spin polarization in 3d-metals and its relation to band 
structure 

In magnetic solids the individual spins add up to the total magnetization, where we have to 
include generally also orbital contributions. In 3d-metals the latter are known to be quenched, 
so we consider only the spins. In an itinerant picture we obtain the magnetization simply by 
adding up the moments of the occupied states, i.e. those below the Fermi level. These are the 
states of the 3d bands, with some small contribution from 5s bands. This is illustrated in Fig. 
6, right-hand side.  
In the rigid band model it is assumed that the displayed band structure is essentially the same 
for all 3d metals and the up-shift of the spin-down band relative to spin-up band is also 
constant. Magnetization M then is proportional to the hatched area and it is easy to see that 
due to the up-shift of EF for increasing number of valence electrons, M should first increase 
and then after a maximum again decrease. Experimental data as collected by Slater and 
Pauling and displayed in Fig. 6 indeed show this dependence.  
The effect of the spatial quantization on the magnetization M is twofold. First in adding up the 
spin moments to the total magnetization we consider only up and down spins, which 
corresponds to the two split beams in Fig. 1. Second the total moment is also subject to a 

 
 

Fig. 6: The Slater-Pauling curve (left) is explained by the rigid-band model (right). 
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quantization effect. It can only change corresponding to an “umklapp” of one or more spins. 
However that doesn’t have to be at the same site but can be distributed over a whole chain of 
moments in the form of an excitation. In this picture the “umklapp” of one spin corresponds 
to the excitation of one magnon. 
For transport phenomena only the electrons with energies close to EF are important. Again, 
their spins can be up or down with respect to M. This is quantified by means of the effective 
spin polarization  
 

P = (n↑-n↓) / (n↑+n↓),      (4) 
 
where n↑ and n↓ are the number of electrons at EF with spin up and spin down, respectively. 
Depending on whether (n↑ > n↓)  or  (n↑ < n↓) the polarization P will be positive or negative. 
From the above consideration within the rigid band model it follows that P(EF) is positive for 
the ascending sections of the Slater-Pauling curve and negative for the descending. 
 
 

4 Interlayer Exchange Coupling 
4.1 Discovery 
The exchange coupling of magnetic films across metallic interlayers was first observed in 
1986 for dysprosium and gadolinium films separated by yttrium interlayers, and for iron films 
separated by chromium interlayers (Salamon et al. 1986, Majkrzak et al. 1986, Grünberg et 
al. 1986). For references and a review on interlayer coupling see [2]. Due to the work of 
various groups it could later be shown that the coupling is not restricted to metallic interlayers 
but can also be observed across MgO and Si.  
Three types of coupling, namely ferromagnetic, antiferromagnetic, and 90°-type have been 
observed. In Fig. 7 this is demonstrated by means of magnetic domains in Fe/Cr/Fe samples 
with “wedge-type” interlayers (see bottom part for Fig. 7). The upper part shows magnetic 
domains as observed by a Kerr microscope. In the middle part we see the corresponding 
alignments of the magnetizations in the upper and lower Fe film, which are evaluated from 
the contrasts of the experimental image in the top part. Since 90°-type coupling is believed to 
be extrinsic, but due to interface roughness or magnetic impurities, we discuss here only 
ferromagnetic or antiferromagnetic coupling. 
 
4.2 Phenomenological description 
A phenomenological description of the coupling in order to link experimental observations by 
different methods is given by the interlayer coupling energy per unit area, Ecoupl, as 
  

Ecoupl = -J1cos(θ) - J2cos2(θ),     (5) 
  
where θ is the angle between the magnetizations of the films on both sides of the spacer layer. 
The parameters describe the type and the strength of the coupling. If the term with J1 
dominates, then from the minima of Eq. (5) the coupling is ferromagnetic (antiferromagnetic) 
for positive (negative) J1. If the term with J2 dominates and is negative, we obtain 90°-type 
coupling. The first term of Eq. (5) is often called bilinear coupling, and the second biquadratic 
coupling. There are various methods to measure the parameters J1 and J2 and, thus, the 
coupling. We mention only measurement of spin wave frequencies by microwave absorption 
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or inelastic light scattering and remagnetization curves by means of the magneto-optic Kerr 
effect or SQUID. 
For metallic interlayers the coupling generally oscillates between ferromagnetic and 
antiferromagnetic as a function of the interlayer thickness. This is demonstrated by the black 
and white stripes in Fig. 8. Here again a sample with a wedge-type interlayer has been used. 
The stripes indicate magnetic domains with opposite magnetization direction for black and 

 
Fig. 7: Magnetic domains of a Fe/Cr/Fe trilayer as observed by Kerr microscopy 
and their dependence on interlayer coupling, which is varying along the Cr wedge. 
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white, which come as a result of the coupling, thus demonstrating the oscillatory behavior. 
Each pattern is seen twice but with reversed contrast. This corresponds to two domains in the 
Fe substrate beneath. Note that in the upper part the period is much shorter (2 monolayers) 
than in the lower. This is due to the better quality of the sample in the upper part. 
Whereas there are numerous examples for oscillatory coupling across metallic interlayers, 
examples for antiferromagnetic coupling across insulators or semiconductors are still rare. In 
fact up to now only Si and MgO interlayers are established examples (for a review see [3]). 
On the other hand antiferromagnetic coupling across Si turns out to be surprisingly strong. In 
terms of the parameters defined in Eq. (5) we have for example J1 = -1.6 mJ/m2 for Cr, which 
is already considered to be strong, but J1 = -6.3 mJ/m2 for Si interlayers. 
 
4.3 Microscopic origin of oscillatory coupling across metallic interlayers 
The basic assumption to explain oscillatory coupling within the quantum well approach is 
spin-dependent reflectivity of electrons at the non-magnetic/magnetic interfaces. In Fig. 9 
left-hand side strong reflectivity at the interfaces is assumed for those electrons, which have 
their spins opposite to the local magnetization, and weak reflectivity for the others. The 
reason for such behavior is indicated in the top right part of Fig. 9 using schematic band 
structures for the magnetic 3d transition metals and noble metals as examples. For reasons 
that will become clearer below, we can restrict ourselves to electrons at the Fermi level. Then, 
for the chosen example, for spin-up electrons we have s-states at the Fermi energy for both 
the 3d transition metals and the noble metals, as is indicated by the similar densities of states 
on the right-hand side. This leads to a good transmission. For spin down electrons on the other 
hand, due to the splitting of the energies in the magnetic films we have mixed d- and s-states 
at the Fermi level for the transition metal, hence the transmission of the electrons from the 
noble metal is reduced. Based on the spin-dependent reflectivity there is a strong (weak) 
confinement in the interlayer for spin down (up) for parallel magnetization alignment (left-
hand side of Fig. 9), whereas for the antiparallel alignment the reflectivities are as shown on 
the right-hand side and the confinement is lost. 

 
Fig. 8: Oscillatory coupling as observed by scanning electron microscopy with spin 
analysis (SEMPA) in Fe/C-wedge/Fe structures. The diagram on the right-hand side 

schematically indicates the domain configuration. 
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Hence, parallel magnetization alignment is characterized by a confinement of part of the 
electrons and there are characteristic energy changes associated with this, which makes this 
situation for certain interlayer thickness more and for others less favorable than antiparallel 
alignment, for which case the confinement is lost. Due to the confinement the motion of the 
electrons perpendicular to the interfaces becomes quantized and we obtain a spectrum of 
discrete energy levels corresponding to the formation of standing electron waves. Such a 
standing wave is indicated in Fig. 9 in the top left part and is the result of the superposition of 
two propagating waves with wave-vector components ±q⊥. To form a standing wave we must 
have 
 

|2q⊥| = n 2π/D  n = 1, 2, 3, …  
 
where D is the interlayer thickness. When the interlayer thickness is increased the discrete 
levels shift downwards and are populated upon crossing the Fermi energy EF. Hence it is 
plausible that there are oscillations of the electronic energy due to the fact that discrete energy 
levels become populated. It turns out that these oscillations favor parallel alignment for 
certain thicknesses and antiparallel alignment for others. Hence the interlayer coupling 
oscillates as a function of the interlayer thickness D due to oscillations in the electronic 
energy. The oscillation period λ D is given by the difference in D, where two subsequent 
discrete energy levels cross the Fermi energy, hence λD =2π/|2q⊥|, where q⊥ is a caliper of the 
Fermi surface. 

 
 

Fig. 9: Spin-dependent reflectivity leads to the formation of quantum-well states (QWS) for 
parallel alignment but not for antiparallel alignment and is the main mechanism leading to 

oscillatory interlayer exchange coupling. 
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Hence oscillatory coupling can be traced back to changes in the densities of states, which 
come as a result of confinement. The stronger the confinement and the higher the changes in 
the density of states the larger will be the associated amplitudes. At this point it is important 
to consider that not all possible wave-vectors q⊥ from the Fermi surface contribute in the same 
way. Some are associated with higher densities of states than others and therefore contribute 
more in the above consideration. Let us discuss this situation for our example of noble metal 
interlayers and choose the [100] orientation for the normal to the interface. The cross-section 
through the Fermi surface in Fig. 9 (bottom right) reveals two wave-vectors q⊥

(1,2) along the 
[100] direction. They are associated with particularly high densities of states, because their 
lengths change only very little upon a slight shift up or down. They are called stationary 
vectors and generate two superimposed oscillations of the coupling as a function of the 
interlayer thickness. In this way for given growth direction the oscillation periods can be 
predicted from the crystallographic structure and the Brillouin zone. In a similar way a 
dependence on the thickness of the layer can also be considered and has indeed been 
observed. 
 
4.4 Simple model to explain coupling across insulators and semiconductors 
For interlayers of this kind transmission is suppressed for larger interlayer thickness D and, 
therefore, also the oscillations discussed in the previous paragraph are replaced by a simple 
attenuation. For small D, however, electrons can be transmitted and again we consider their 
spin polarization. As a result of spin-dependent reflectivity, scattering, transmission, etc. the 
net flow of electrons can be stronger for spin-up (spin-down) electrons and it is easy to see 
that this favors ferromagnetic (antiferromagnetic) coupling. 
 
 

5 Giant magnetoresistance (GMR) 
5.1 First observations 
Figure 10 shows the first observations of GMR in multilayers (a) and double layers (b). 
References to the original publications and review articles can be found in [4,5]. The current 
flows in both cases in the plane of the layers. Due to antiferromagnetic interlayer coupling the 
magnetization alignment of the neighboring Fe films in small fields is antiparallel and the 
resistance is high. Increasing the field aligns the magnetizations parallel and the resistance 
drops. In multilayers (a) the effect is much stronger than in double layers (b), which is an 
indication that the number of available interfaces plays an important role. The term giant 
magnetoresistance referred originally to the large size of the effect in multilayers, but is now 
generally used for magnetoresistance due to non-parallel magnetization alignment. The 
largest effect occurs when an antiparallel alignment by an applied field is changed into a 
parallel alignment. The antiparallel alignment can be provided by antiferromagnetic interlayer 
exchange as in Fig. 10 or by other means (see below). Oscillatory coupling also gives rise to 
oscillations of the GMR effect as a function of the spacer thickness. 
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Antiparallel arrangement can also be obtained by other means, for example by different 
coercivities of successive magnetic layers or by pinning the magnetization using an 
antiferromagnetic material in direct contact with one of the ferromagnetic layers, known as 
“exchange biasing”. If GMR is obtained via one of these methods and not via 
antiferromagnetic interlayer coupling, usually the term “spin valve system” is used in the 
literature although there is no difference concerning the mechanism of the magnetoresistive 
effect. 
The GMR effect has been investigated in two different geometries, namely the “CIP” (current 
in plane) and the “CPP” (current perpendicular plane) geometry. The relative effect is 
stronger in the CPP geometry, but due to the fact that the contact diameter is some orders of 
magnitude larger than the film thickness the voltage drop perpendicular to the layers, in the 
CPP geometry, is very difficult to detect, unless the contact diameter is lithographically 
reduced to sub-µ dimensions. 
Apart from the normal GMR effect, where the resistivity is largest for the antiparallel 
magnetic state, there is also an inverse effect, where it is largest for the parallel state. The 
latter only occurs for asymmetric systems when the two involved ferromagnetic materials sit 
on different slopes of the Slater-Pauling curve shown in Fig. 6 (see below). 
 
5.2 Microscopic origin 
In Section 4.3 it was seen that interlayer coupling can be explained on the basis of a spin-
dependent interface reflectivity. Similarly GMR can be explained to be due to spin-dependent 
scattering. 
To see the origin of the normal and the inverse GMR effect we discuss Fig. 11, where for both 
cases double layers in parallel and antiparallel alignment are displayed. For both kinds of 
spins paths between two reflections at outer surfaces are shown, with scattering events in 
between, which is assumed to be representative. In order not to confuse the picture the 
changes in direction due to the scattering events are suppressed. The scattering processes are 
the cause of electrical resistivity. Usually it is believed that conduction electrons are s 
electrons, but their scattering rates are given by the density of d states with the same energy, 
i.e. EF, and the same spin. Hence some idea on n↑ and n↓ can be obtained from the right-hand 
side of Fig. 6: n↑ > n↓ for the ascending parts of the Slater-Pauling curves and n↑ < n↓ for the 

 
 

Fig. 10: First observations of GMR in multilayers (a) and double layers (b). In both cases the 
antiparallel alignment at zero field is due to the antiferromagnetic coupling of the Fe/Cr 

system. 
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descending parts. Therefore, the spin polarization at the Fermi level P according to Eq. (4) is 
positive for the ascending and negative for the descending part. We treat interfaces by taking 
the values for the corresponding alloys. 
In order to explain the normal and the inverse case a magnetic double layer in parallel and 
antiparallel alignment is displayed in Fig. 11. For the normal case same materials are used on 
both sides of the interlayer for the inverse effect they are different. But how? 
We use the simple consideration displayed in Fig. 11. Here we neglect scattering inside the 
interlayer and there are equal rates of spin-dependent and spin-independent scattering in the 
ferromagnetic films. The spin-dependent scattering has been assumed to take place at the 
interfaces, where for the normal GMR effect displayed in Fig. 11(a) only electrons with spin 
antiparallel to the local magnetization are assumed to be scattered. According to the two-
current model invented by Mott the total current can be divided into two currents flowing in 
parallel. One with spin-up (I+) and one with spin-down (I-) electrons. If we assume that one 
scattering event contributes to the total resistance by an amount r then on the left-hand side I+ 
is associated with resistance 2r and I- with resistance 4r. Hence for parallel alignment the total 
current I = I+ + I- has resistance Rp = 2r × 4r/(2r + 4r) = 8r/6. In the same way we obtain for 
antiparallel alignment for the total current a resistance Rap = 3r × 3r/(3r + 3r) = 9r/6. Hence, 
there is an increase of the resistance due to antiparallel magnetization alignment and the GMR 
ratio is (Rap - Rp)/Rp in the present case would have a value of 12.5%. For double layer 
systems the strongest measured GMR effects are around 17%, hence a distribution of the 
scattering rates as in Fig. 11 seems realistic.  

 
 

Fig. 11: Phenomenological picture for normal (a) and inverse (b) GMR. 
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Generally an inverse GMR effect [Fig. 11(b)] occurs when the materials on both sides of the 
interlayer have different signs of the spin polarization P [see Eq. (4) and Fig. 6]. Normal 
GMR occurs when they have the same sign, no matter whether negative or positive. 
 

6 Conclusion 
In this lecture various aspects of spin polarization have been discussed. We started with the 
experiment by which spin polarization and its spatial quantization has for the first time been 
observed. It is clear that for any physical quantity, where the spin is important, its 
quantization is important, too. We discussed as examples the magnetization of ferromagnetic 
3d metals and alloys as well as two important effects in layered magnetic structures, namely 
interlayer exchange coupling and giant magnetoresistance. The role of polarization (of 
photons or electrons) for the development of quantum mechanics was also addressed. 
Implications thereof will possibly lead to applications in quantum information, which is also 
subject of this school. 
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1 Introduction

Spin-polarized electric conductance is the very heart of the whole field of spintronics. Nearly all
physical phenomena and proposed and realized devices rely on the transport of spin-polarized
electrons and hence the spin-polarized electron transport is one of the most basic phenomena
to study. The most well-known effect directly linked to spin-polarized transport is the giant
magnetoresistance (GMR) effect discovered by Grünberg [1] and Fert[2]. The magnetoresis-
tance(MR) is the actual key figure of merit in the GMR as well as in other similar effects. It
describes the ratio between the resistance of two different magnetic states of the system, mostly
between an parallel(P) and antiparallel(AP) alignment of magnetic leads as

MR =
RP −RAP

min(RP , RAP )
. (1)

This is the so called optimist definition of magnetoresistance. An alternative definition in which
one divides by the sum RAP + RP can also be found, leading to a maximum MR of 100%
while the optimistic definition is not bounded. Besides the GMR, many further incarnations of
magnetoresistance effects have been discovered and utilized:

• The Anisotropic MR (AMR) is actually known for a long time and describes the change
of resistance induced by a change of the direction of the magnetization. The spin-orbit
interaction, coupling the spin degrees of freedom of the conducting electrons to the lattice
orientation, leads to differences in the resistance depending on the orientation of the mag-
netization with respect to the underlying crystal lattice. This effect is usually considered
to be a bulk effect.

• The Colossal MR (CMR) effect in which a very large resistance change occurs after
application of a magnetic field in some oxides which are close to a phase transition.

• The Tunneling MR (TMR) effect which will be the main topic of this lecture.

• MR effects which combine features of these most basic effects in nanostructures such as
the ballistic MR (BMR) or the ballistic anisotropic (tunneling) MR.

This lecture considers the TMR effect in more detail. The basic setup to consider for this
effect is a nanosize magnetic tunneljunction (MTJ) in which a thin barrier layer of an insulator
separates two magnetic metal leads. If the insulator is sufficiently thin, electrons can tunnel
through the insulator enabling the flow of a current between the two leads. As both leads are
magnetic this current depends on the relative orientation of the magnetization of the leads and
a MR can be measured.
The first realization of such a TMR setup was actually obtained by Julliere [3] in 1975 at very
low temperatures. TMR at room temperature was achieved much later in the 90th by Moodera
[4] and by Miyazaki [5]. These experiments used MTJ with amorphous barrier materials like
Al2O3 and relatively low TMR ratios below 100% were obtained. In 2004 two groups in Japan
(S. Yuasa et al. [6]) and in the US (S. Parkin et al. [7]) managed to fabricate epitaxially grown
Fe/MgO/Fe MTJs with much larger TMR values. The development of such MTJs with MgO
barrier still continues today with TMR values exceeding 1000%.
Different from GMR which has proven to by applicable mostly to build sensors, TMR based
devices seem to have an even larger field of potential application. In particular, the high MR
values possible and the low currents in typical tunneljunctions make the TMR effect the key
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ingredients in many proposed new devices of magnetoelectronic. The most prominent of those
is probably the magnetic random access memory (MRAM). In MRAM-cells the information is
stored in the relative orientation of the magnetization of the two ferromagnetic metallic sides
of the junctions and it can be accessed by using the tunnel-magneto resistance (TMR) effect,
i.e. the strong dependence of the resistance of the junction on this relative orientation.

2 Theory of TMR

Calculating the electronic current flowing in a system due to some bias voltage is one of the
most difficult problems in theoretical solid state physics. Different levels of approximations
have been applied to the problem and theoretical models for many different aspects of the prob-
lem have been discussed. Among these, one of the most well known method to treat electronic
transport in solids is based on the Boltzmann formalism, which describes the time-dependent
change in the electronic distribution function due to the applied field �E. It is a classical approx-
imation as it considers the electrons to be moving freely between individual scattering events.
Interference effects due to the quantum nature of the electrons are neglected. On the other hand,
the very fact that the electrons move in a solid without scattering at every atomic site, i.e. the
possibility to describe the electrons as (quasi) particles moving freely around is of course a
quantum mechanical phenomenon.
The approximations used in the Boltzmann approach restrict its applicability to the case in
which the sample dimensions are much larger than the mean-free path and at the same time
the scattering events can be viewed as independent from each other, i.e. quantum interference
effects can be neglected. A more basic approach to the problem of electric conductance uses
the idea of treating the current as a response of the quantum system to the applied electric field.
In its most rigorous formulation this idea can be used in the linear response limit in which one
assumes that the current depends linearly on the field. Using the corresponding time-dependent
quantum mechanical formulation one obtains the so called Kubo formalism which can be used
to obtain the conductance of the system. While this approach is very general and would allow
to include all kinds of scattering, it is not easy to apply to realistic systems.
In the following, we will concentrate on calculating the electronic transport in tunnel junctions
and hence adopt a rather simplified quantum mechanical point of view. In particular, we will
consider systems with typical dimensions much smaller than the mean-free path due to scatter-
ing at structural impurities, by interface roughness, by phonons, magnons or other temperature
dependent excitations present in real experiments. In the nanosize setups we consider, the re-
sistance is due to the scattering of the electrons on the potential of the insulating barrier.
This lecture will cover two main subjects. First, we will discuss the basic models to describe
electron transport in a single particle picture. After a brief reminder of the basic phenomenon
of quantum mechanical tunneling, and the introduction of the phenomenological description of
Julliere, this part will cover the famous Landauer approach to ballistic transport (Sec. 2.3) as
well as a more specialized approach to the tunneling problem – Bardeen’s approach based on
perturbation theory (Sec. 2.5).

2.1 Tunneling through a one-dimensional rectangular barrier

Of course the quantum mechanical tunneling effect is a very basic phenomenon discussed in
every introductory course of quantum mechanics. In brief it describes the fact that in contrast
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Figure 1: Simple one-dimensional model for quantum mechanical tunneling. A electron of
energy E = �2

2m
k2 is incident to a rectangular barrier potential.

to the classical mechanics which prohibits a particle to enter any area in which the potential
level surpasses the particles energy, quantum mechanics assigns a finite non-zero probability
find the particle in such areas. Mathematically, this is reflected by the fact that the wavefunction
is non-zero in such areas of a repulsive potential. To elucidate this effect a little more, let us
consider the probably simplest model for electronic tunneling.
Fig. 1 shows the setup chosen for this simple model, a rectangular barrier of height V0 and
width d between leads in which the electrons are described by free electron wavefunctions. In
this system it is an trivial problem to construct the wavefunction as

ψ(x) =

⎧⎨
⎩

exp(ikx) + r exp(−ikx) x < 0 in left region
a exp(−κx) + b exp(κx) 0 < x < d in the barrier
t exp(ikx) x > d in right region.

(2)

The decay constant is given by κ =
√

2m
�2 V0 − k2, the coefficients a, b and r, t can be determined

by wavefunction matching, i.e. by the requirement that the wavefunction and its derivative are
continuous at x = 0 and x = d. Simple algebra reveals the well know formula

t =
4iκk e−ikd

(ik + κ)2e−κd + (k + iκ)2eκd
. (3)

For the case of a sufficiently thick and/or high barrier, i.e. large d and/or large κ this expression
for t can be simplified by neglecting higher order terms in e−κd to

t ∼ 4iκk e−ikd

(k + iκ)2
e−κd.

The wavefunction now actually leads to an electric current flowing across the barrier. Applying
the quantum mechanical current operator one obtains for the current density (which can be most
simple evaluated in the right electrode region but is of course conserved in all space)

j(x) ∝ 1

2i
(ψ∗(x)∂xψ(x)− ∂xψ∗(x)ψ(x)) ∝ t2. (4)

Hence we find that there is a finite electric current flowing through the barrier which is propor-
tional to the square of the so called transmission amplitude t, a quantity that can be interpreted as
a transmission probability. We should note that we only considered the proportionality here as
the actual value of the current will of course depend on the normalization of the wavefunction,
an issue that will be re-occur in Sec. 2.3.
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Figure 2: Julliere model of spin-polarized tunneling. The spin-polarized density of states(DOS)
of the parallel(left) and antiparallel(right) MTJ is sketched. The tunneling current is indicated
by curved arrows at the Fermi energy EF . In the parallel situation the large DOS at both sides
of the junction in the ↑-spin leads to a large current while all other currents are small due to
the small number of available states.

2.2 The Julliere model of TMR

In a magnetic tunneljunction the additional spin-degree of freedom of the electrons has to be
included in the description of the transport process. In a ferromagnetic metal electrons of differ-
ent spin exhibit a different electronic bandstructure, their wavefunctions and transport properties
differ. As the electronic density of states for the two spins differ, usually also the number of
states relevant for transport, i.e. those states at or close to the Fermi level differ for the two
spins. In the problem we are interested in here, the electronic tunneling through an insulating
barrier, one usually assumes that the spin of the electrons is not altered. Hence, we assume that
the electron spin is a conserved quantum number, no scattering processes coupling electrons of
different spins are included in our theory. While this approximation is justified in most cases
one should be aware of its limitations. As the tunneling process itself is a coupling phenomena
with a very low transition rate, the neglected spin-flip scattering can actually become a major
effect as it was demonstrated e.g. in the case of surface states in half-metallic MTJs.
If the spin is not changed during the transport process across the MTJ, one can decompose the
total current into a spin-up and a spin-down component

I = I↑ + I↓ (5)

in which the up-spin electrons form I↑ and the down-spin electrons I↓. This two-current model,
which can be equivalently expressed as a “two resistor” model in which the junctions is consid-
ered as two parallel resistors with 1

R
= 1

R↑ + 1
R ↓, is an extremely popular and successful concept

in spintronics. Starting from this ansatz Julliere [3] constructed a very basic model explaining
the TMR effect. His basic assumption was that the current across the junction is proportional
to the product of the density of states(DOS) of the two sides (see Fig. 2), i.e. including the two
current model one obtains the following expression for the total current

IP ∝ nL↑nR↑ + nL↓nR↓. (6)

This we will assume to be the expression for the parallel current, if we now switch to an an-
tiparallel alignment to of the electrodes, we will have to flip the spins of one side with respect
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to the other. If we assign this switching to the right electrode we would obtain the following
expression for the current in the antiparallel case

IAP ∝ nL↑nR↓ + nL↓nR↑ (7)

and consequently we get for the TMR value

TMR =
IP − IAP
IP + IAP

=
(nL↑ − nL↓)(nR↑ − nR↓)
(nL↑ + nL↓)(nR↑ + nR↓)

= PLPR, (8)

where PL and PR are the spin-polarizations of the density of states

PL/R =
(nL/R↑ − nL/R↓)
(nL/R↑ + nL/R↓)

(9)

for the left and right electrodes, respectively. This very simple expression, known as Julliere’s
formula can already explain many basic features of TMR:

• TMR only occurs if both electrodes are magnetic, i.e. if both have a non-vanishing spin-
polarization.

• The maximal TMR of 100% is expected if both electrodes are 100% spin-polarized, i.e.
if both electrodes behave like half-metals.

• If both electrodes are equivalent, i.e. if PL = PR, the TMR effect is always positive.

At the same time one can easily spot several shortcomings of this theory of which the most
significant is the use of the rather ill-defined densities of states nL/R. Obviously, these quantities
have to be somehow related to the electronic density of states at or close to the Fermi level as
these electrons will carry the electric current. Furthermore, it must be somehow related to the
local density of states at the metal/insulator interface since this is the region of space from
which tunneling “takes place”. However, the exact definition of these quantities is unclear and
in consequence the predictive and explanatory power of Julliere’s formula is strongly limited.

2.3 Landauer transport

Landauer [8] proposed a theory of the transport process which is well adapted to describe the
tunneling transport. A very intuitive and simple derivation will be presented here. The Lan-
dauer equation can also be derived more rigorously starting from linear response theory. In
the Landauer approach to transport one considers the region Ω – in which the electrons travel
ballistically – to be attached to two reservoirs L and R.
The conductance Γ of the region Ω is defined by the current ILR divided by the potential differ-
ence between the two reservoirs. The current ILR on the other hand is given by the current due
to all electrons traveling from L to R minus the current due to the electrons traveling vice versa

ILR = IL→R − IR→L. (10)

To arrive at an equation for these currents, one can start with a simple one-dimensional model.
The current from the left to the right is determined by all electrons leaving the left reservoir,
entering the scattering region Ω, and leave this scattering region by passing into the right reser-
voir. If one now assumes a very simple picture of the region Ω in which its electronic structure
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is described by single band in which states with k > 0 propagate from the left to the right the
current is given by an integral over all states with k > 0 up to the Fermi wave-vector kF

IL→R =

∫ kF

0

ev(k)dk, (11)

where v denotes the group velocity of the state. Since

v =
1

�

∂E

∂k
(12)

and converting the integral over k into an energy integration using the density of states n(E),

IL→R =

∫ μL

0

e

�

∂E

∂k
n(E) dE

=

∫ μL

0

e

�

∂E

∂k

1

∂E/∂k

1

2π
dE

=

∫ μL

0

e

h
dE =

e

h
μL , (13)

where the energy integration has to be performed over all energies up to the Fermi energy (the
chemical potential) of the left reservoir. This can be understood from the requirement that the
electrons were assumed to be incoming from the left and therefore must be occupied in the
reservoir.
Using the same derivation for the states incoming from the right reservoir one obtains

ILR =
e

h
(μL − μR). (14)

Identifying the difference in the chemical potentials μL and μR with the applied voltage eV =
(μL − μR) one obtains the following interesting equation for the conductance

Γ =
ILR
V

=
e2

h
. (15)

This equation is truly remarkable since it states that each conducting band contributes the same
to the conductance. Irrespectively of the density of states or the group velocity of the conducting
states the conductance is always given by the fundamental quantum of conductance e2

h
. Indeed,

as Eq. (12) shows, states with a low velocity and therefore a low current j = ev are compensated
by their higher density of states such that the conductance remains constant.
In the case of multiple bands, the derivation has to be modified by the inclusion of an extra sum
over the different bands. Therefore in the general case of N conducting bands one obtains

Γ =
e2

h
N. (16)

The different „bands“ in this discussions are usually called „channels“. The argumentation
presented so far did not care about the proper definition of these channels. These were simple
assumed to form some kind of „band“ within Ω described by the usual formalism of a wave-
vector k and a dispersion relation E(k). Strictly speaking, since the system is not periodic, one
cannot speak of Bloch states with some wave-vector having a component k in the direction of
the current.
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Since a key point in the discussion was the preparation of a state traveling from within the
reservoirs through the region Ω one should clarify this idea. For such a state traveling to the
right, one might assume the typical scattering problem. Within the left reservoir one considers
a wavefunction being a Bloch state propagating towards the region Ω. „Propagate towards“ in
this context should be understood as a state having a current flowing towards Ω. Within the
reservoirs the resulting scattering state can be written in terms of reflected ψr and transmitted
ψt states which are all solutions of the bulk Schrödinger equation in the reservoirs with the same
energy as the incoming state ψin . The k values of these transmitted and reflected states have to
be chosen such that the states „propagate away“ from Ω.

ψ(�r) =

{
ψin(�r) +

∑
n rin,n ψ

n
r (�r) �r in left reservoir∑

n′ tin,n′ ψn
′

t (�r) �r in right reservoir
. (17)

Where, the summations can be considered to be performed over all reflected Bloch states or all
transmitted Bloch states. In principle, also states decaying away from the interfaces into the
reservoirs must be included in this expansion. However, since these do not carry any current
and by shifting the interface far enough into the reservoirs one can eliminate these decaying
states.
Looking back to the derivation of the Landauer formula, an important change has to be made.
While in Eq. (11) and Eq. (12) the summation over the incoming states and the evaluation of
the current from their group velocities were all performed within the same single band picture,
now one has to distinguish more carefully. The k integration in Eq. (11) has to be performed
over the „in“ label of the expansion in Eq. (17). The sum over the velocities on the other hand
is best performed in the right electrode. This is possible since current is conserved and can
be very easily be done if all transmitted states and the incoming state are normalized to carry
unit current. Using the orthogonality of the Bloch states one can perform the same steps as in
Eq. (10) to (14) again to derive the more general Landauer equation for ballistic transport in the
presence of some scattering of the incoming electrons,

Γ =
e2

h

∑
|tij |2, (18)

where i, j label the Bloch states in the reservoirs traveling from the left to the right.
Eq. (18) allows a simple interpretation of the transport in terms of the underlying quantum me-
chanical property of the transmission probability Pij = |tij |2 of an electron from the incoming
Bloch state i into the transmitted Bloch state j. This interpretation makes the requirement of
normalizing the incoming and transmitted Bloch states to unit current very clear, since in this
normalization the direct interpretation of this probability is reasonably well defined and Eq. 18
can be seen as a simple generalization of Eq. 16.

2.4 Interpretation of the Landauer formula

The Landauer formula Eq. (18) was the source of some confusion for quite some time after
its first formulation [9, 10]. The most striking feature of the equation might be its limit for
a perfectly transmitting region, i.e. for a region with Pij = |tij |2 = 1 for some set of i, j. For
example if one would consider a perfect bulk crystal sandwiched between reservoirs of the same
bulk material the expansion of Eq. (17) would collapse to

ψ(�r) =

{
ψin(�r) +

∑
0ψr �r in left reservoir

1ψt = ψin(�r) �r in right reservoir
, (19)
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and one would rediscover Eq. (16) with N denoting the number of incoming Bloch states. At
first glance, this means that the Landauer equation predicts a limited conductance of a system
without any de-coherent scattering, i.e. of a perfect bulk crystal. In the same way the Landauer
equation would also give a finite conductivity of a free electron gas. In this case a question
which can always be asked only becomes more obvious to ask: How can a region with ballistic
transport, i.e. without any dissipative processes, have a finite conductance? Since there is a
voltage drop over the region and a current is flowing, some energy must dissipate. The key to
the answer to this question lies in the definition of the reservoirs which were assumed to be in
thermal equilibrium with some chemical potential μ attached to them. This is only possible, if
there are actually dissipative processes in the reservoirs leading to the „thermalization“ of the
„hot“ electrons being transfered across the region of ballistic transport.
The surprising result of a finite conductance in the case of a perfect crystal can now been inter-
preted in different ways. Either the setup described was not correct, since the reservoirs could
not remain in thermal equilibrium and being perfect crystals like the region of ballistic trans-
port at the same time or, which is actually very much the same, no finite voltage can be applied
across such a system. The finite conductance of such a system with perfect ballistic transmis-
sion can now be interpreted as due the finite resistance at the interface between the reservoir
and the ballistic region. This is also called the Sharvin-resistance of the system.
Another point to mention in the discussion of the physical significance of the Landauer equa-
tion is its formulation in terms of a two-terminal device. Both the current and the voltage
drop are defined between the same two reservoirs. In many experiments, especially in meso-
scopic physics a four point measurement is performed in which the current is driven between
electrodes different than those between the voltage drop is measured. Büttiker [9] presented a
generalization of the Landauer equation to these multi-terminal case. While this approach is
very appropriate for mesoscopic physics, on the atomic scale multi-terminal arrangements are
not the typical experimental arrangement and thus Eq. (18) will be sufficient. Additional resis-
tances present in the current circuit are frequently eliminated in a four-point measurement, in
which two additional potential probes are attached close to the scattering volume. However, for
scattering volumes on the atomic scale, these geometries are not appropriate and thus we will
restrict ourself to simple two point geometries.
While the Landauer equation is valid in many cases reaching from systems with high conduc-
tivity to systems in the tunneling regime, one has to be careful in its application in some cases.
Only states in which the incoming and transmitted waves can be described by Bloch states con-
tribute to the tunneling current. This excludes any state which is localized within the region
of ballistic transport to contribute. This corresponds to the fact that these states do not carry
any current within the simple one electron picture of transport chosen. In reality, there exist
processes beyond this picture which lead to some coupling of these localized states to the oth-
erwise orthogonal Bloch states in the reservoirs. For example the many-body electron-electron
interaction, electron-phonon scattering, or structural defects not included in the description can
provide such a coupling. Thus, while the Landauer approach will be correct for cases of high
transmission through Bloch states, one could imagine that in the limit of a very low transmis-
sion probability another processes of transport across the ballistic region becomes important. In
the one electron picture these processes could be thought of as the transition of an electron from
the reservoirs into some localized state of the reservoir, the transition of the electron from one
side of the reservoir to the other and than the transition of the electron into a state of the other
reservoir. The validity of the Landauer model is now limited by the transmission probability
between the reservoir states and the localized state. If this probability becomes comparable to
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Figure 3: Setup considered in Bardeen’s approach to tunneling. The full junction is split at
the separation surface. The potential at this surface (assumed to be V = 0 for simplicity) is
extended to infinity to create two insulated systems with semi-infinite leads and semi-infinite
barriers.

the probabilities Pij = |tij|2 the Landauer equation breaks down.
On the other hand, one can of course treat the other limit in which the transition probability
between the two sides of the reservoir becomes very small and the details of the scattering
processes needed to couple the states can be neglected. This limit can be successfully described
by theories for the quantum mechanical tunneling process.

2.5 The Bardeen approach to tunneling

The following description of the tunneling process is based on Bardeen’s approach [11] to
tunneling which essentially applies time dependent perturbation theory to the problem. Fig. 3
shows the tunneling setup used in this approach. Two semi-infinite crystals are separated by
a barrier region, which will be assumed to be a vacuum barrier for simplicity. If this vacuum
barrier is sufficiently high and wide one can think the total setup to consist of of two independent
systems: one at the left (L) and one at the right(R) side.
This total separation of the systems leads to two independent Schrödinger equations for the two
sides

(T + VL)ψL = εLψL

(T + VR)ψR = εRψR (20)

where T denotes the operator of the kinetic energy of a single electron and VL and V R are the
potentials of the left and right system respectively. The single particle wavefunction ψ(t) of the
entire setup is determined by the total Hamiltonian H = T + VL + VR.
Now one can apply time dependent perturbation theory to describe the tunneling of an electron
across the vacuum barrier. Tunneling from the left to the right is assumed, the case of an
electron tunneling vice versa may be treated completely analogously. The initial state of the
tunneling process is localized in the left system. Therefore, there exists an eigenstate ψμL with
|ψ(t→ −∞)〉 = |ψμL〉. The time dependence of the state |Ψ(t)〉 is governed by the Hamiltonian
of the whole system.

i�
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 . (21)

The tunneling probability is given by the overlap of this time-dependent wavefunction with a
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wavefunction |ψνR > of the right system. Multiplying Eq. (21) from the left with 〈ψνR|leads to

〈ψνR|
(
i�
∂

∂t

)
|ψ(t)〉 = 〈ψνR|H |ψ(t)〉 . (22)

Using the Schrödinger equation for the left state one obtains

i� ∂
∂t
〈ψνR| ψ〉 = 〈ψνR|H |ψ〉 − 〈ψνR|HR |ψ〉

= 〈ψνR|VL |ψ〉 .

(23)

Substituting |ψ(t→ −∞)〉 = |ψμL〉 for |ψ〉 at the right hand side of Eq. (23) leads to first order
perturbation theory

i�
∂

∂t
〈ψνR| ψ〉 = 〈ψνR|VL |ψμL〉 . (24)

Even though this equation looks familiar one has to emphasize that this is not a result obtained
by standard time-dependent perturbation theory. The states |ψL〉 and |ψR〉 are eigenstates of
the Hamiltonians HL and HR respectively. Therefore, they do not form a complete orthogonal
basis of the eigenspace of the total Hamiltonian H = T + VL + VR and the matrix elements
at the left side of Eq. (24) are not sufficient to determine the total time dependence of |ψ >.
This is a basic weakness of Bardeen’s approach. However many applications of this formalism
have shown that Bardeen’s approximation produces reliable results for systems which are well
separated, i.e. systems where the overlap of the two wavefunctions ψR and ψL is small.
Since the potential VL is not small in the left region, the question arises whether one is allowed
to use perturbation theory at all. However, it can be seen from Eq. (24) that the quantity which
in fact determines the strength of the perturbation of the initial state is 〈ψνR| VL |ψμL〉. Since the
final wavefunction |ψR〉 is localized in the right region in which the left potential VL is very
weak this perturbation might still be regarded as a small perturbation and thus time depended
perturbation will lead to reasonable results.
By separating the time-dependence of the states |ψμL〉 = eiεμt |Ψμ

L〉 and |ψνR〉 = eiενt |Ψν
R〉, inte-

grating Eq. (24) and performing the limit t → ∞, one obtains an expression for the tunneling-
probability per time interval

PLR
μν = lim

t→∞
1

t

1

�2

∫ t

0

|〈ψνR|VL |ψμL〉|2 (25)

= lim
t→∞

4

�

sin2
( εν−εμ

2�
t
)

(εν − εμ)2t

∣∣MRL
μν

∣∣2 , (26)

where the matrix element MLR
μν is given by the stationary-state matrix element of the potential

MLR
μν = 〈ψνR|VL |ψμL〉 . (27)

Assuming a continuous range of energy levels εμ (or εν) the limit of Eq. (26) can be evaluated
directly. One obtains

PLR
μν =

2π

�
δ(εν − εμ)|MLR

μν |2. (28)

This result is similar to the well known ’Golden Rule’ Fermi obtained for standard time-
dependent perturbation theory. It describes elastic tunneling with energy εν = εμ only. Formally
this condition is taken care of by the δ-function in Eq. (28).
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To evaluate this matrix element one can introduce an additional approximation. He assumed the
potential VL to be zero in the right region of space. Similar the right potential should be zero in
the left region. More formal one assumes a separation surface S which separates the regions in
which the two potentials differ from zero. This can be written down by the condition VLVR = 0
for any point in space. Figure 3 shows the setup as used in this additional approximation. Of
course, this approximation will become better if the potentials VL and VR are reasonably small
at and beyond the separation surface. This will be the case if the separation surface is located
far out in the vacuum.
Using the Schrödinger equation for the left wavefunction and having in mind that the potential
VL is zero in the right space one can now rewrite the matrix element as an integral over the left
region only

MLR
μν =

∫
L

Ψν
R(�r)∗(εμ +

�
2

2m
�∇2)Ψμ

L(�r)dV (29)

which can be written in a more symmetric form

MRL
μν =

∫
L

{
Ψν
R(�r)∗ενΨ

μ
L(�r) + Ψν

R(�r)∗ �2

2m
�∇2Ψμ

L(�r)
}
dV

=
∫
L

{
Ψν
R(�r)∗

←−−−−−−
(T + VR)Ψμ

L(�r) + Ψν
R(�r)∗ �2

2m
�∇2Ψμ

L(�r)
}
dV

= − �
2

2m

∫
L

{
Ψμ
L(�r)�∇2Ψν

R(�r)∗ −Ψν
R(�r)∗�∇2Ψμ

L(�r)
}
dV

.

(30)

In these transformations in the first step the eigenvalue εμ was substituted by εν because energy
conservation requires the calculation of matrix elements with εμ = εν only. In the second step
the Schrödinger equation for the right state was used (the arrow indicates the wavefunction the
operators acts on). The integration area is the left region. Since the potential VR is assumed to
be zero in this region, it was dropped in the last step. Using Greens theorem and the boundary
condition that the right wavefunction is zero at infinite distance from the separation surface this
integral can be transformed into an integral over the separation surface

MLR
μν = − �

2

2m

∫
S

(
Ψμ
L(�r)�∇Ψν

R(�r)∗ −Ψν
R(�r)∗�∇Ψμ

L(�r)
)
dS. (31)

So far only an expression for the probability of the transition of an electron from a left state into
a right state was obtained.
Slightly modifying Eq. (28) this probability can be written as

PLR
μν =

2π

�
δ(εLμ − εRν − eV )|MLR

μν |2, (32)

where the additional term eV is introduced to account for the bias voltage V applied between
the two sides. To calculate the tunneling current one has to sum over all different possible left
and right states and one has to keep in mind that the electrons might tunnel from the left to the
right as well as vice versa. The total current therefore is given by

I = IL→R − IR→L

= e
∑
μν

f(εμ)(1− f(εν + eV ))PLR
μν − e

∑
μν

(1− f(εμ))f(εν + eV )PRL
νμ

= e
∑
μν

(f(εμ)− f(εν + eV ))PLR
μν

(33)

where f(ε) denotes the Fermi-distribution function which is introduced to ensure that only tun-
neling from occupied to unoccupied states can occur. In Eq. (33) the symmetry of the tunneling
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probability PLR
μν = PRL

νμ which can easily be deduced from Eq. (31) was used. The sum in
Eq. (33) has to be performed over all right states labeled by ν and all left states labeled by μ.
No further assumption is made on the nature of these left and right states, i.e. both Bloch states
and surface states decaying into the bulk contribute to the current and therefor this formula dif-
fers significantly from the Landauer formula [12]. At the same time Eq. (32) and Eq. (33) show
quite some similarity to the Julliere model. However, the additional matrix element in Eq. (32)
which contains many details of the wavefunction.

3 TMR in crystalline MTJs: Fe/MgO/Fe

In contrast to the widely used but amorphous barrier material Al2O3, MgO allows to grow
well-defined tunneljunctions. The Fe/MgO/Fe(100) system represents an ideal candidate for
a comparison with a theoretical description. Because of the small lattice mismatch between
MgO and Fe, it is possible to grow MgO epitaxially on the Fe substrate. Thus one might expect
the MgO/Fe(100) interfaces obtained experimentally to be very close to the ideal theoretical
structure. As discussed already, the Fe/MgO/Fe MTJs recently enabled the production of most
successful TMR devices with high TMR ratios at room temperature.

Figure 4: Sketch of an Fe/MgO/Fe MTJ with 3 monolayer (ML) of MgO sandwiched between
antiparallel magnetized Fe leads.

The basis of the current understanding of the properties of such crystallineFe/MgO/Fe MTJs is
its electronic structure. Actually, calculations [13, 14] establishing the arguments we are going
to discuss have been predicting a high TMR in this junction even before the first sucessful
experiments could be performed. Hence, we will first discuss the basic electronic properties
of the interface with special focus on the states relevant for electronic transport. We will then
apply the Landauer formalism by calculating the transmission probabilities of the MTJ. The
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results have been obtained by using the density functional theory code FLEUR [15] developed
in Jülich and its extension to calculate semi-infinite systems and transport [16].

3.1 Basic electronic properties of the Fe/MgO interface

Fig. 5 shows the majority (positive) and minority (negative) contribution to the local density of
states (LDOS) at different positions for the MgO/Fe interface. The energy range eF − 3eV <
ε < eF + 3eV in the plots was chosen to include only states near the Fermi energy eF which
are relevant for transport. The uppermost panel displays the Fe-LDOS. To the left the LDOS of
bulk Fe layer is plotted, to the right the LDOS of the interface Fe is shown. In both plots arrows
at the Fermi level εF are used to indicate the value of the LDOS in both spins. One can see
that for the bulk Fe the LDOS at Fermi level is slightly larger for the majority spin contribution,
hence the spin polarization at Fermi level is positive in bulk Fe. The spin polarization at the
Fermi level becomes negative at the interface Fe layer. This result might already point out some
problem of applying the Julliere model as it is not clear which polarization to use in this model.
The two central panels of Fig. 5 display the LDOS in the MgO interface layer, the lower two
panels the LDOS in next MgO layer. At the energy range shown here, bulk MgO has a bandgap
and therefore the LDOS in these plots are purely due to the decaying LDOS induced by the Fe.
This can be seen very clearly in the right panel showing the O LDOS. The LDOS in these plots
mirrors that of the Fe at the interface. These induced states decay exponentional into the MgO,
hence the LDOS in the interface MgO layer is about a factor of 10 smaller than that of the Fe
layer, and it decays by another factor of ∼10 in the next MgO layer.
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3.2 MgO as a tunneling barrier

The induced LDOS as discussed so-far is already an indication of the decay of the wavefunc-
tions originating in the Fe into the MgO. As we have seen in our simple discussion of Sec. 2.1
this decay is one of the fundamental ingredients of the tunneling process. In particular, the rate
κ of this decay, will determine the transmission of electrons through a tunnel barrier. In our
simple model this decay rate was simply given in terms of the height of the barrier as

κ =

√
2m

�2
V0 − 2m

�2
ε, (34)

where V0 is the potential in the barrier and ε the energy of the tunneling electron. If we now
consider a realistic barrier with its crystal structure, we will have to switch from a simple free
electron model to the full bandstructure of the material. However, in contrast to the usual dis-
cussion of the bandstructure in terms of Bloch states delocalized in all space, we must focus
our interest at bandgaps in which no such Bloch states exists. Hence, we will have to consider
the so-called complex bandstructure (CBS) in which not only the usual Bloch states are plotted
but also states which decay exponentially. Such states exist also at energy at which no ordinary
Bloch states can be found, i.e. in the bandgaps of the usual bandstructure. They can be un-
derstood as generalizations of Bloch states in which the �k-vector is not purely real but has an
imaginary part. In fact, for a state with the complex vector �k = �q + i�κ one finds

ψ(�r) = ei
�k�ru(�r) = e−�κ�rei�q�ru(�r), (35)

i.e. an exponentially decaying state with decay constant �κ. While such states are not normaliz-
able in an infinite bulk and thus are no valid solutions for bulk wavefunctions, at interfaces and
in particular in thin tunnelbarriers these evanescent states form the generalization of the simple
exponentially decaying solution used in Sec. 2.1. More details of the properties of the CBS can
be found in the literature, e.g. in [17].
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Figure 6: a) Complex bandstructure of MgO at �k‖ = 0. b) Smallest decay constant κ =

min(�kz(�k‖)) for all �k‖-values of the two dimensional Brillouin zone.

We now focus on the CBS of MgO as shown in Fig. 6a). The bandgap has a value of about
4.5 eV as typical for LDA calculations and reaches from about -2.5 eV up to 2 eV. The Fermi
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energy is chosen according to its position in a Fe/MgO junction. At �k‖ = 0 the highest occupied
band of the valence band is connected by a complex band forming a loop with purely imaginary
kz to the lowest unoccupied band. This complex band is the slowest decaying evanescent state
within the band gap. At Fermi energy the red line shows that this slowest decaying band has a
kz value of kz = 0 + i 0.34 Å

−1
. According to Eq. (4) this will lead to a tunneling transmission

proportional to exp(−0.68 Å
−1
d) where d is the thickness of the barrier. As all other bands

decay more rapidly, this is the expected asymptotic decay constant if no interface effects are
present, i.e. it is the decay expected in the limit of very thick barriers.
To confirm that this state is actually the slowest decaying evanescent state one has to investigate
not only the electronic states of normal incidence at �k‖ = 0 but all possible �k‖-values from
the two-dimensional Brillouin zone(2D-BZ). In Fig 6b) for each of these �k‖-values the smallest
imaginary κ value is plotted yielding the slowest decaying wavefunction. On can see that this
minimal κ is smallest around the center of the 2D-BZ and grows quickly for �k-vectors with
non-vanishing |�k‖|.
Summarizing these results, one might state that MgO as a barrier material shows properties
similar to a simple flat-potential model. In particular:

• Electrons of normal incidence have the slowest decay into the barrier.

• The decay constant κ raises with increasing |�k‖|, little anisotropy is found, i.e. all �k‖-
directions show the same increase in the decay constant.

• The state with slowest decay at �k‖ = 0 is the highest symmetric, so called Δ1 state.

The last of these points will be of special interest later, as the symmetry of this slowest decaying
state determines the tunneling characteristics significantly.

3.3 Electronic tunneling at normal incidence
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Figure 7: a) Transmission through a 3ML MgO barrier at �k‖ = 0 as a function of energy in a
parallel magnetized MTJ. b) Bandstructure of incident electrons in Fe for the same k-point and
energy range.

We start our discussion of the electronic tunneling by investigating the transmission for elec-
trons at �k‖ = 0. Fig. 7a) shows the corresponding energy dependent transmission probability
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T =
∑ |t|2 for energies close to the Fermi energy for a parallel alignment of the lead mag-

netizations. The two most striking features of this plot are: the very small transmission in the
minority spin channel around the Fermi energy, which actually can not be distinguished from
zero transmission and the strong transmission starting at around ∼ −1 eV in the majority spin
channel. Obviously, minority spin electrons are strongly reflected at the MgO barrier while
some majority spin electrons – those in a band starting at ∼ −1 eV – have a significant trans-
mission probability. Actually, the same strong increase of the transmission can also be observed
in the minority spin channel at a higher energy of around ∼ 1.8 eV.
By comparison with the bandstructure of Fe, shown in Fig 7b), one can easily recognize the
origin of this effect. In the majority spin channel of Fe a Δ1 band starts at ∼ −1 eV which can
couple to the slowly decaying evanescent band in MgO and, in the case of parallel alignment
of the magnetization, to the same Fe band on the other side of the tunneling barrier. All other
bands in Fe have a different symmetry and hence can not be matched to the slowest decaying
state in MgO. Consequently, these other states will decay much stronger into the barrier and will
have a very low transmission probability. On therefore could call the MgO barrier a symmetry
filter as only those Fe states with the correct Δ1 symmetry can lead to a significant transmission.
The low transmission in the minority spin close to the Fermi energy is therefore a result of the
exchange splitted bandstructure in which the Δ1 is pushed well above the Fermi level. In the
minority spin channel the transmission also abruptly raises as soon as the Δ1 can contribute at
slightly above 2 eV.
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Figure 8: Transmission through a 3ML MgO barrier at �k‖ = 0 as a function of energy in a
antiparallel magnetized MTJ.

This interpretation in terms of symmetry also explains the low tunneling transmission in the
case of an antiparallel alignment of the magnetizations (Fig. 8). In this case the Δ1 states
present on one side of the barrier do not find corresponding “partners” at the other side of the
MTJ as the spins are flipped. Consequently, the transmission in the anti-parallel configuration of
the junction looks qualitatively similar to that of the minority-spin transmission of the parallel
junction. Due to symmetry, in this case both spins of course give the same transmission.

3.4 TMR of the Fe/MgO/Fe MTJ

While the results presented so far give an indication of the origin of high TMR in all-epitaxial
Fe/MgO/Fe MTJs, one important problem still has to be studied: the influence of electrons with
�k‖ �= 0. In this case two competing effects could be expected. On the one hand electrons with
non-normal incidence, i.e. with non-vanishing �k‖, decay faster into the MgO layer as we have
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discussed in Sec. 3.2. This effect is expected to be stronger for thicker barriers and thus in the
limit of thick MgO only �k‖ = 0 should contribute to the tunneling current and consequently a
huge TMR should be expected in this limit.
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Figure 9: a) Transmission through a parallel magnetized 3ML MgO barrier at the Fermi level
for all �k‖ and both spins. b) Transmission through an antiparallel magnetized 3ML MgO barrier

at the Fermi level for all �k‖. c) Sketch of the 2D-BZ. Note: the plots have different scalings
while the colorscale is the same in all plots.

On the other hand, the symmetry analysis we presented and the strong selection of tunneling
states in MgO is only valid for the Γ-point and thus one could expect that the suppression of
tunneling minority spin states of Fe and the huge polarization of the transmission is only present
at �k‖ = 0. To investigate this effect we also have to consider the transmission in all of the 2D-BZ
(Fig 9c)).
Fig. 9a) shows the transmission as a function of �k‖ for the majority and minority spin of a
parallel aligned magnetization through 3ML MgO. This transmission was evaluated for states
at the Fermi level so that the integral over the 2D-BZ of this transmission is the zero-bias
Landauer conductance of the MTJ. Concentrating first at the majority-spin transmission one
can identify a peak of high transmission at the center of the 2D-BZ. At the very center of this
peak, the value of highest transmission is the normal incidence transmission we discussed in the
last section. This peak of transmission due to the Fe Δ1-band clearly dominates the majority-
spin conductance in the parallel alignment. As expected, the minority spin channel shows no
transmission directly at the �Γ-point, and also in its vicinity around the center of the BZ no
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transmission is found. However, several sharp spikes of very high (up to perfect transmission of
1) can be seen at some �k‖-points. A detailed study of these spikes identifies them as resonance
effects in which surface resonance states at the interface lead to high transmission. These effects
have been studied in great detail and are expected to decay rapidly with interface roughness[18]
present in a realistic junction. The transmission of the antiparallel MTJ as shown in Fig. 9b)
again shows some similarities to the minority spin conductance in the parallel MTJ. Only at a
few special �k‖-points resonances lead to a high transmission.
From the discussion of the various transmission values we can now draw conclusions on the
expected TMR in a Fe/MgO/Fe MTJ. From the zero-bias conductance of Fig. 9 one obtains
a TMR value of approximately 480%. This value already shows the high TMR also found
experimentally but should not taken too serious as the very sharp peaks in the conductance are
numerically hard to integrate and physically not so relevant. Additionally, this junction is at or
beyond the minimal barrier thickness which could be expected in any experimental setup and a
larger thickness will lead to a relative suppression of all �k‖ �= 0 transmission and therefore to an
increase in TMR. Calculations indeed have obtained TMR values well above several thousand
percent.

3.5 TMR in more complex oxides
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Figure 10: Complex bandstructure of SrTiO3 (a) and BaTiO3 (b) for electrons at �k‖ = 0.

Advancing beyond MTJs with MgO as a barrier material the investigation of more complex
material combinations for the leads and the insulating barrier is aiming at producing MTJs with
complex behavior, including possibly new physical phenomena and improved functionality. A
special focus at the moment is at complex oxide materials as this class of mostly transition
metal oxides show an extremely rich phasespace of new effects which might be utilized in MTJ
based devices. In particular the idea of including ferroelectric or multiferroic materials into an
tunneljunction seems very promising as this enables to use the strong magneto-electric coupling
phenomena in these materials to easily switch the resistance state of the device or to achieve
multiple resistance states depending on the relative orientation of magnetic and ferroelectric
order[19].
The most promising class of materials in this context are the transition metal oxides in the
perovskite structure as many of them have similar composition and lattice constant and structure
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so that one can grow fully epitaxial multilayers. Much experimental progress has be reported
recently on the growth of such heterostructures and many new effects at these interfaces have
be discovered. As strong electronic correlation effects are important in many of these materials
the theoretical description of the electronic properties and of the electronic transport processes
can be quite difficult. However, some materials like the popular insulator and substrate material
SrTiO3 or the simple ferroelectric oxide BaTiO3 are simple band insulators and their properties
can be described in analogy to the discussion of MgO presented so far.
Comparing the electronic structure of SrTiO3 with that of MgO, in particular looking at the
character of the slowly decaying evanescent states in the barrier, the complex bandstructure as
seen in Fig. 10a) shows some remarkable differences. Even though the material is not a direct-
gap insulator, a rather slowly decaying state can be found at the Γ-point. However, several bands
of different effective mass are present both in the valence and the conduction band. Furthermore,
states with very little dispersion in some directions can be identified by flat bands with a huge
effective mass. As shown in Fig. 11 this leads to a rather anisotropic distribution of the decay
constant with a “cross-like” structure in the center of the Brillouin zone.
Even more unusual tunneling characteristics are expected from a ferroelectric BaTiO3 barrier
(Fig. 10b)). In this case structural distortions connected with the ferroelectric state move the
flat bands into the bandgap, i.e. the top of the valence and bottom of the conductance band are
now formed by such bands. However, due to the high effective mass of these bands, they lead to
strongly decaying states in the bandgap and the states which will dominate the tunneling are no
longer derived from the states at the edges of the valence and the conduction band. This leads to
a rather uniform decay rate for all �k‖-points, i.e. in contrast to MgO and to SrTiO3 states close
to Γ are no longer expected to dominate the tunneling current.
As we will see more examples of novel effects and proposed functionality in these complex
oxide materials in other contributions to this spring school we will not discuss those in more
detail here.
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Figure 11: Smallest decay constant as a function of �k‖ for SrTiO3 at an energy 0.1 eV below
the conduction band minimum. The 2D-BZ with its high symmetry points is indicated as well.

4 Summary

We discussed several different theoretical approaches to TMR. While the Julliere model is most
simple and gives an very intuitive interpretation of the TMR value in terms of the polarization
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its predictive power and consequently also its ability to interpret results is limited. Most pop-
ular is the Landauer picture of tunneling transport in which the quantum mechanical tunneling
probability is the key quantity to determine the conductance. This is the de-facto standard at the
moment in ab initio calculations of tunneling transport. As this approach includes all the details
of the electronic wavefunction and its scattering on the tunneling barrier, the Landauer conduc-
tance is able to describe realistic MTJs and predict TMR values. However, the requirement of
full coherence in the transport process might be a too strong assumption in some cases. One
therefore could expect that Bardeen’s approach being more realistic in this respect while still
capturing all the physics included in the Landauer picture is an ansatz that will be used more
often in the future.
We also applied the Landauer theory of TMR to the most simple and most promising MTJ
Fe/MgO/Fe. Here we discussed the basic electronic properties of Fe and MgO and introduced
the symmetry argument that explains the very high TMR ratios found in such MTJs. How-
ever, one should be aware of the fact that this was only a very basic summary of the results as
we did not discuss or investigated many details such as e.g. the effects the electronic, atom-
istic, magnetic or chemical interface properties or modifications. Neither did we study the bias
dependence of TMR, details of the barrier thickness dependence of TMR, inelastic transport
processes or the temperature dependence of TMR. Some of those effects will be subject of
other contributions to this spring school while some other are still unsolved.

References

[1] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).

[2] M. Baibich, J. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet,
A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

[3] M. Julliere., Phys. Lett. A 54A, 225 (1975).

[4] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74(16), 3273
(1995).

[5] T. Yaoi, S. Ishio, and T. Miyazaki, J. of Magnetism and Magnetic Materials 126(1), 430
(1993).

[6] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Materials 3, 868
(2004).

[7] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang,
Nature Materials 3, 862 (2004).

[8] R. Landauer, IBM Journal Res. Dev. 1, 223 (1957).

[9] M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).

[10] A. Stone and A. Szafer, IBM Journal Res. Dev. 32, 384 (1988).

[11] J. Bardeen, Phys. Rev. Lett. 6, 57 (1960).

[12] D. Wortmann, H. Ishida, and S. Blügel, Phys. Rev. B 72(23), 235113 (2005).



B2.22 Daniel Wortmann

[13] W. Butler, X.-G. Zhang, T. Schulthess, and J. MacLaren, Phys. Rev. B 63, 054416/1
(2001).

[14] J. Mathon and A. Umerski, Phys. Rev. B 63, 220403/1 (2001).

[15] http://www.flapw.de.

[16] D. Wortmann, H. Ishida, and S. Blügel, Phys. Rev. B 66(7), 075113 (2002).

[17] V. Heine, Surface Science 2, 1 (1964).

[18] K. Xia, P. Kelly, G. Bauer, I. Turek, J. Kudrnovský, and V. Drchal, Phys. Rev. B 63, 64407
(2001).

[19] E. Y. Tsymbal and H. Kohlstedt, Science 313(5784), 181 (2006).



B 3 Spin injection into semiconductors 
 
 

  B. Beschoten 

  II. Physikalisches Institut  

  RWTH Aachen University 
 
 
 
 
 
 
 
 
 
 
 
 
 
Contents 

1 Introduction ............................................................................................... 2 

2 Band structure of direct band gap semiconductors............................... 6 

3 Optical selection rules ............................................................................... 7 

4 Electrical spin injection ............................................................................ 8 
4.1 Spin LEDs........................................................................................................... 8 
4.2 Spin injection into bulk GaAs .......................................................................... 11 

5 Spin precession: from single spin to spin ensemble ............................. 14 
5.1 Single spin precession ...................................................................................... 14 
5.2 Spin precession of a spin ensemble .................................................................. 15 
5.3 Continuous spin injection: Hanlé effect ........................................................... 16 

6 Time-resolved electrical spin injection.................................................. 18 

References .......................................................................................................... 19 

 



B3.2  B. Beschoten 

1 Introduction 
Modern information technology, i.e. data processing and storage, is based on semiconductors, 
such as silicon, and ferromagnetic materials, such as iron. Information processing and 
computing takes place in semiconductor transistors and integrated circuits, while information 
is magnetically stored on high density hard discs. The evolving field of semiconductor 
‘spintronics’ is aimed at combining ferromagnets with semiconductors to develop electronic 
devices, which integrate information processing with information storage [1,2]. Up to now, 
information processing technology is relying on moving electron charges, ignoring the spin 
(which is closely connected to magnetism) attached to each electron. In ordinary electric 
circuits the spins are oriented randomly and have no effect on the current flow. On the other 
hand, spintronic devices create spin-polarized currents in which electrons are in a spin-aligned 
state, either spin ‘up’ or spin ‘down’, and use the spin to control current flow.   

Spin polarized currents (and therefore electron spins) have nevertheless been of importance 
for information storage in read-out heads for computer hard drives during the last decade [3]. 
The read-out heads exploit an effect called giant magnetoresistance (GMR) [4, 5], which 
occurs in multilayer heterostructures consisting of alternating thin films of a ferromagnetic 
metal, for example cobalt, and a non-magnetic metal such as copper. The electrical resistance 
of such structures can be switched by a magnetic field. When the ferromagnetic material is 
magnetized, all magnetic moments of the individual atoms or of the conduction electrons 
align in one direction (see Fig. 1, for the sake of simplicity, here, the current is flowing 
perpendicular to the magnetic layers like in spin-valve structures [3], contrary to GMR 
devices in which the current flows parallel to the layers). Unpolarized electrons from the 
circuit line acquire the same magnetic moment direction when passing through the first 

 

 
 

Fig. 1 Schematic illustration of a magnetic spin-valve structure consisting of a non-magnetic metal sandwiched by 
two ferromagnetic metallic layers of, e.g., different thickness or coercive fields. (a) If the magnetization of the two 
ferromagnetic layers is aligned parallel, spin polarized electron currents generated by the first layer can easily enter the 
second layer as they scatter into a high density of free electronic states of the same spin orientation leading to a low 
resistance state. (b) For oppositely oriented ferromagnetic layers only a small number of free electron states of the 
same spin orientation is available leading to a high resistance state [3]. 
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ferromagnetic layer thus creating a spin polarized current. If this spin current passes through 
the second magnetic layer depends on whether the magnetic moments of its electrons are 
aligned parallel or antiparallel to the magnetic moments of the ferromagnetic layer. Only for 
parallel alignment the spin current can pass freely. With no external magnetic field applied, 
the magnetization of both ferromagnetic layers can alternate depending on the thickness of the 
intervening non-magnetic spacer metal. Then the flow of a spin polarized current is hindered 
when passing the second layer. However, if an external magnetic field is applied, which 
aligns the magnetic moments of all ferromagnetic layers in one direction, the barrier to spin 
polarized transport is reduced and the resistance drops. 

After switching, the magnetic layer in a spin-valve keeps its direction of magnetization until it 
is switched again. This means that the device can act as a memory element and it even retains 
its spin configuration when the external power is turned off. Metal-based spintronics therefore 
lead to the more sophisticated storage technology of ‘non-volatile’ magnetic random-access 
memories (MRAMs). For practical purposes MRAM devices use a magnetoresistance effect 
that depends on spin dependent electron tunneling. A tunneling magnetoresistance (TMR) 
device has a similar sandwich structure like the spin valves with the nonmagnetic metallic 
layer being replaced by a tunneling barrier [6]. Spin dependent tunneling is a quantum-
mechanical property of electrons that allows them to travel across an insulating barrier 
between two ferromagnetic layers (a few mono-layer thick aluminum-oxide (Al2O3) is often 
chosen as the tunneling barrier) even when, according to classical physics, they do not have 
sufficient energy to do so. Like in the spin-valve structure the magnetoresistance in TMR 
elements switches from a high to a low resistance for antiparallel and parallel alignment of the 
adjacent ferromagnetic layers.  

Today’s magnetic read-out heads and MRAMs are made of ferromagnetic metallic alloys. 
However, micro-electronics companies are solely oriented to semiconductors and not to 
metals. An important goal is therefore to design and to build all semiconductor spintronic 
devices using semiconductors, which are compatible with existing chip technology. In 
addition, semiconductor spintronics may even offer more interesting possibilities for 
information processing since semiconductors have the ability to amplify both optical and 
electrical signals, which is not possible in metallic devices.  

The spin field-effect transistor (spin FET) has been the model device for many years in the 
field of semiconductor spintronics. It was proposed by S. Datta and B. Das in 1990 [7]. A 
schematic illustration is depicted in Fig. 2(b). In a conventional FET, a narrow semiconductor 
channel is placed between two opposing electrodes, the ‘source’ and the ‘drain’. A third ‘gate’ 
electrode is located above the channel. An electrical field caused by a negative voltage 
applied to the latter gate drives electrons out of the channel, which turns the channel 
insulating. The spin FET has a ferromagnetic source and drain, so that the current injected 
into the semiconductor channel is spin polarized. If this spin current is not affected when 
traversing the channel, it will pass the ferromagnetic drain if the magnetizations of both the 
source and the drain are aligned in the same direction (Fig. 2(a)) (similar mechanism as for 
the spin valves in Fig. 1).  

In contrast to spin transport through metals, however, in semiconductors the electron spin can 
easily precess around magnetic fields at the Larmor frequency. This precession leads to a 
continuous rotation of the spin orientation of the electrons when travelling through the 
semiconductor channel. Possible magnetic fields may exist due to intrinsic material properties 
(spin-orbit-coupling) or may be caused by additional electrical fields (in their rest system the 
electrons also see a magnetic field component). These electrical fields can either be built-in 
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fields (caused by confining potentials in semiconductor heterostructures) or external fields 
generated by a gate voltage. By carefully adjusting the gate voltage, the orientation (phase) of 
the electron spins can therefore be controlled within the semiconductor. When these fields are 
adjusted that the electron spins are aligned antiparallel to the drain magnetization, the 
electrons get rejected at the drain interface (high resistance state) (Fig. 2(b)). In contrast to the 
all-metal spin-valves, the resistance of the spin-FET can be switched from high to low by 
means of electrical fields only and no magnetization reversal of the ferromagnetic electrodes 
is required.  

 
 

Fig. 2 (a) Schematic illustration of a ferromagnet-semiconductor-ferromagnet spintronic device. (b) In the Datta-Das 
spin FET [7], the electrical field generated by a gate voltage can control the phase (orientation) of the electron spins 
by changing their Larmor frequency within the semiconductor channel. Unlike in the all-metal spin-valves 
(Fig. 1), the high and low resistance states can be switched by the gate voltage alone leaving the magnetization of the 
two ferromagnetic layers unchanged. 

 

Up to now, no working spin FET prototype has been built. A major obstacle for its realization 
is the difficulty in effectively generating electron spin currents from a ferromagnetic metal 
into a semiconductor. In fact, it has been shown by Schmidt et al. [8] that electrical spin 
injection (in the diffusive limit) across an ohmic metal/semiconductor contact is only efficient 
if the ferromagnetic metal is nearly 100 % spin polarized (all magnetic moments of the 
ferromagnet then point in one direction), which is not observed in conventional ferromagnetic 
metals such as iron. This obstacle for spin injection can be bypassed by placing a tunneling or 
a Schottky barrier between the ferromagnetic metal and the semiconductor [9-16]. 

Recent optical experiments at various laboratories around the world show that efficient 
electrical spin injection into semiconductors can be achieved without the need of spin 
polarized tunneling using novel materials, called diluted magnetic semiconductors as a source 
for spin polarized carriers [17-19].  

In addition to electrical spin injection, researchers must address and answer several important 
questions before potential semiconductor spintronic devices such as a spin FET can be 
utilized in a new technology : 
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• Can diluted magnetic semiconductors or ferromagnetic metals be used in 
integrated circuits? 

• Can we design semiconductors, which exhibit ferromagnetism with a high spin 
polarization far above room temperature?  

• How efficient can spin polarized currents be injected into semiconductors? 

• What is the role of the ferromagnet-semiconductor interfaces for spin injection?  

• On which length scales can spin polarized carriers be transported in 
semiconductors? 

• How can we control the state of (individual) electron spins by external magnetic 
or electric fields inside the semiconductor?  

• What are the fundamental advantages of a spin-based vs. a (conventional) charge-
based electronic with respect to speed, power consumption, functionality, 
scalability, and profitability? 

Besides electrical spin injection, the successful realization of semiconductor spintronic 
devices necessitates the ability to preserve spin information over practical length and time 
scales inside the semiconductor. Recent observations revealing extremely long spin coherence 
times (100 ns) for optically injected spins in non-magnetic semiconductors (GaAs) [20], as 
well as spin transport over macroscopic distances (100 μm in n-GaAs) [21, 22], and through 
semiconductor heterointerfaces [23, 24], has additionally raised the possibility that these spin 
coherent properties may eventually enable quantum computational operations in solid state 
systems [21] (see also lecture by Th. Schäpers). Spin quantum computation is a good example 
for a broader goal in spintronics, which is the development of new functionality that does not 
exist separately in a ferromagnet or in a semiconductor.  

The lecture is devoted to address some of the above issues on semiconductor spintronic. In 
particular, it will be focused on the electrical spin injection into III-V semiconductors. The 
next section describes some basic semiconductor properties. In section 3 optical selection 
rules are presented. Spin injection into a spin LED and into bulk GaAs are the topics in 
section 4. Spin precession of single spins and of spin ensembles will be addressed in section 
5. The last section scopes with a time-resolved experiment on electrical spin injection, which 
allows temporal phase triggering of the ensemble phase of an electrically injected spin packet.  
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2 Band structure of direct band gap semiconductors 
Before discussing electrical spin injection into semiconductors and its optical probes, a brief 
summary of several basic band structure features of direct band gap semiconductors is given 
[26]. As depicted in Fig. 3, direct band gap semiconductors have a band gap at the centre of 
the Brillouin zone (Γ–point). The conduction band (s-like) is energetically separated from the 
valence band (p-like) by the gap energy Eg (Eg = 1.51 eV in GaAs at T = 4 K). 

In atomic physics, orbital atomic wave functions are classified as s, p, d, etc., according to 
their orbital angular momentum l. The p states (l = 1) are six-fold degenerate while the s states 
are two-fold degenerate (l = 0). These states can be chosen to be eigenstates of lz, the z 
component of l. The eigenvalues of lz are known as the magnetic quantum numbers ml with 
ml = 1, 0, –1 for the p states. On the other hand, the spin angular momentum s has the 
eigenstates sz with eigenvalues ms = + 1/2, – 1/2. The spin-orbit interaction couples the orbital 
angular momentum l to the spin momentum s by  

SOH λ= ⋅l s , (1)

where λ is the spin-orbit coupling constant. The eigenfunctions of Eq. (1) are eigenstates of 
the total angular momentum j = l + s and its z component jz. For p states with l = 1 and s = 1/2 
the eigenvalues of j are: j = l + s = 3/2 and j = l – s = 1/2. The eigenvalues of jz (denoted by 
mj) can take the 2j + 1 values j, j – 1, … , – j + 1, – j.  The spin-orbit interaction splits the 
j = 1/2 state from the j = 3/2 state in the valence band of the semiconductor (Fig. 3, right 
panel). The splitting is known as the spin-orbit splitting Δo of the valence band at the Γ-point, 
which is typically hundreds of meV (0.35 eV in GaAs). States with j = 3/2 are four-fold 
degenerate and are called heavy and light hole states with jz = mj = ± 3/2 and jz = mj = ± 1/2, 
respectively. These hole states are energetically closest to the conduction band, and transitions 
between these states and the conduction band states dominate the majority of optical 
measurements.   

 
Fig. 3 Band structure of a direct semiconductor (e.g. GaAs): s-like conduction band and p-like valence band (left), 
band structure including spin-orbit coupling (right).  
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3 Optical selection rules 
Photon absorption and emission (luminescence) are powerful tools for characterizing the band 
structure of semiconductors. The hole to electron transition obeys selection rules which 
preserve the angular momentum of the incoming or outgoing photon. If the photons are right 
or left circularly polarized they carry an angular momentum of + 1 or – 1 (denoted by σ +  and 
σ − ), respectively. 

The optical selection rules for absorption or emission of circularly polarized photons near the 
band edge between j = 3/2 hole states of the valence band and j = 1/2 electron states of the 
conduction band are illustrated in Fig. 4.  

 
Fig. 4 Optical selection rules between j = 3/2 holes (valence band) and j = 1/2 electrons (conduction band). The 
probability for heavy hole transitions (jz =3/2) is three times as large as for the light hole transitions (jz =1/2). 

Four different absorption and emission processes are allowed. Two of them involve heavy 
hole states, the others involve light hole states. It is important to note that an electron in the 
valence band with spin jz = –3/2 leaves a hole of opposite spin after it is excited into the 
conduction band. The absorption process can thus be viewed in two equivalent ways: (I) a σ +  
photon transfers its angular momentum to an electron, promoting it from jz = – 3/2 to  
jz = – 1/2, or (II) a σ +  photon creates an electron-hole pair with a total z angular momentum 
(jz, heavy hole + jz, electron  = 3/2 – 1/2 = + 1) equal to that of the photon (+ 1).  

The absorption of σ +  photons will create spin – 1/2 electrons for heavy hole transitions and at 
the same spin + 1/2 electrons for light hole transitions. As the absorption probabilities for both 
transitions differ by a factor of 3, the absorption of σ +  photons results in a large net electron 
spin polarisation of − 50 %, where the sign reflects the relation between photon and spin 
polarization.  

The inverse process, which is the recombination of electrons with holes, obeys the identical 
selection rules. A spin – 1/2 electron can recombine with a – 3/2 heavy hole state and emit a 
σ +  photon. The luminescence emitted by spin polarized electrons recombining with 
unpolarized holes will thus be circularly polarized. These processes allow the conversion of 
spin polarization into an optical polarization. In particular the luminescence process can be 
used as a spin-detector for electrical spin injection [10][11][18][19].  
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4 Electrical spin injection 
Early attempts to electrically inject spins into semiconductors using ohmic contacts only 
yielded small signals that could be traced back to parasitic effects [27]. After it became clear 
that efficient electrical spin injection is prohibited by the conductivity mismatch between the 
metal and the semiconductor [8](see also lecture by J. Fabian), a large variety of successful 
spin injection contacts have been developed. Many of these include spin-polarized tunneling 
that matches the resistance of the ferromagnetic contact to the semiconductor channel through 
an oxide tunnel barrier, through a highly doped Schottky tunnel barrier or through a Zener 
tunnel junction. Half-metallic contacts are a further theoretical possibility to obtain electrical 
spin injection. Both diluted magnetic semiconductors (DMS) and ferromagnetic 
semiconductors can be considered being halfmetallic at low temperatures. The materials 
resulted in the highest reported spin polarization, which exceeds 90% [19, 28]. “Traditional” 
half-metallic injectors such as Heusler alloys, CrO2, Fe3O4 or La2/3Sr1/3MnO3 have also been 
used. However, the few experiments testing Heusler alloys as injectors all used tunneling 
barriers and yielded smaller spin injection efficiencies than obtained for regular ferromagnets. 
The largest room temperature spin polarization (70 %) has been obtained for epitaxial 
Fe/MgO injectors on GaAs [15].   

Most experiments on electrical spin injection have been performed on spin LEDs (light 
emitting diodes) as they straightforwardly allow a quantitative analysis of both the spin 
polarization in the semiconductor after injection (see section 4.1) and the spin injection 
efficiency. In contrast, for studying spin injection and spin transport in more complex devices 
either electrical (magneto-transport) or magneto-optical methods are applied for spin 
detection. The latter method will be discussed in section 4.2. 

 

4.1 Spin LEDs 
A spin LED consists of a rather simple semiconductor p-i-n like heterostructure (Fig. 5) in 
which a hole doped p-layer is separated from an electron doped n-layer by an undoped 
quantum well. The quantum well has the lowest energy gap (see Figure 5(b)). When the spin 
LED is reverse biased, hole and electron currents are injected into the quantum well from the 
p and the n regions, respectively. As both electrons and holes are spatially overlapping in the 
quantum well layer (here GaAs), they can recombine and emit photons of energies equal to 
their energy difference. Such a process is called electroluminescence (EL). 

In conventional LEDs, both electron and hole currents are unpolarized. This results in 
quantum well emission of unpolarized light, because all carrier spin states are equally 
populated, and all dipole-allowed radiative transition occur with equal probability. In a spin 
LED, spin polarized carriers are injected from one magnetic contact into the quantum well, 
where they radiatively recombine. As discussed in section 3, radiative recombination of spin-
polarized carriers results in emission of right and left circularly polarized light as determined 
by the selection rules. The light polarization is usually analyzed in the emission direction 
along the surface normal of the quantum well.  

If electrons are injected from a ferromagnetic metal such as Fe (Fig. 5(b)), they become spin 
polarized in the n-layer with an electrical spin polarization of  
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Fig. 5 (a) Layer structure of spin LED. A Schottky barrier is placed between the ferromagnetic Fe injector and a  
p-i-n diode with an embedded undoped GaAs quantum well. (b) Corresponding band diagram. If the spin LED is 
reverse biased (Udc < 0), spin polarized electrons tunnel through the Schottky barrier (1) and lose excess energy by 
momentum relaxation (2). The polarized electrons recombine with unpolarized holes from the p-doped layer in the 
GaAs quantum well. The emitted electroluminescence (EL) will be detected through the Fe layer under normal 
emission. 

where and n  is the spin density of spin-up and spin-down electrons of the ferromagnet. If 
the j = 3/2 hole states are degenerate (see Fig. 4), then the recombination with unpolarized 
holes yield the following optical polarization of the EL intensity 

n↑ ↓

 
(3)1 1 .

2 2opt e
I I n nP P
I I n n

+ − ↑ ↓

+ − ↑ ↓

− −
= = =

+ +
Here, I + and I −  are the energy dependent intensities of the right (σ + ) and left (σ − ) circularly 
polarized components of the EL intensity, respectively.  

In order to overcome the conductivity mismatch between the Fe layer and the p-i-n diode a 
Schottky barrier may be placed at the interface (Fig. 5(a)). It consist of a 15 nm thick 
transition layer with an silicon doping gradient from n(Si) = 5 × 1018cm-3 to n(Si) = 1 - 
5 × 1016cm-3 followed by a 15 nm thick highly doped n(Si) = 5 × 1018cm-3 layer. This 
approach was first described in Ref. 12. It minimizes the width of the interfacial depletion 
region, which results in a large tunnel current through the Schottky barrier under reverse bias. 
The epitaxial Fe layer is 5 nm thick and is capped with Al. Its magnetic easy axis is oriented 
in the layer plane. The moderate thicknesses of the metal layers guarantee optical 
transmissivity, which is important for EL detection. 

The EL spectra are recorded by the spectrometer with a liquid nitrogen cooled CCD detector. 
Their helicities are decomposed by a circular polarization analyzer which consists of an 
achromatic quarter wave plate and a calcite polarizer. Fig. 6(a) shows the EL intensities 
I + and I −  which were taken under reverse bias (UDC = -2.2 V) at T = 25 K and a magnetic 
field of B = 0T and -6 T. The magnetic field was applied perpendicular to the quantum well 
plane, i.e. perpendicular to the in-plane magnetic easy axis.    

At B = 0 T, both spectra are identical, while a strong intensity difference is observed for  
B = - 6 T, which unambiguously demonstrates electrical spin injection. The optical 
polarization is extracted from Eq. 3 by integrating the full spectra for each light helicity. The  
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resulting Popt(B) is depicted in Fig 6(b). The optical polarization equals zero at B = 0 T. This 
is expected since the magnetization vector is oriented in the layer plane for B = 0 T. Electron  
spins, which are injected from the Fe layer into the quantum well are therefore also aligned 
in-plane. According to optical selection rules, both I + and I −  intensities are not selective to 
the in-plane spin orientation under perpendicular light propagation direction, but only to out-
of-plane spin components. The increase of Popt for positive fields is therefore proportional to 
the hard axis out-of-plane magnetization loop (compare to Fig. 7) and saturates at B ~ 2.2 T. 
The decrease of Popt at even larger fields is not related to the magnetization of the Fe layer but 
rather linked to the Zeeman polarization of the quantum well. Note that the optical 
polarization reaches values of 27 %.  

 
 

Fig.6 (a) EL spectra of GaAs emission from spin LED. The spectra are recorded under normal emission through 
the Fe layer (see Fig 5(B)). The magnetic field is applied in Faraday geometry, i.e parallel to the detection direction. 
(b) Magnetic field dependent optical polarization as determined by Eq. 3. Note that the optical polarization reaches 
values of 27 %. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7  Out-of-plane magnetization loop of  
the Fe-layer from the spin LED as a function 
of magnetic field. The magnetization 
saturates at |B| ~ 2.1 T. 
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4.2 Spin injection into bulk GaAs 

In the previous section we have seen that spin LEDs are ideal devices to determine electrical 
injected spin polarizations. However, the injected spins get trapped and annihilated in the 
quantum well detection layer. In more complex devices (see Fig. 2), electron spins need to be 
transported over macroscopic distances after they have been injected into the semiconductor 
channel. Moreover, spin manipulation and subsequent electrical read-out might be important. 
In the next paragraph, we will discuss the magneto-optical Kerr effect, which is an ideal tool 
to probe and to image electron spins and spin currents in semiconductors. 

 

Magneto-optical Kerr effect 
 
In order to probe the net magnetization of electron spins, magneto-optical techniques can be 
used which either measure the Kerr or the Faraday rotation. Simply put, the polarization of 
the incident linearly polarized light is being rotated after passing through the sample (Faraday 
rotation) or after being reflected at the sample surface (Kerr rotation) (see Fig. 8). In both 
cases the resulting polarization is no longer strictly linear but rather slightly elliptic. Both 
effects can theoretically be described by Maxwell’s equations through off-diagonal elements 
of the dielectric tensor. The strength of the polarization rotation is strongly enhanced in the 
spectral vicinity of optically-allowed band-to-band transitions. The origin of the large 
resonant Faraday rotation in semiconductors is the Zeeman effect. In (100) GaAs this 
corresponds to the well-known (spin-up and spin-down) splitting of the s-state conduction 
band electrons, and the fourfold splitting of the p-type valence band into spin-up and spin-
down light- and heavy-holes. Thus the optical transitions associated with left and right 
circularly polarized light are split in energy. Consider two such Zeeman-split states whose 
absorption resonances appear as shown in Fig. 9(a) assuming a Lorentzian lineshape for 
simplicity. Their associated indices of refraction which are also split in energy (Fig. 9(b)) give 
rise to a large resonant Faraday rotation shown in Fig. 9(c) through the relation 

( ) ( ) ( )F ω η ω η ω− +Θ ∝ − . In practice, the spectral shape of the Faraday resonance strongly 
depends on the exact lineshape of the absorption edges and is rarely so symmetric.  

 
Fig. 8 (a) Geometries of the Faraday effect (left) and the magneto-optical Kerr effect (right). For both effects the 
sample’s magnetization causes a rotation of the plane of polarization and a slight ellipticity. 



B3.12  B. Beschoten 

 

 
 

Fig. 9     (a) Idealized Zeeman-split absorption resonances (α+, α-) corresponding to right (σ+) and left (σ 
-) 

circularly polarized light. (b) Associated indices of refraction (η+,η -). (c) Resonant Faraday rotation. 
 

It is important to emphasize that the Kerr effect can be used as a probe of any spin imbalance 
near the chemical potential of the semiconductor. For this technique, no light emission from 
electron hole recombination is needed.  

In spin transport devices as depicted in Fig 2, electron spins are either injected into a  
2-dimensional electron gas or into a bulk material. A heterostructure for the latter case is 
depicted in Fig. 10(a). The Schottky barrier has a similar doping profile as in the spin LED. 
This guarantees a high spin polarization after injection. Spins are injected into a 5µm thick  
n-doped GaAs layer with a Si doping concentration of 2 × 1016 cm-3. This is the optimum 
doping for spin transport studies over large distances as the spin coherence length may exceed 
100 µm at low temperatures [21]. After tunneling through the Schottky barrier (step 1 in Fig. 
10(b)), electron spins lose their kinetic excess energy by momentum relaxation (step 2 in Fig. 

 

 
Fig. 10 (a) Layer structure for spin injection device. A Schottky barrier is placed between the ferromagnetic Fe 
injector and the bulk n-GaAs detection layer. (b) Corresponding band diagram under reverse bias. Spin polarized 
electrons tunnel trough the Schottky barrier (1) and loses excess energy by momentum relaxation (2).  
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10(b)), while they drift into the n-GaAs layer.  

Fig. 11(a) illustrates a lateral spin injection device as used by S. Crooker et al. [13]. It consists 
of two Fe-GaAs Schottky contacts separated by an optimally doped n-GaAs bulk channel. 
When applying a DC bias, a spin current is generated from one of the Schottky contacts. The 
injected spins are oriented parallel to the magnetization direction of the Fe injector, i.e. they 
initially point in their propagation direction (x-direction). The spins shall be imaged by 
magneto-optical probes. A microscope objective is used with laser light propagation in the 
perpendicular to plane direction. Note that the injected spins cannot be seen as magneto-
optical probes are only sensitive to an out-of-plane spin component in this polar configuration 
(similar optical selection rules as for the spin LED).   

The spin direction can, however, be rotated towards the observation direction by Larmor 
precession around a small perpendicular magnetic field applied along the y-direction. The 
polarization of the injected spins is probed by means of the polar Kerr rotation angle ΘK(x, y) 
of a linearly polarized reflected laser beam, which is scanned over the sample. The resulting 
map of the Kerr rotation angle is shown in Fig. 11(b) for By = 3.6 Gauss at a temperature of 
T = 4 K. Note that ΘK is largest (see color code white) near the injector contact and gets 
diminished (color code changes to light blue) along the electron flow direction. As ΘK is 
directly proportional to the spin polarization in the GaAs, it is a direct measure of the decay 
length of the injected spin polarization (~50 µm), which is much less than the 300 µm channel 
length of the GaAs. Therefore, the injected electrons lose their polarization long before they 
reach the opposite drain contact. Surprisingly, there is also a spin signal visible near the right-
hand side of Fig. 11(b) in the GaAs channel just in front of the drain contact, which results 
from spin filtering and spin accumulation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11  Spin current flowing between Fe 
injectors contacts in an n-GaAs channel 
measured with polar Kerr rotation 
microscopy. (a) The spins are continuously 
injected collinear to the magnetization vector 
of the Fe layer. A small magnetic field By 
along the y-direction rotates the spins in 
GaAs towards the out-of-plane direction. (b) 
False color plot of Kerr rotation angle ΘK as 
measured along the GaAs channel (adopted 
from [13]). 
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5 Spin precession: from single spin to spin ensemble 
In the previous section it has been shown that spins can be generated into bulk GaAs by spin 
injection from a ferromagnetic source. Their initial spin orientation near the 
ferromagnet/semiconductor interface is defined by the magnetization direction of the 
ferromagnet. We have seen that the net spin orientation of the spin polarization in the 
semiconductor channel can be controlled by a transverse magnetic field, i.e., it rotates into the 
out-of-plane direction at By = 3.6 Gauss. The precise control of the spin orientation (its 
quantum mechanical phase) is of utmost importance for many device applications (see Fig. 2). 
In the above DC experiments individual spins start to precess at all times because spins are 
injected continuously in the time-domain. This, together with a velocity distribution of the 
electrons (diffusive transport regime) yields to a rapid depolarization of the steady-state spin 
polarization (the Hanlè effect). As a result, full Larmor precessions are usually not observed 
in injection experiments.  

In order to understand the Hanlé depolarization in more details, single spin precssion and spin 
precession of ensembles are discussed in the next two subsection, while the Hanlé effect will 
be addressed in subsection 5.3.   

 

5.1 Single spin precession  
In the above experiment (see Fig. 11), electron spins are injected into GaAs with a spin 
orientation along the x-direction, while a perpendicular magnetic field is applied along the  
y-direction. In this “Voigt geometry” the individual spins can be viewed as a coherent 
superposition of the eigenstates for spin-up and spin-down defined by the magnetic field 
direction. The corresponding energy eigenvalues are  

2
y

e

e B
E

m↑↓ = ±
h

 (4)

The resulting spin splitting can be related to the Larmor frequency ωL by  

B
L y

g Bμω =
h

 (5)

As the spin states along the y-axis (quantization axis) are energy eigenstates, the application 
of the time-evolution operator  

( ,0) exp L yS t
t i

ω⎛ ⎞
= −⎜ ⎟

⎝ ⎠h
A  (6)

on the eigenstates ;ys ↑  and ;ys ↓  yields the states themselves independent of time. Along 
the field axis (longitudinal direction) these quantum-mechanical spin states are thus 
stationary. Any loss of coherence is induced by coupling of those states with the environment.  
Applying the time-evolution operator on the spin states perpendicular to the magnetic field 
direction 
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and 
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yields the following expectation values [30]: 

1 1cos( ), sin( ), and 0.
2 2x L z L ys t s t sω ω= =h h =  (9)

The time-evolution of the spin vector may be viewed semi-classically as the Larmor 
precession of the classical spin vector in a plane perpendicular to the applied field. This 
results in an oscillatory cosine projection (Eq. (9)) of the electron spin polarization along its 
injection direction. Quantum-mechanically, such spin precession can be viewed as arising 
from the excitation of a coherent superposition of the spin states energy split by the magnetic 
field along the y-direction, which results in quantum beatings between the spin-up and the 
spin-down eigenstates. The coherent state gets destroyed once the phase relation between the 
two eigenstates is lost. The corresponding decoherence time is called T2. 
  
5.2 Spin precession of a spin ensemble 
In most experiments there is not a single spin state but rather a spin ensemble with an 
ensemble magnetization Ms. We again assume a constant magnetic field along the y-direction. 
The system then consists of a multiple of the single spin quantum system given in the 
previous section. We introduce T2* as the transverse spin dephasing time of the spin 
ensemble. It differs from the coherence time T2, if the single spin systems are not accurately 
copied, but exhibit small deviations for example due to inhomogeneous effects such as 
internal inhomogeneous magnetic fields.  

We furthermore assume that all the spins are impulsively generated at time t = 0 along the x-
direction. Taking spin dephasing into account, the temporal evolution of the ensemble 
magnetization can be described by  

( ) ( )*
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Fig. 12 (a) and (b) shows simulations of MS, x(t, B) and MS, y(z, B), respectively. The material 
parameters T2* and the effective g-factor are set to typical values for bulk n-GaAs. As 
expected from Eq. 5, the spin precession frequency increases with By. The exponential decay 
is a result of spin dephasing. Note that there is no spin precession at B = 0 mT. The spins 
therefore remain along the x-direction and cannot be observed in the y-direction 
( = 0).  ( ), 0mTsm M Bℑ =

It is important to emphasize that these time-domain information require an impulsive 
excitation of the spin ensemble, which triggers the ensemble phase. Such a phase triggering 
can be realized by ultrafast laser pulses [20-24]. In fact, time-resolved optical pump-probe 
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Fig. 12 Larmor precession of spin ensemble after impulsive excitation as a function of time t. The projection of 
the ensemble magnetization Ms parallel (a) and perpendicular (b) to both the excitation direction and the magnetic 
field is plotted for the same injection rate rs. Typical bulk GaAs values of the spin dephasing time T2* = 20 ns and 
the electron g-factor (g = -0.41) are used.  

experiments are nowadays standard tools for studying spin precession in the time-domain. 
Note that there is no such phase triggering DC electrical spin injection experiments as spins 
are injected at all times. In the next section, we will discuss the crossover from impulsive to 
continuous spin injection and its implications on the Kerr effect.  

 

5.3 Continuous spin injection: Hanlé effect 
For continuous spin injection we assume a constant spin injection rate along the x-direction. 
The resulting net magnetization Mcw(B) is calculated by integrating the single spin systems 
over time t: 
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The simulated transverse to field magnetization components , ( )cw xM B  and , ( )cw yM B  are 
plotted in Fig. 13. (a) and (b), respectively, for equal rs and A′ . In contrast to the impulsive 
excitation (see section 5.2), now the net magnetization is in dynamic equilibrium and does not 
depend on B and .  *

2T

For large |B|, the net magnetization vanishes for both observation directions as the spins 
increasingly occupy all precession angles within their dephasing time  and start to average 
out each other. This process is called Hanlé depolarization. Note that this is not a quantum 

*
2T



Spin injection into semiconductors  B3.17 

mechanical decoherence. While the individual spins may still be coherently precessing, the 
ensemble macrospin dephases, i.e. the macrospin magnetization vanishes according to phase 
spreading. The characteristic width of the Hanlé depolarization curve is *

2LB TΔ ω= , which can 
be used to determine  close to B = 0, if ωL is known. *

2T

The Hanlé curves can easily be measured by the Kerr effect. Fig. 14 shows a series of Hanlé 
curves, which were measured on the lateral spin injection device (see Fig. 11) at various 
distances measured from the left ferromagnetic injector. All Hanlé curves are asymmetric, 
which is consistent with the observation direction along the z-axis, which is perpendicular to 
both the external magnetic field direction (y-axis) and the spin direction of the injected 
carriers (x-axis). Close to the injector contact (8 μm), the Hanlé curve has the largest 
amplitude and exhibit the typical shape as shown in Fig. 13(b). The amplitude decreases with 

 

 
Fig. 13 Hanlé depolarization for continuous spin injection of electron spins with different spin dephasing times  
T2* (g-factor: g = -0.41). The external magnetic field B is perpendicular to the spin injection direction. The 
projection if the total magnetization Mcw parallel to the injection direction (a) and perpendicular to both the injection 
direction and the magnetic field direction (b) is plotted for the same injection rate.  

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 14  Kerr rotation as a function of transverse 
magnetic field By measured as different laser spot 
positions (compare to Fig. 11). The distance between 
the laser spot and the Fe injector along the x-
direction is given (adopted from [13]) 
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increasing distance to the contact, which results from spin dephasing during spin transport.  

Surprisingly, additional oscillations become visible at larger distances. The oscillations 
indicate that the Hanlé depolarization gets partly be compensated during spin transport. By 
this compensation the macrospin of the ensemble (probed within the laser spot) is not 
completely dephased during the first presession cycle. In diffusive transport, the finite spin 
dephasing time acts as a velocity filter of the electron spins. This in combination with the 
propagation distance (diffusion time) make the observation of the macrospin precession 
feasible. 

 

6 Time-resolved electrical spin injection 
 
In the previous chapter we have seen that the initial spin orientation near the 
ferromagnet/semiconductor interface is defined by the magnetization direction. Thus all 
injected spins initially have the same phase. However, the ensemble phase gets rapidly lost in 
a transverse magnetic field. In the following it will be shown that the Hanlé depolarization 
can be strongly suppressed by electrical phase triggering of the ensemble phase. This phase 
triggering is realized by fast current pulses, which electrically generates spin packets during 
injection from the ferromagnetic source into the n-GaAs. Spin precession can be optically 
probed in n-GaAs by time-resolved Faraday rotation. 

The measurement setup and sample geometry are depicted in Figure 15. In the electrical 
pump / optical probe experiment, spins packets are injected by current pulses with a width of 
2 ns at a repetition time of 125 ns. An injected spin packet is illustrated in Fig. 15 in the  
n-GaAs as a spin polarized sheet layer. Note that all spins are now spatially and temporally 
phase triggered. Linearly polarized ps laser pulses at normal incidence to the sample plane 
and phase-locked to the electrical pulses monitor the ±z component of the injected spins by 
detecting the Faraday rotation angle ΘF. The time-delay Δt between the current pump pulses 
and the optical probe pulses can be adjusted by an electronic phase shifter.  

At zero magnetic field, the spins will not precess, but rather remain in the in-plane orientation. 
However, when a finite magnetic field is applied, the spins start to precess into the  

 

Fig. 15 Electrical pump and optical probe setup for time-resolved spin injection experiments. (a) A phase 
triggered spin packet in electrically injected from the ferromagnetic Fe injector into n-GaAs by a fast current pulse. 
(b) Spin precession in a transverse magnetic field by a time-delayed ps laser pulse, which measures the Faraday 
rotation in polar geometry.  
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Fig. 16  Time evolution of Faraday rotation after 
impulsive electrical spin injection across an 
Fe/GaAs Schottky barrier as a function of pump 
probe delay Δt with vertical offsets for clarity. 
 
 
 

observation direction (see Fig. 15(b)). If the ensemble phase was indeed temporally triggered 
multiple Larmor precessions of the ensemble should be observable (compare to Fig. 12). 
Several time-resolved Faraday rotation data are shown in Fig. 16 for various magnetic fields. 
Most strikingly, the expected Larmor precessions of the injected spin packets are clearly 
observed, demonstrating that the current pulses indeed trigger the macro-phase of the spin 
packet. 
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1 Introduction

Spin electronics relies on the fundamental principle that electrons carry not only charge, the
property exploited in traditional semiconductor devices, but also spin. In semiconductor de-
vices, an electric field is used to control the transport of conduction electrons, and hence, elec-
trical currents. In magnetic materials, where spin-up and spin-down electron populations are
unequal, an electrical current should naturally be spin-polarized. In this case, a magnetic field
can be used to manipulate spin polarized electrical currents providing an additional channel of
information and an additional degree of freedom for designing novel “spintronic” devices.
One major class of spintronic devices is based on spin polarized electron tunneling. Electron
tunneling is a purely quantum mechanical phenomenon in which electrons can pass from one
conducting electrode, through a thin insulating layer, into a second conducting electrode. Spin
polarized tunneling is in principle no more complex than it sounds, it simply refers to a tunnel-
ing device in which the tunneling current has more electrons of one spin orientation than of the
other. In practice, there are several ways to accomplish this. The lecture at hand primarily fo-
cuses on the use of “spin filter” tunnel barriers, barriers which have a different degree of opacity
for each spin state. Thus, even if the source of electrons (i.e. the metallic electrodes) have no
spin polarization, the resulting tunneling current will.
An interesting aspect of spin polarized tunneling arises when two magnetic materials are used in
a trilayer tunneling device, typically referred as a magnetic tunnel junction (MTJ). In ferromag-
netic materials, the spin orientation of the majority of electrons can be defined by the orientation
of the magnetization. An electrical current flowing through a magnetic tunnel junction depends
on the relative direction of magnetization in the magnetic layers: If both magnetic layers have
parallel magnetization, a large tunnel current can flow, resulting in a low electrical resistance
of the tunnel device. By switching from a parallel to an antiparallel configuration, a strong
increase in electrical resistance is encountered. Since the relative magnetization (i.e., parallel
or antiparallel) can be set by an external magnetic field, this means that the current through the
tunnel junction can be modulated by the external magnetic field. Such devices display magne-
toresistance, and comprise one class of spintronic devices in that they rely on the generation
and manipulation of spin-polarized currents.
A natural question induced from the use of the word “device” is how can magnetoresistance
be utilized? In principle, the resistance state of a magnetic tunnel junction, once set, can be
maintained in the absence of a magnetic field or any power input – it “remembers” what resis-
tance state it is in. One magnetization state may be used to signify a logical “0” and the other a
logical “1”. Consider an array of a large number of tunnel devices, where each element can be
addressed individually. With appropriate addressing and recording schemes, in principle such
an array provides the functions of a random access memory (RAM), but one which requires no
power to maintain information, in contrast to currently used memory. Such a magnetic RAM
(MRAM) can replace not only hard disk drives, but conventional RAM as well.
This lecture is intended to provide a review on the “spin filter” effect in magnetic tunnel barri-
ers and its application in (magnetoresistive) spintronic devices. A description of the spin filter
phenomenon and the fundamental physical mechanism will be given in Chapter 2. Spin filter
tunneling occurs in (ferro-)magnetic insulators, a material class whose electronic and magnetic
properties will be introduced. Examples of how to quantify the spin filter effect will given and
the basic operating principle of spin-filter magnetic tunnel junctions explained. Chapter 3 serves
as an overview on how to apply spin filters in spintronic devices. We will exemplarily discuss
device architectures whose operating principles go beyond standard magnetic tunnel junctions.
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2 Spin filter tunneling

2.1 Phenomenological Description

The tunnel effect is a well-known example which reveals the quantum mechanical nature of
electrons. It describes the phenomenon, that an electron’s wavefunction can penetrate a po-
tential barrier which is higher than the electron’s total energy, whereas classically their energy
would be insufficient to pass that region. We will introduce the tunnel effect in solid state
structures, in which an electrical current can flow from one electrode, through an insulating
barrier, into another electrode. The most straightforward realization of this structure is a metal-
insulator-metal (M/I/M) trilayer, commonly called a tunnel junction. The tunnel barrier thereby
is modeled as a potential step as shown in Figure 1(a). Using the Wenzel-Kramers-Brillouin
(WKB) approximation, the electron’s transmission probability T (E) through the tunnel barrier
of height Φ0 and thickness d decays exponentially with increasing thickness as

T (E) ∝ exp

(
−2d

√
2m

�2
(Φ0 −E)

)
, (1)

with m being the electron mass and � the Planck constant. In most cases, electron tunneling in
M/I/M structures is studied by observing the current (or its derivative) as a function of applied
voltage across the junction. Without a voltage applied, the Fermi levels of the two metals will be
at the same energies for the two electrodes. When a bias voltage is applied across the junction,
one Fermi level will shift by eV with respect to the other (Figure 1(b)). The number of electrons
tunneling from one to the other metallic lead is given by the product of density of statesN(E) of
the left and right electrodes, weight by the transmission probability T (E). Moreover, one has to
take into account the probabilities that the electronic states in the left lead are occupied, f(E),
and the states in the right electrode are empty, 1− f(E + eV ), where f(E) is the Fermi-Dirac
function. The total current I flowing from the left (l) to the right (r) electrode is thus given by

I(V ) =

∫ +∞

−∞
Nl(E)Nr(E + eV )|T |2f(E)[1− f(E + eV )]dE. (2)

In conventional M/I/M tunnel junctions, two nonmagnetic metallic electrodes are separated
by an insulator typically provided by a nonmagnetic metal oxide (e.g., Al2O3). In that case,
the tunnel probability T (E) decays with barrier thickness in the same way for electrons with
spin-up and spin-down orientation. If, however, a (ferro-)magnetic insulator is inserted as the
tunnel barrier, the tunnel probability becomes spin-dependent. In a magnetic barrier, electrons
are selectively transmitted due to its spin orientation, meaning that either spin-up or spin-down
spins tunnels preferentially. This mechanism is referred as “spin-filter tunneling” and gives rise
to a spin-polarized tunnel current. In this context, the spin polarization P of the tunnel current
is defined as

P =
I↑ − I↓
I↑ + I↓

. (3)

Spin filter tunneling occurs in magnetic insulators, i.e. materials that have a wide bandgap
around the Fermi level and, in addition, show spontaneous magnetic ordering when cooled
below a critical temperature TC . As a consequence, the conduction band experiences a mag-
netic exchange splitting ΔExc, if the temperature falls below the Curie temperature TC . Thus,
the conduction band is split into a spin-up (↑) and a spin-down (↓) sublevel, as illustrated in Fig.
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1(c). The effective barrier height of an insulating tunnel barrier corresponds to the energy dif-
ference between the Fermi level and the bottom of the conduction band. In a magnetic insulator,
the spin-split conduction bands therefore effectively represent two different barrier heights, one
for spin-up electrons (Φ↑) and one for spin-down electrons (Φ↓). Compared to the nonmagnetic
case, where Φ0 denotes the average barrier height above TC , the spin-dependent barrier heights
Φ↑,↓ are given by

Φ↑,↓ = Φ0 ± 1

2
ΔExc. (4)

In many magnetic materials, one can treat the electronic transport of spin-up (↑) and spin-down
(↓) orientation separately. In addition, one generally assumes that the spin orientation is con-
served during a tunnel process. Thus, two different transmission probabilities for spin-up and
spin down electrons T↑,↓(E) must be considered. In a magnetic barrier, the tunneling proba-
bility T (E) is different for the two spin directions T↑(E) �= T↓(E) because they exponentially
depend on the corresponding barrier height Φ↑(↓), as evident from Eqn.(1). This exponential
dependence of T (E) on the spin-dependent barrier heights finally leads to two very different
currents I↑ �= I↓ for spin-up and spin-down electrons (recall Eqn.(2)), even with modest dif-
ference in the barrier heights |ΔΦ| = |Φ↑ − Φ↓| = ΔExc. Therefore, a very efficient spin
filter process is at work, that in principle can result in a fully spin-polarized tunnel current
(P = 100%). It is obvious from this simple model, that the magnitude of exchange splitting
ΔExc represents a substantial property of spin filter materials, since it is directly related to the
spin filter efficiency. In the thickness regime of tunnel barriers of few nanometers, one has to
take into consideration that ΔExc may be modified compared to bulk material.
Up to now, we have focused on a spin-dependent barrier height as the source of tunneling
spin polarization. Apart from spin filter tunneling, there are also different routes to realize spin-
polarized tunnel currents. One way is to use (ferro-)magnetic materials, which naturally provide
a spin polarized density of states. One may anticipate that with magnetic electrodes in a M/I/M
junction the tunnel current naturally is spin-polarized. Using magnetic electrodes is indeed the
most conventional approach to realize spin polarized tunneling, and is applied in standard tunnel
magnetoresistance (TMR) devices. In the following section, we will briefly review alternative
routes to produce spin polarized tunnel currents.

2.2 Routes to spin polarized tunneling

The conventional approach realizing spin-polarized tunneling is by tunneling from a ferromag-
netic metal through a nonmagnetic insulating barrier. Typically, 3d transition metals are utilized
as the electrode material, because they provide a spin-split density of statesN at the Fermi level
N↑(EF ) �= N↓(EF ). As the barrier material in most cases polycrystalline or amorphous Al2O3

is used. Contrary to a magnetic barrier, which actively filters spins, the nonmagnetic barrier rep-
resents the “passive” element in a conventional tunnel device that simply selects the electron’s
momentum. Since ferromagnetic metals like Fe or Co provide only modest spin polarizations
around P = 40% at the Fermi level, currents with just limited spin polarization can be realized.
A way to optimize the efficiency of the electrode as the source of spin-polarized carriers is to
use so-called half-metals. These materials possess a finite density of states at the Fermi level
for one spin direction and a gap for the other spin orientation, resulting theoretically in a 100%
spin polarization. Among the materials that have been predicted as half-metals are 3d transition
metal oxides (e.g., CrO2 and Fe3O4), manganites (e.g., La1−xSrxMnO3) and the material class
of Heusler alloys. In practice, however, many of these materials are difficult to stabilize as or-
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Fig. 1: Tunneling in metal-insulator-metal structures. (a) Electron wave functions decay ex-
ponentially in the barrier of height Φ0 and thickness d, and for thin barriers, some intensity
remains at the right side. (b) Potential diagram for a M/I/M structure with applied bias voltage
eV . The bias voltage defines an energy window of electronic states contributing to the tunnel
current. (c) Principle of spin-filter tunneling with magnetic barriers. Below the Curie tempera-
ture TC of the spin filter, the conduction band is exchange split by an amount ΔExc resulting in
two spin dependent barrier heights Φ↑,↓ = Φ0 ± 1/2ΔExc.

dered crystalline structures and even in perfect crystals, a complete spin polarization can only
be expected at T = 0 K.
A totally different mechanism of spin polarized tunneling is observed in epitaxial or highly ori-
ented MgO(001) barriers combined with 3d transition metal electrodes (see also the lecture by
D. Wortmann). Although an MgO tunnel barrier is nonmagnetic and therefore cannot directly
select tunneling electrons according to their spin orientation, it filters electronic wave functions
according to their symmetry. This transport process is termed coherent tunneling, and requires a
matching of Bloch state symmetries at the electrode–barrier interface. At the Fe/MgO interface,
for example, only totally symmetric wave functions with normal incidence can be connected to
the electronic structure of the MgO tunnel barrier. It turns out, that the Fe Δ1 wavefunctions
have the required symmetry. Whereas the Δ1 majority (spin-up) band has states at the Fermi
level, no spin-down states with Δ1 symmetry are present. Therefore, only Δ1 spin-up electrons
pass the MgO barrier efficiently and the tunneling current is highly polarized. It becomes clear,
that even tunnel junctions based on 3d transition metals can generate nearly completely spin-
polarized currents because of the symmetry filtering process. Although the tunnel process is
spin-dependent, the sorting mechanism actually is a symmetry selection and therefore shall be
termed “symmetry filtering”.
In addition to momentum and symmetry filter effects, a magnetic tunnel barrier itself can act
as the spin-selective element of a tunnel junction, as discussed in Section 2.1. Therefore, a
spin-polarized current can be created with nonmagnetic electrodes. This approach is in contrast
to those mentioned above, which rely on ferromagnetic metals as (part of) the source of spin-
polarized charge carriers.
Until now, various materials have been successfully used as spin filter tunnel barriers. Among
those are binary rare earth chalcogenides, transition metal oxides and manganese-based per-
ovskites. In the following, we will review electronic properties of selected spin filter materials
that are relevant for the understanding of spin filter tunneling.
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2.3 Properties of spin filter materials

Materials that filter spins by tunneling have to fulfill two criteria: On the one hand, they have
to possess a spontaneous magnetic moment below a critical temperature and, on the other hand,
they must have a bandgap around the Fermi level. In terms of electronic structure, such materials
are either wide-gap semiconductors or insulators. Only a few compounds, however, simultane-
ously show magnetic and insulating properties. Until today, three material classes have been
experimentally confirmed as spin filter tunnel barriers. A list of these known spin filters with
some of their structural, magnetic and electronic properties is given in Table 1.

Europium chalcogenides The material class of Europium chalcogenides (EuO, EuS, EuSe
and EuTe) was identified already in the early 1960s as magnetic insulators. For more than
twenty years, these compounds have been subject of tremendous interest, but it has not been
until recently, that the Eu chalcogenides are revisited for spintronics studies. Whereas EuO and
EuS are ferromagnetic oxides, EuSe and EuTe show antiferromagnetic ordering. EuO and EuS
have Curie temperatures of TC = 69.9 K and 16.6 K, respectively, and thus filter spins only at
liquid helium temperatures (TLHe = 4.2 K).
Pure Europium (Eu) is a rare earth metal with the outermost electronic configuration 4f 7 5d0

6s2. Due to the strong electron affinity of the chalcogens, the two 6s electrons of the Eu atoms
are transferred to saturate the p orbitals of X in the EuX compound. The Eu-X bonding is
therefore mainly ionic in nature, which explains why these materials crystallize in a compact
rocksalt structure. If the europium compound is fully stoichiometric, the material is insulating
with a valence band built of the p states of the anion (X) and the conduction band built up with
6s and 5d states of the Eu cation. The Eu 4f states are located within this energy gap, and the
energy difference between the 4f states and the 5d conduction band is referred as the optical
bandgap Eg.
The magnetic moment of the EuX compounds originates from the seven unpaired spins in the 4f
levels of the Eu2+ ion. One can derive from Hund’s rule, that the ground state spin configuration
of the Eu 4f 7 electrons is maximal S = 7/2, whereas the orbital momentum vanishes L = 0.
The Eu chalcogenides are considered as typical substances where the Heisenberg model applies.
The reason is that the Eu 4f wave functions are very localized, i.e. their overlap with other
orbitals is small and the atomic character is mainly conserved in a crystal. Magnetic exchange
is then described by the Hamiltonian

H = −
∑
i,j

JijSiSj, (5)

where Jij is the exchange constant (positive for ferromagnets and negative for antiferromag-
nets) and Si,j are the neighboring spins. In order to quantify the magnetic ordering in EuX
compounds, one has to take into account the exchange integrals J1 and J2 between Eu2+ nearest
neighbors and next-nearest neighbors, respectively. It turns out, that magnetic exchange orig-
inates from virtual transitions between the occupied 4f states and 5d conduction band states.
Whereas the exchange J1 between europium nearest neighbors is an indirect mechanism gen-
erated by intra-atomic d − f exchange (J1 � Jdf ), the exchange integral J2 is the result of
several contributions of so-called superexchange. In EuO and EuS, the ferromagnetic indirect
exchange J1 is dominant and responsible for the ferromagnetic ordering at TC = 69.9 K and
TC = 16.6 K, respectively.
Up to this point, we considered perfectly stoichiometric europium chalcogenides, which are
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Material magnetic TC moment structure Eg ΔExc P References
behavior (K) (μB) a (nm) (eV) (eV) (%)

EuO FM 69.9 7.0 fcc 1.12 0.54 29 [2]
0.514

EuS FM 16.6 7.0 fcc 1.65 0.36 86 [4]
0.596

EuSe AFM 4.6 7.0 fcc 1.80 100 [2]
0.619

NiFe2O4 FerriM 850 2.0 spinel 1.20 22 [7]
CoFe2O4 FerriM 793 3.0 spinel 0.57 1.28 [9]
CoCrO4 FerriM 95 spinel [10]
BiMnO3 FM 105 3.6 perovskite 22 [8]

Table 1: Overview on known spin filter materials and selected magnetic, electronic and struc-
tural properties.

insulating in nature. A small departure from stoichiometry, e.g. due to electron doping, gen-
erates free carriers in the EuX matrix which are responsible for a modification of the magnetic
exchange interaction. In that case, the indirect exchange between the localized 4f spins S of
the Eu2+ ions and the spins σ of the 5d conduction electrons is mediated by a free electron gas.
The effect of the d− f exchange constant Jdf is to split the conduction band in spin-up (↑) and
spin-down (↓) subbands by an amount

ΔExc = JdfSσ, (6)

with S being the spin carried by the Eu2+ ions and σ being the localized spin polarization. The
exchange splitting ΔExc of the conduction bands results in a large variation of the bandgap
Eg as a function of temperature, as shown in Figure 2(a). This thermal shift of Eg affects the
optical, magnetic and electronic transport properties of EuX. An optical absorption experiment,
which directly probes the electronic structure of a material, can visualize this effect (Figure
2(b)): A large shift ΔE of the optical absorption edge towards lower energies can be observed
when the temperature is lowered and EuX becomes ferromagnetic. This shift is a result of the
increasing Jdf exchange interaction between the localized Eu 4f spins and the 5d conduction
electrons, which pushes the spin-down conduction band to higher energies and the spin-up band
to lower energies, thus reducing the effective bandgap Eg. Apart from optical measurements,
various other experiments have confirmed the thermal shift of Eg, for example photoemission,
field emission and tunneling experiments [1].

Whereas many studies have been presented for bulk europium chalcogenides, much less is
known about the electronic and magnetic properties of thin films. In the thickness regime of
spin filter tunnel barriers of few nanometers, it is important to achieve sizable magnetic ordering
and exchange splitting. Ab initio calculations of single crystalline EuX(100) predict the Curie
temperature to be strongly thickness dependent, i.e. to be significantly reduced for films of just
few monolayers [3]. Qualitatively, this behavior can be explained by the lower coordination
number of the surface atoms (four for an fcc structure) and thus a reduced exchange interaction
compared to that of the atoms in the center of the film (twelve for bulk). One may anticipate
that if TC is reduced for thin EuX films, also a reduced exchange splitting ΔExc can be at play,
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which recently has been confirmed by tunnel experiments. However, ΔExc is still large enough
such that EuX spin filter barriers typically produce a relatively high spin polarization, as listed
in Table 1. Since growing ultrathin films of Eu chalcogenides is relatively easy, this material
class is commonly utilized for fundamental studies on spin filter tunneling [2, 4].

Spinel Ferrites Candidates for spin filter barriers are the transition metal oxides NiFe2O4,
CoFe2O4 and MnFe2O4. These compounds with the general formula AB2O4 belong to the ma-
terial class of spinel ferrites. Whereas the AB2O4 systems are magnetic and insulating, their
parent compound Fe3O4 (magnetite) shows half-metallic character. Ferrites have magnetic or-
dering temperatures of about 800 K and thus could potentially filter spins at room temperature.
The spinel ferrites AB2O4 crystallize in a cubic structure built of two face-centered cubic (fcc)
sublattices. The first sublattice is formed by ferromagnetically ordered Fe3+ ions that occupy
the tetragonal A sites of the spinel AB2O4 structure. The second sublattice contains ferromag-
netically ordered TM2+ and Fe3+ ions which occupy the octahedral B sites. Recent experiments
give evidence that thin spinel ferrite films have magnetic properties that substantially differ from
those of the corresponding bulk material. For example, NiFe2O4 films with a few nanometers
thickness have a saturation magnetization of about twice that of the bulk compound, depending
on the growth conditions [7].
Thin spinel ferrite films are usually deposited by oxygen-assisted molecular beam epitaxy, a de-
position method which allows a controlled growth down to atomic layer accuracy. In practice,
however, chemical off-stoichiometry and atomic site disorder are often present in samples. As
the magnetic properties are sensitively controlled by the occupancy of the transition metal ion
on the lattice sites, the experimental situation with respect to the observed magnetic behavior –
especially in thin films – is not yet fully understood. Also the band structure of solids is crucially
dependent upon the atomic structure and site occupancy. It is therefore not surprising, that the
computer simulation of the exact physical conditions in such complex systems as the AB2O4

ferrites is very difficult. Electronic structure calculations from first principles have estimated
a smaller gap between spin-down than for spin-up band, which in tunnel experiments should
result in a negative spin polarization of the tunnel current, due to the excess of spin-down elec-
trons. In particular, for CoFe2O4 a very large exchange splitting of 1.28 eV of the conduction
band was calculated. On the experimental side, however, recent studies using CoFe2O4 spin
filter barriers show just very modest spin filtering at room temperature [9].

Perovskites Compared to the complex crystal structure of the ferrites, the cubic perovskite
structure is relatively simple. It is therefore convenient to experimentally integrate thin per-
ovskite layers as spin filter barriers into tunnel junctions. The perovskite structure follows the
formula ABO3, where the A atoms form the corners of the cubic cells, B atoms are located in
the center and the oxygen atoms are situated in the faces’ centers. In particular, it is possible
to combine perovskite spin filter barriers with isostructural half-metallic ferromagnetic metals,
such as La2/3Sr1/3MnO3 (LSMO), which can be used as a spin analyzer to probe the spin filter
efficiency (see Chapter 3).
Among the perovskites, BiMnO3 is an established insulating and ferromagnetic oxide with a
Curie temperature of 105 K. The insulating state of BiMnO3 is very robust with respect to
the deposition conditions. Up to now, however, no quantitative experimental determination of
the exchange splitting of the conduction band has been reported. Ab initio calculations us-
ing density functional theory are somewhat contradicting in their predictions of the electronic
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Fig. 2: (a) Temperature dependent band structure of EuX compounds. Under the effect of mag-
netic exchange (Jdf ), the conduction band splits into a spin-up and spin-down sublevel below
TC . (b) Shift of the optical absorption edge of EuX compounds indicating the spin splitting of
the conduction band under the effect of df exchange interaction. According to Ref. [1].

properties, due to the difficulties modeling the highly correlated character of these materials.
An exchange splitting of 0.5 eV was estimated from linear spin-density approximation (LSDA)
calculations and 1.6 eV from the LSDA+U method, whereas the latter technique is commonly
accepted to be more reliable to calculate band gaps [8]. In both cases, it is predicted that the
bandgap is smaller for spin-up electrons. Therefore, when used as a spin filter, a BiMnO3 layer
should filter out spin-down electrons and produce a positively spin-polarized current.

2.4 Quantifying the spin filter effect

Evidence for the spin filter phenomenon can be obtained from the temperature dependence of
the electrical resistance R(T ) of a magnetic tunnel barrier. Whereas in a nonmagnetic insulator
the resistance increases continuously with decreasing temperature as thermal excitations are
suppressed, a significant decrease in R occurs below the Curie temperature TC of a magnetic
insulator, if spin filtering is present. As discussed in Section 2.3, the conduction band splits
below TC and one spin type will tunnel preferentially. Because of the exponential dependence of
the tunnel current on barrier height (recall Equation (2)), this results in a significant increase of
conductivity (=decrease in resistanceR) for the corresponding spin orientation with decreasing
temperature. More quantitatively, the tunnel resistance R can be expressed within a simple
free-electron tunnel model as

R↑(↓)(T ) ∼ exp
(
−dΦ

1/2
↑(↓)(T )

)
with Φ↑(↓)(T ) = Φ0 ± JdfSσ(T ), (7)

where d is the barrier thickness, T is the temperature, Φ0 is the average barrier height above
TC , Jdf is the exchange constant, S is the spin quantum number and σ(T ) is the reduced mag-
netization M(T )/M(T = 0) of the magnetic insulator. The temperature dependence of the
resistance thus scales exponentially with the magnetization of the spin filter. Therefore, ΔExc

can directly be deduced from the tunnel measurement if the barrier heights Φ above and below
TC are known.
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Fig. 3: Schematic of the band diagram for a quasimagnetic tunnel junction (QMTJ). With a
ferromagnetic (FM) counterelectrode, the tunnel current depends on the relative magnetization
orientation between spin filter and FM. (a) For parallel alignment, a large current is measured,
while for (b) antiparallel alignment, a small current results.

The spin polarization of a tunnel current can be probed either by a superconductor (SC) or a
ferromagnet (FM) as the spin detector. Superconducting tunneling spectroscopy is a standard
method to determine the effective tunneling spin polarization that arises from the ferromagnetic
part in FM/insulator/SC or metal/spin filter/SC junctions [2]. Typically, a superconducting alu-
minum (Al) electrode serves as the spin detector. If a ferromagnet is used as the spin detector, a
magnetoresistance (MR) measurement can be applied to quantify the spin filtering efficiency of
a magnetic tunnel barrier. The magnetic barrier functions as the spin polarizer that generates a
highly polarized current, whereas a ferromagnetic counterelectrode serves as the spin analyzer.
The latter collects differently the spins parallel and antiparallel to its magnetization relative to
the spin filter barrier, which leads to large differences of the conductance. Therefore, the resis-
tance of the device depends on the relative orientation of the magnetic moments of the magnetic
insulating barrier and the ferromagnetic counterelectrode. Chapter 3 reviews the phenomenon
of spin filter magnetoresistance and its applications in spintronic devices in more detail.

3 Spintronic devices with spin filters

3.1 Quasimagnetic tunnel junctions

The most straightforward approach to convert the spin filter effect into magnetoresistance is
to integrate a magnetic insulator into a quasimagnetic tunnel junction (QMTJ). In such “spin-
filter” MTJs, the spin filter tunnel barrier is sandwiched between a nonmagnetic and a ferromag-
netic electrode. This combination slightly differs from conventional magnetic tunnel junctions
(MTJs), in which two ferromagnetic electrodes sandwich a nonmagnetic insulator (see lecture
by P. Grünberg). In both devices, however, the resistance of the junction depends on the rel-
ative alignment of the magnetization of the two magnetic layers. For a QMTJ, in the case of
a parallel alignment of the spin filter barrier and the ferromagnetic electrode, a low junction
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Fig. 4: (a) Magnetoresistance (MR) as a function of magnetic field B for an Al/EuS/Gd quasi-
magnetic tunnel junction (QMTJ), taken at T = 2 K (well below the EuS TC) as well as at
7 K and 30 K (well above the EuS TC). (b) MR of an Al/EuS/Al2O3/Co/CoO QMTJ recorded
at T = 4.2 K. An improved MR is observed if the EuS spin filter barrier and ferromagnetic
electrode are magnetically decoupled by a very thin insulator.

resistance Rp is measured. An antiparallel alignment results in a high junction resistance Rap.
This observation is termed “spin filter tunneling” magnetoresistance. Its characteristic quantity
is the magnetoresistance (MR) ratio, which is defined – in the same manner as in conventional
MTJs – as the variation of electrical resistance between the parallel (Rp) and the antiparallel
(Rap) state of magnetization of the two magnetic layers, i.e.

MR =
ΔR

R
=
Rap − Rp

Rp
. (8)

The magnitude of MR depends on the exponential dependence of the tunnel current on the bar-
rier height, as one spin channel has a larger tunneling probability (see Section 2.1). Moreover,
with a magnetic counterelectrode, we must consider the role of the spin-polarized density of
states in the electrode as well. The tunnel current depends on the number of filled states in
the first electrode as well as the number of available states in the second. Using one magnetic
electrode, see Figure 3, the density of available states in the magnetic electrode is spin depen-
dent, and the tunnel current will depend on the relative orientation of the filtered spins (i.e., the
spin filter magnetization direction) and the electrode magnetization. As illustrated in Figure
3(a), for parallel alignment only spin up electrons tunnel through the spin filter barrier and thus
they can only tunnel into majority (spin up) states in the magnetic electrode, resulting in a large
current. For the antiparallel case (Figure 3(b)), the current is minimal since only the spin down
states are available in the ferromagnet. Generally, this device can be considered analogous to a
polarizer/analyzer optical configuration, although with non-perfect analyzer.
The magnitude of the expected “spin filter tunneling” magnetoresistance effect may be esti-
mated within a simple two-current model, assuming spin conservation in the tunneling process
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(see Sect.2.1), as

MR =
ΔR

R
=

2PFMPSF

1− PFMPSF

, (9)

where PFM is the tunneling spin polarization of the ferromagnetic electrode and PSF is the
efficiency (polarization) of the spin filter. Eqn. (9) is basically an extension of the Jullière’s for-
mula (see lecture by D. Wortmann), from which the spin filter efficiency PSF can be estimated
if the spin polarization PFM of the FM layer is known.
In order to observe MR, it is necessary to avoid magnetic exchange coupling between the spin
filter barrier and the adjacent ferromagnetic electrode. Only if both layers show an independent
magnetic switching behavior under an applied magnetic field, a well-defined TMR curve can be
measured. This can be realized if the coercive fields of the spin filter barrier and FM electrode
are different, so that they can reach both parallel and antiparallel alignment.
The first spin-filter experiment utilizing a QMTJ device structure was performed by LeClair et
al. in 2002. A magnetoresistance ratio of up to 130% at T = 2 K was obtained for a QMTJ
with a 5 nm thick Europium Sulfide (EuS) barrier sandwiched between Aluminum (Al) and
Gadolinium (Gd) electrodes as shown in Figure 4(a). Using the aforementioned simple model,
the spin filter efficiency of the EuS barrier can be estimated being close to 90%. One can see
from Figure 4(a) that there is considerable noise in the MR signal. This behavior is attributed
to magnetic coupling between the adjacent EuS and Gd layers, which leads to instabilities in
the magnetization reversal in the EuS layer upon sweeping the external magnetic field. The
magnitude of TMR decreases as the temperature is raised closer to the Curie temperature TC of
EuS, and no magnetoresistance is observed above TC.
An improved performance of a spin filter tunnel junction was realized by Nagahama et al., who
investigated QMTJs of the structure Al/EuS/AlOx/Co/CoO. The AlOx layer between the EuS
barrier and the Co electrode magnetically separates the layers, whereas the antiferromagnetic
CoO acts as an exchange bias layer pinning the magnetization of the Co layer. Figure 4(b)
shows the MR curve of the junction at a temperature of T = 4.2 K taken with a bias voltage of
Vbias = 5 mV. Compared to the work on EuS junctions in Figure 4(a), the shape of the magne-
toresistance curve is stable with no instability in junction resistance.
The potential of the BiMnO3 perovskite as a spin filter tunnel barrier was investigated by Gajek
et al.. In their experiments, Au-BaMnO3-LSMO junctions showed a reasonable spin filter ef-
ficiency of about 22% at T = 3 K. A first step towards room temperature spin filtering was
reported recently in a study by Ramos et al. with fully epitaxial spinel CoFe2O3-based tunnel
junctions. The measurements reveal magnetoresistance values of−18% at 2 K and−3% at 290
K, indicating that magnetic tunnel barriers of spinel ferrites in principle could be used as spin
filters over a broad temperature range.

Bias dependence in QMTJs For conventional MTJs with two ferromagnetic electrodes sep-
arated by a nonmagnetic insulator, such as Al2O3 or MgO, the tunnel magnetoresistance con-
sistently decreases with increasing applied voltage. Reasons for this hallmark behavior are
mechanisms like spin scattering in the barrier or excitation of spinwaves (magnons), which lead
to the loss of spin information. Therefore, the operation of a conventional MTJ device is limited
to low bias voltage for an optimum TMR effect. The bias dependence of a QMTJ, can show an
opposite behavior. With a spin filter barrier involved, the magnetoresistance can increase with
applied bias voltage.
It is the characteristic tunnel mechanism across the spin filter barrier that explains this unusual
bias dependence. For a qualitative understanding, one divides the energy diagram of a QMTJ
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Fig. 5: Magnetoresistance and its bias voltage dependence in QMTJs. (a) The bias dependence
shows an continuous increase of the MR ratio up to high bias voltages, which is contrary to
conventional magnetic tunnel junctions. It can be understood as due to different tunneling
mechanisms through the spin-split conduction band of the spin filter barrier. (b) Schematic of
the band diagram for a Al/EuS/AlOx/Co QMTJ with Vbias < Φ↑. Electrons must tunnel directly
through both EuS and AlOx barriers. (c) Schematic band diagram for Vbias > Φ↑. Spin-up
electrons tunnel via Fowler-Nordheim tunneling through the spin-up conduction band, whereas
spin-down electrons must still tunnel directly through the barrier. Adapted from Ref. [6].

into three regions (Figure 5(b)): (i) A bias voltage may be applied which is either lower than the
bottom of the spin-split conduction band, Vbias < Φ↑, or (ii) may lie in between the spin-split
conduction band, Φ↑ < Vbias < Φ↓, or (iii) exceeds the upper conduction band edge Vbias > Φ↓.
Dependent on the bias voltage, different tunnel mechanisms are in effect. At low bias, Vbias <
Φ↑, electrons must tunnel through a trapezoidal barrier, termed as direct tunneling (DT). A dif-
ferent situation occurs at intermediate bias, Φ↑ < Vbias < Φ↓, where the spin-up conduction
band is below the Fermi level of the metal electrode. A narrower (spin-up) barrier is in effect,
that allows spin-up electrons to tunnel via the conduction band. This mechanism is termed
Fowler-Nordheim (FN) tunneling and is typically characterized by a triangular shape of the
barrier and tunneling through only a part of the insulating layer. At high bias, Vbias > Φ↓,
Fowler-Nordheim tunneling occurs for both spin-up and spin-down channels, as the metallic
Fermi level exceeds both barriers Φ↑ and Φ↓.
Fowler-Nordheim tunneling has a greater tunneling probability than direct tunneling [6]. There-
fore, the spin polarization of the tunneling current increases for Vbias > Φ↑ and causes a signif-
icant increase in magnetoresistance from where the transition from direct tunneling to Fowler-
Nordheim tunneling takes place (Figure 5(a)). At even higher bias, the spin down conduction
band also lowers below EF of the metal electrode and results in a gradual reduction of MR.
This special feature of a spin filter tunnel junctions allows to reach enhanced spin polarization
and magnetoresistance at high bias voltages, which is not observable in conventional MTJs.

3.2 Double spin filter tunnel junctions

Whereas in quasimagnetic tunnel junctions a conventional ferromagnetic counter-electrode still
is used to serve as the spin detector, one can imagine to realize magnetoresistance with spin
filters without any ferromagnetic electrode involved. A device in which this idea is realized is a
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double spin filter (SF) tunnel junction, which operates by solely tuning the tunneling probabili-
ties T↑(E) �= T↓(E).
A double spin filter device consists of a tunnel junction formed by at least four layers: The
outer two layers are nonmagnetic metal electrodes and function simply to provide an electrical
contact to the inner layers. The inner two layers are the core part of the device and form the
spin filter tunnel barrier. The key issue is that the two spin filter layers have to have unequal
coercivity: One coercivity has to be chosen to be very large, so that the magnetic moment of
this pinned layer stays fixed. The other layer has a smaller coercivity. This “free” layer may be
switched back and forth by an external magnetic field. The junction resistance is smaller when
the magnetization are parallel and larger, if they are antiparallel. This is due to the different
barrier height profiles for spin up and spin down electrons as schematically sketched in Figure
6(a). When the free layer is parallel to the pinned layer, spin up electrons see a low barrier and
spin down electrons a high barrier. Then, a relatively large spin up current flows, but only a very
little spin down current. When the free and the pinned layers are magnetized antiparallel, both
spin up and spin down electrons see a barrier profile consisting of one low barrier height section
and one high barrier height section. This barrier configuration allows little spin up or spin down
current flow. The magnetoresistance of a double spin filter junction depends exponentially on
the relative alignment of the spin selective barrier heights of the two spin filter layers (recall
Eqn.(1)). This makes the device theoretically very sensitive. A rough estimation of the MR
ratio that theoretically can be expected for two spin filter barriers of few nanometer thickness
is in the order of ΔR/R � 105 [11, 12]. Double spin filter barriers therefore could potentially
exceed the sensitivity of conventional MTJs by at least two orders of magnitude.
The first experiment on spin filter double junctions has not been realized until very recently [13].
By combining double EuS spin filter barriers with Al electrodes, up to 60% MR was observed
at a temperature of 1 K. This modest MR was attributed to imperfections of the polycrystalline
structure of the layer stack and interfaces. One therefore can expect enhanced MR ratios from
double SF barriers with improved crystallinity. In this work, the key issue of separating the
coercive fields of both EuS layers was achieved by combining one EuS layer deposited at room
temperature and the other quench-condensed at liquid nitrogen temperature (TLN = 77 K) as
shown in Figure 6(b). A thin Al2O3 spacer layer introduced in between the barriers was neces-
sary to magnetically decouple both spin filter layers.
Although a double spin filter junction may lead to very sensitive MR devices, finding materials
that give large signal above room temperature will be challenging. The requirements are finding
a magnetic insulator with small band gaps and large exchange splitting, which can be grown as
high-quality thin films. The perovskite family has the advantage that the magnetic layers can be
grown relatively easily, but the disadvantage is that they are operating at most at liquid nitrogen
temperatures. The second possible material system are ferrites, which can be grown epitaxially
and are potentially both insulating and ferrimagnetic above room temperature.

3.3 Spin filtering in quantum wells

This section is intended to give an example of spin filter tunneling which goes beyond the stan-
dard concept of magnetic tunnel junctions. Using quantum well (QW) structures is an approach
to realize spin filtering relying on the idea to select the spin character of electrons by resonant
tunneling. This option becomes possible if the quantum well is made of magnetic material, and
the energy levels are spin-split. The splitting of quantum well states enables one to select the
resonant tunnel condition for each spin by applying the right bias voltage.
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Fig. 6: (a) Schematic illustration of the spin filter mechanism in double spin filter tunnel junc-
tions below the Curie temperature TC of the spin filter barrier. Dotted lines roughly indicate the
barriers that the spin-up and spin-down electrons have to cross. (b) Magnetic hysteresis loops
of thin EuS films deposited at 77 K and RT, film thicknesses are 1.5 nm and 3 nm, respectively.
The coercivity strongly differs for the two deposition temperatures. After Ref. [13].

A device in which spin-filter resonant tunneling can be observed is a so-called magnetic reso-
nant tunneling diode. This structure is typically built of a fully semiconducting layer stack, in
which two outermost layers are highly conductive and serve as the emitter and collector elec-
trode. Those leads sandwich the heart of the device, that is a quantum well which is surrounded
by two diamagnetic semiconducting layers serving as tunnel barriers. The well is typically
made of a diluted magnetic semiconductor (DMS), in which magnetic ions are doped into con-
ventional semiconductors to achieve ferromagnetism. If a constant external magnetic field is
applied, the energy levels of the paramagnetic DMS exhibit a giant Zeeman splitting. At low
temperatures, the energy levels in the well are split into spin-up and spin-down states. The
amount of Zeeman splitting is controlled by the strength of the external magnetic field and can
be in the order of several ten meV. Standard DMS materials typically require fields in the order
of Teslas to reach the magnetic saturation, which is about one order of magnitude higher com-
pared to “concentrated” magnetic semiconductors like the Eu chalcogenides.
Such a type of spin filtering device was realized in 2003 by Slobodskyy et al. [14]. They fabri-
cated an all II-VI semiconductor resonant tunneling diode based on (Zn,Mn,Be)Se (see Figure
7(a)). The ZnBeSe layers serve as tunnel barriers and the quantum well states are formed in a
ZnMnSe DMS layer. Figure 7(b) shows the current-voltage (I-V ) characteristics of this reso-
nant tunneling diode. Without an external magnetic field, a single resonant peak is present at
about 125 meV. This resonance is split into two parts if a magnetic field is applied. The splitting
thereby grows as a function of the magnetic field because it corresponds to the Zeeman splitting
of the DMS quantum well. Each of the two peaks can be attributed to spin-up and spin-down
quantum well states. One can therefore select the desired spin orientation of the current by ap-
plying a proper bias voltage to the device. The spin polarization of the current flowing through
the device is thereby dependent on the external magnetic field B and the applied bias voltage
Vbias. This experiment demonstrates the possibility of tunneling through spin resolved energy
levels in semiconductors, with the special feature that the spin filter process can be voltage con-
trolled. This idea may have potential utility for spintronic devices based on semiconductors, as
will be introduced in the last section.
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Fig. 7: (a) Schematic view of a magnetic resonant tunneling diode (RTD) band structure under
applied bias voltage after Ref. [14]. (b) Current-voltage characteristics for the RTD with
ZnMnSe (Mn=8%) in the quantum well. The curves are taken from zero applied magnetic field
up to B=6T.

3.4 Spin injection through spin filters

Generating highly spin polarized tunnel currents is a very useful tool for realizing magnetore-
sistive effects, but also for making use of spin-polarized currents in semiconductors (SCs).
Research is driven by the aim to incorporate spins into existing semiconductor technology and
currently is one of the most active areas in the field of spinelectronics. The spin orientation can
survive over long distances in semiconductors – for example over 100 microns in GaAs. This
capability is attractive for realizing spintronic devices as, for example, spin field effect tran-
sistors or spin-light emitting diodes (spin-LEDs). In order to operate any SC-based spintronic
device, the following steps have to be realized: i) generation and efficient injection of spin po-
larized electrons into a semiconductor, ii) coherent transport of spin through the semiconductor,
and finally iii) detection of the spin. It has turned out, that the initial step – the so-called spin in-
jection – already represents a major challenge. The earliest approach to electrically inject spins
was to use a ferromagnet (FM) as the source of spin polarized carriers, but many experimental
trials have been unsuccessful. A theoretical model was put forward that explains the problem
encountered at the FM/SC interface: The very large spin-dependent conductivity in the FM is in
contrast to a very small spin-independent conductivity in the semiconductor, such that the spin-
injection coefficient is negligibly small [15]. In order to overcome this obstacle, it was proposed
that the only possibility to effectively transmit spins across the FM/SC interface would be that
either the current is initially almost 100% spin-polarized or that a tunneling barrier is inserted
in between. The tunnel barrier would have the same low conductivity as the semiconductor, but
in addition is spin selective.
One route to meet the above conditions is to make use of the spin filter effect of a magnetic
tunnel barrier. An advantage is the potentially high spin filter efficiency which could produce
the near 100% spin polarization that is required for an efficient spin injection. In addition, it
could alleviate the problem of the strong interface sensitivity of standard tunnel barriers: As the
spin filtering efficiency at first order depends on the barrier heights and not on interface density
of states (recall Section 2.2), it should be more robust with respect to variations in interfacial
properties. An interesting property of the Eu chalcogenides is their tunable conductivity (∝ free
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carrier concentration) which can be adjusted over a wide range by electron doping. In this way,
the Europium compounds can be used as spin filters in the insulating state and as spin injectors
when doped.
Experimental work integrating spin filters with semiconductors for injection and detection of
spin polarized currents still has some way to go before catching up with theoretical models.
Many problems simply arise from the growth of the according materials on semiconductors,
which can lead to the formation of undesired compounds and alloys at the interface or inter-
facial electronic states, just to name a few. An initial step was done by studying the current
transport across EuS/GaAs spin-filter/semiconductor contacts and to estimate its polarization
detection efficiency [16]. The thin Schottky barrier produced by a 100nm thick doped EuS
layer in contact with GaAs performs both the function of a highly polarized source as well as
an insulating spin filter barrier. The exchange splitting of the EuS conduction band was deter-
mined by measuring the current-voltage (I-V ) characteristics at temperatures above and below
the TC of EuS. The exchange splitting ΔExc was quantified from the the relative shift of the
I-V curves towards smaller voltages for T < TC , which is the signature of a lowered barrier
height for electrons tunneling from EuS into the GaAs electrode. In addition, a shift of the
current-voltage characteristics with temperature in the reversed bias regime (electron injection
from GaAs into EuS) was observed suggesting spin filtering of the unpolarized electrons com-
ing from GaAs. In this way, the performance of the EuS/GaAs contact as an spin injector and
spin detector was probed individually. The observed effect in the current-voltage characteristics
implies spin injection and detection though no spin analyzer is explicitly used.

4 Concluding remarks

Spin filter tunneling is an interesting phenomenon which has been revisited since recently for
spin electronics. The potential of spin filter tunnel barriers to generate currents with very high
spin polarization is essential to realize large spin-dependent effects for example in magnetic
tunnel junctions, spin filter tunnel diodes or semiconductor-based devices. Unique features can
be observed in devices based on spin filters, for example, enhanced magnetoresistance ratios at
high bias voltages or the possibility to operate spin filtering voltage-controlled. However, until
today establishing spin filtering at room temperature is still a major challenge. In either case,
future studies relying on the spin filter effect will hold interesting physics ready.

References

[1] A. Mauger and C. Godart, The magnetic, optical, and transport properties of represen-
tatives of a class of magnetic semiconductors: The europium chalcogenides (Physics Re-
ports 141, 2 (51) 1986)

[2] J. S. Moodera, T. Santos and T. Nagahama, The phenomena of spin-filter tunnelling (J.
Phys.: Condens. Matter 19 (165202) 2007)

[3] R. Schiller and W. Nolting, Thickness dependent Curie temperatures of ferromagnetic
Heisenberg films (Sol. State Comm. 110, (121) 1999)



B4.18 Martina Müller

[4] J. S. Moodera, X. Hao, G. A. Gibson, and R. Meservey, Electron-spin polarization in
tunnel junctions in zero applied field with ferromagnetic EuS barriers (Phys. Rev. Lett.
61, 5 (637) 1988)

[5] P. LeClair, J. K. Ha, H. J. M. Swagten, J. T. Kohlhepp, C. H. van de Vin, and W. J. M. de
Jonge, Large magnetoresistance using hybrid spin filter devices (Appl. Phys. Lett. 80, 4
(625) 2002)

[6] T. Nagahama, T. Santos, and J. S. Moodera, Enhanced magnetotransport at high bias in
quasimagnetic tunnel junctions with EuS spin filter barriers (Phys. Rev. Lett. 99, (016602)
2007)
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1 Introduction

This lecture deals with effects generated by the spin-orbit interaction in semiconductors. The
influence of spin-orbit coupling on the band structure of semiconductors was recognized already
in the 1950’s and intensively studied, e.g. by Dresselhaus [1]. Most prominent is the splitting
of the sixfold degeneracy of the p-valence states in the vicinity of the Γ-point. Like in atoms
the p-states form two- and fourfold degenerate states energetically separated proportional to
the spin-orbit interaction strength. With the development of epitaxial growth techniques and
structuring of devices by etching and gates on nanometer-scale studies of spin-orbit effects
on the transport of the electrons were taken up again, with the goal of using also the spin for
signal transmission. Because of spin-orbit coupling the spin of an electron moving in an electric
field sees a magnetic field and may carry out a precession motion. This is detectable via spin
sensitive detectors (optical, injection into ferromagnetic material). This lecture will collect the
basic theoretical ingredients to describe such effects (an extensive survey over experiments and
theory is given in [2]).
In section 1 the main features introduced by spin-orbit coupling into the band structure of a
semiconductor will be repeated (cf. lectures of G.Bihlmayer and Ph. Mavropoulos) and their
theoretical derivation is outlined. Section 2 is dedicated to the physical consequences of the
band structure when electrons in a semiconductor are influenced by external electric and mag-
netic fields. Their motion can be described by an effective mass Schrödinger equation. The
parameters, m∗ (effective mass), g∗ (effective gyromagnetic factor of the electron spin) and ef-
fective spin-orbit coupling parameters are determined by appropriate matrix elements between
band edge Bloch functions. Section 3 is occupied with the special situation of electrons moving
in reduced dimension. Many hetero-structures consisting of layers of chemically different ma-
terials may trap electrons between the layers and support a 2-dimensional electron gas (2DEG)
with the electrons moving freely parallel to the layers. To transport signals the geometry is fur-
ther restricted to quasi 1-dimensional contacts. If the material is clean enough to make the mean
free path of electrons of the order of the length of the contact they are called quantum-wires.
The Schrödinger equation including spin-orbit interaction for the electron distribution in a wire
is derived. In section 4 a specific example is studied. The focus is on the the dynamics of the
electron spin during the passage through the wire. The phenomena of spin precession and spin
polarisation are studied.

2 Bloch wave functions including spin-orbit interaction

The motion of the electrons in a crystal is governed by a periodic potential: VC(�r) = VC(�r+ �R)

(∀ �R, lattice vector). As a consequence the states of an electron are Bloch-states organized in
bands (cf. lecture of G. Bihlmayer). This remains true, when spin-orbit coupling

HSO =
�

(2mec)2
�σ ·
[
∇V ×

(
�p+ e �A

)]
, (1)

is included. me is the mass of a free electron and e its charge. As required by relativity, an
electric field �E = −∇V/e is seen by the spin �S = �/2�σ (�σ Pauli matrices, cf. lecture of G.
Bihlmayer) of an electron at position �r moving with velocity �υ = (�p+ e �A)/me in its rest frame
as a magnetic field, HSO is the Hamiltonian connected to it. �A is the vector potential of an
external magnetic field �B = ∇× �A and �p the canonical momentum of the electron.
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Without magnetic field the Schrödinger equation including spin-orbit interaction is given by

[
1

2me

�p 2 + VC +
�

(2mec)2
�σ · ∇VC × �p

]
ψ = εψ . (2)

In a semiconductor the Fermi-energy falls into an energy gap and the relevant states for the
electrons are in the vicinity of the Γ-point (or possibly another symmetry-point) of the Brillouin-
zone. It is useful to start with the solutions at the Γ-point, the lattice periodic “band-edge
functions”

u0,ν (�r, s) ; ε0,ν : ν = 0, 1, 2, · · · , s = ±1 , (3)

with

〈ν|ν′〉 =
1

VU
∑
s=±

∫
U

d3�r u0,νu0,ν′ = δν
′
ν . (4)

U is the Wigner–Seitz-unit-cell and VU its volume.
Eq. (2) is very similar to the Schrödinger equation of a single atom, only the symmetry is
reduced. In an atom the symmetry is fully spherical. With spin-orbit interaction the total angular
momentum �J , sum of orbital momentum �L = �r × �p and spin �S, is a conserved quantity and
classifies the states. The quantum numbers j of �J are half integral, the degeneracy of the
states, 2j + 1, is even. s-(l = 0)-states are twofold degenerate. For p-(l = 1)-states �L and
�S are coupled to twofold degenerate j = 1/2-states and fourfold degenerate j = 3/2-states

separated by the spin-orbit energy Δso =
(

�

2mec

)2

〈V ′/r〉. For Eq. (2) there are only a finite

number of symmetry operations defining the point group of the crystal. Most common for
semiconducting crystals is tetrahedral symmetry (point group Oh). In “III-V”-compounds like
GaAs the atoms of the components occupy face-centered-cubic lattice positions shifted against
each other in space diagonal direction by a quarter of the lattice constant. Each atom sits in
the center of a tetrahedron formed by four atoms of the other component (Fig. 1). The band-

Fig. 1: atomic positions in III-V-compounds
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edge functions of valence (v)- and conduction (c)-bands develop out of s- and p-states of the
atoms (4s,4p for GaAs). Their shape is unchanged close to the nuclei because of the dominant
spherically symmetric Coulomb potential. If the spin-orbit interaction is neglected, the threefold
degeneracy of the p-states is not removed in tetrahedral symmetry. There are two atoms per unit
cell. This leads to formation of functions with and without node between the neighbors (called
anti bonding, bonding functions). In leading order the spin-orbit interaction does not change
the energies of s-like states because diagonal matrix-elements 〈ν|HSO|ν〉 vanish (cf. Eq. (18)).
For p-like states u0,ν : ν = 1, 2, 3 the matrix-elements 〈ν|HSO|ν ′〉 are equal for all pairs ν, ν ′

by symmetry (cf. Eq. (19)). The resulting eigenvalue equation has two solutions, one fourfold
and one twofold degenerate (cf.Eq. (20)). The eight electrons per unit cell fill the bonding s,p
- band states. The Fermi-energy is in the gap between the bonding p- and anti bonding s-band.
The resulting level scheme is illustrated in Fig. 2.

Ga GaAs As

s

p p a

p b

s a

s b

s

p

Fig. 2: level scheme for a typical III-V-compound

At �k �= 0 the periodic part u�k,ν of Bloch-functions ψ�k,ν = u�k,ν exp(ı�k�r) obeys the equation

[
1

2me

(
�p+ ��k

)
2 + VC +

�

(2mec)2
�σ · ∇VC × �p

]
u�k,ν =

[
1

2me
�p 2 + VC +

�

me

�k�p+
�

2k2

2me
+

�

(2mec)2
�σ · ∇VC × �p

]
u�k,ν = εν

(
�k
)
u�k,ν . (5)

as long as g k � 1 (g lattice constant) perturbation expansion of the energies with respect to
�k�p converges. There are no corrections of the energy linear in k. All matrix-elements of �p
between wave-functions transforming according to the same irreducible representation of the
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point group of the crystal are zero. To second order in k the energy is

εν

(
�k
)

=
�

2k2

2me

+
∑
μ�=ν

�
2
〈
ν
∣∣∣�k�p
∣∣∣μ
〉〈

μ
∣∣∣�k�p
∣∣∣ ν
〉

m2
e (εν − εμ) (6)

It is a linear combination of products of the components kx.ky, kz of �k which has all symmetries
of the crystal. It must be proportional to k2. For the conduction band starting from the sa-state
the dominant contributions come from the pb-states. ¡

εc

(
�k
)

=
�

2k2

2me

(
1 + 2

∑
q

|〈sa |�p| pbq〉|2
me (εsa − εq) + 2

∑
d

|〈sa |�p| pbd〉|2
me (εsa − εd)

)
(7)

(The indexes q,d indicate the splitting of the pb-states into a quartet and a doublet by spin-orbit
coupling.) The bracket in Eq. 7 is larger than 1, meaning a reduction of the mass.

m∗ = me

(
1 +

|Pq|2
meΔεq

+
|Pd|2
meΔεd

)(−1)

(8)

Depending on the relative size of the matrix-elements and energy gaps m∗ may get rather small
(.02me to .07me in III-V compounds).

3 Dynamics of Electrons in crystals

The motion of electrons in free space is described by superpositions of plane waves. In crystals
superpositions of Bloch waves are appropriate

Ψ =
∑
�k,ν

ψ�k,νχν

(
�k
)

(9)

If the �k’s are concentrated around the Γ point of the Brillouin-zone, suitable Bloch-functions
normalized with respect to the volume V of the crystal are

ψ�k,ν = exp
(
ı�k�r
)
u0,ν (�r, s) /

√
V (10)

formed with the band-edge functions which are independent on �k. With them one may separate
the action of external forces from the action of the crystal-forces inside the Wigner-Seitz-cell.
The crystal-forces vary on the scale of the lattice constant g, external forces on a scale S and
normally S 	 g. The wave function Ψ may be written in the form

Ψ =
∑
ν

u0,ν (�r, s) Ξν (�r, s)

with a slowly varying envelope-function

Ξν(�r) =
∑
�k

exp(ı�k�r)χν(�k) .
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S

g

Fig. 3: Schematic picture of the variation of u0 (upper curve), Ξ and Ψ (lower curves blue and
cyan, respectively) along a chain of crystal atoms.

The external potentials V and �A in the Schrödinger equation
[

1

2me

�K2 + VC + V + gμB�σ ·
(
�B +
∇ (VC + V )

2emec2
× �K

)
− E

]
Ψ = 0

(�K = �p + e �A kinetic momenta) are constant across the Wigner-Seitz-cell and do not act on the
u’s. �p, VC , �σ do act on both the u’s and Ξ’s and lead to coupling of the ν’s. Expansion with
respect to ν yields a set of coupled differential equations for the envelope functions

0 =

[
ε0,ν − ε+

1

2me

(
�p+ e �A

)2

+ V +Oνν
]

Ξν +
∑
ν′ �=ν
Oν′ν Ξν′ . (11)

with coupling operators acting on the Ξ’s

Oν′ν = 〈ν
∣∣∣�Π/me

∣∣∣ ν ′〉
(
�p+ e �A

)
+ 〈ν

∣∣∣�̃Π/me

∣∣∣ ν ′〉 �∇V/(4mec
2)

+〈ν |μB�σ| ν ′〉 ·
[
�B +∇V/(2emec

2)×
(
�p+ e �A

)]
,

defined by operators acting on the u0’s

�Π = �p+ ��σ ×∇VC/(4mec
2) , �̃Π = �p× �σ , and �σ.

Only �σ in O has diagonal elements, acting on the envelope functions like an effective magnetic
field with a spin-orbit contribution. The inter-band couplings may be resolved by the method
of back-folding. For a particular state (or group of states), e.g. ν = c for conduction (or
ν = v for valence) electrons, energetically separated from the other states, the reduced system
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of equations with ν �= c is a regular linear inhomogeneous system of equations. There is an
operator Gν′ν which allows to express the Ξν’s by Ξc leading to

0 =

[
εc − ε+

1

2me

(
�p+ e �A

)2

+ V + Occ −
∑
ν,ν′ �=c

OνcGν
′
ν Ocν′

]
Ξc. (12)

G may be expanded with respect to the off-diagonal part and a systematic expansion in terms of
spin and kinetic momentaKx,y,z = (p+ eA)x,y,z results. In lowest (second) order G is diagonal,
Gν′ν = δν

′
ν /(εc − εν), with the effect, that all diagonal terms get re-normalized, most important:

the free electron mass me is replaced by an effective mass m∗ and μB is replaced by g∗μB
due to the non-zero commutators of the kinetic momenta [Kα;Kβ] = Bγ . In third order the
spin-orbit-term is extended by

HD ∝ {σxKx,K2
y −K2

z}+ {σyKy,K2
z −K2

x}+ {σzKz,K2
x −K2

y} (13)

called Dresselhaus term [1]. Here, {A,B} = 1/2(AB + BA) is the anti-commutator. To this
order of approximation an effective mass Schrödinger equation

H Ξc =

[
1

2m∗
�K2 + V + g∗μB�σ ·

(
�B +

∇V
2emec2

× �K
)

+ γD
∑

c.p.(x,y,z)

{σxKx,K2
y −K2

z}
⎤
⎦ Ξc = ε Ξc (14)

results for the dynamics of electrons in a non degenerate band. The quantity γD is the material-
dependent Dresselhaus parameter [2].

4 Restricted geometry

By epitaxial growth it is possible to form sandwiches of layers with different chemical com-
positions. Electro-chemical forces adjust the the Fermi-level and influence the energies of
the electrons vertical to the layers, i.e. an external potential V acts on the electrons depend-
ing only on their position vertical to the plane of the layers. There are suitable combinations
of layers, which generate quantum-well potentials Vqw as shown in Fig. 4. These potentials
bind electrons in the central layer and enable the formation of a 2-dimensional free electron
gas (2DEG). Inside the layer the electrons can move freely. The wave-functions in Eq. (14),
Ξ ∼ ξ(z)φ(x, y) factorize into functions ξ and φ, describing the distribution of the electrons
across the quantum well and their motion in the plane, respectively. For electrons in the quan-
tum well 2-dimensional sub-bands are formed. Their distance in energy δε is determined by
the thickness d of the active layer δε ≈ �

2π2/(2m∗d2). At typical electron densities n only
the lowest sub-band is occupied The Fermi energy is εF = πn�

2/m∗. If the barrier materials
on both sides of the active layer are different, Vqw will be asymmetric with a nonzero average
gradient, �

2〈ξ |∇Vqw| ξ〉/(2mec)
2 = αR�ez. It defines the Rashba spin-orbit coupling constant

αR [3]. �ez is the unit vector vertical to the layer.
Electron transport may be further confined to a 1-dimensional system by preparing narrow
wires with a lateral width W down to a few 10’s of nm. The electrons see in addition to
the quantum well potential a confining potential VW (x). As a reasonable guess, speculating
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z

V

B

A

T

Fig. 4: Sketch of the potential across a device consisting of three semiconducting layers. Elec-
trons are trapped in the bound states of Vqw. The thickness of the active layers is typically
around 5[nm] corresponding to a stack of 10 unit cells.

on an approximately constant distribution of the charges across the wire, a soft wall potential
VW = V0/ (exp [(W/2− |x|) /δ] + 1) is used in the following. In a long wire the in plane part
of Ξ factorizes again φ ∼ exp(ıkyy)χ(x) into a plane wave factor for the motion along the wire
and a spinor function χ. It determines the density and spin distribution across the wire via a
second order differential equation following from Eq. (14). With a magnetic field �B = B�ez
deduced from �A = ( 0 , B x , 0 ) the kinetic momenta are

Kx =
�∂

ı∂x
; Ky = �ky + eBx ; Kz =

�∂

ı∂z
.

The Rashba- and Dresselhaus terms in Eq. (14) are

HR =

[
σx (�ky + eBx)− σy �∂

ı∂x

]
αR
�

HD = γD〈ξ
∣∣K2

z

∣∣ ξ〉
(
σy (�ky + eBx)− σx �∂

ı∂x

)

+γD/2
[
σx
(KxK2

y +K2
yKx

)− σy (KyK2
x +K2

xKy
)]

. (15)

Equation (14) is then
[

1

2m∗
(K2

x +K2
y

)
+ VW +HR +HD + g∗μB B

]
χ = Eχ. (16)

A list of values of the parameters αR, γD for III-V compounds is given in [2] (Tables 6.3 and
6.6.). Eq. 16 is a system of ordinary differential equations and may be solved by any standard
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W = 600 [ nm ]

L = 30 [μ m ]

x / W

V

−.5 0 .5

Fig. 5: Sketch of the confining potential VW . Typical dimensions of the wires are indicated.

numerical differential equation solver. It should be pointed out that the full Dresselhaus term
can be included. In existing treatments of the Dresselhaus term [4] only the first part - linear in
Kx,y - of HD was considered. This is justified as long as k2

y � 〈K2
z〉 ≈ 1/d2. However, at high

enough density k2
y may come close to 1/d2 and the third order terms will contribute significantly

[2]. In the following the standard definition βD = �γD〈|K2
z|〉 will be used for the Dresselhaus

coupling strength.
The 2-dimensional sub-band is split again into 1-dimensional sub-bands. However, the ener-
getic separation is now ΔE ≈ �

2π2/(2m∗W 2). Typically ΔE � εF , thus many bands cross εF .
A typical χ for electrons at εF has a density distribution across the wire as shown in Fig. 6. It
has 30 density peaks of almost equal height. There are 30 other χ with similar densities. The
total density, sum of these is constant except for a region close to the walls. This justifies the
assumption of a soft wall potential for wires.
Wire structures based on the material combination GaxIn1−xAs (Gallium-Indium Arsenide), InP
(Indium Phosphide) were investigated experimentally and theoretically in [5]. The experimental
findings were analysed using Eq. 16. The parameters are in this case:

m∗ = 0.04me αR = 5.4[meV nm] βD = 1[meV nm] g∗ = −14

n = 0.005[1/nm2] εF = 33.[meV ]

The following section is based on this example. The focus is on spin-orbit effects at zero
magnetic field.

5 Spin manipulation by electron transport through wires

There is a one to one correspondence between a spinor

χ =

(
U

D

)
=

(
f

g + i h

)
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defined by two complex components and a unit vector �e = (ex, ey, ez) defining the spin direc-
tion. Multiplying χ with the phase factor U∗/|U | (physically irrelevant) gives a representation
of χ with 3 real quantities f, g, h. The spin direction is then defined by

�e · �σ χ = χ or

(
ez ex − ı ey

ex + ı ey ez

)(
f

g + i h

)
=

(
f

g + i h

)

The solution is

ex =
2fg

f 2 + g2 + h2
, ey =

2fh

f 2 + g2 + h2
, ez =

f 2 − g2 − h2

f 2 + g2 + h2
(17)

For the example state of Fig. 6 the local spin direction across the wire rotates clockwise from
+�ez to−�ez in the half space x < 0 (cf. Fig. 7). On average it is oriented in negative x-direction.

− 0.5 0 0.5
x / W

V [meV ]

− 40

40
ε

F

Fig. 6: Density |χ|2 = f 2 + g2 + h2 of a spinor at εF , ky = 50/W .

− 1

1

− 0.5 0 0.5
x / W

s
z

s
y

s
x

Fig. 7: Spin direction Eq. 17 of χ Fig. 6.

(The small y-component is due to the Dresselhaus-term. With the Rashba term alone all states
would have the spins oriented in the (x, z)-plane.)
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To each solution χ of Eq. 16 exists a solution χ̃ with the same energy but inverted spin structure
and slightly different wave number (for the example state δk = −1.8/W ). This is in line with
the general symmetry arguments discussed in the lectures of G. Bihlmayer and Ph. Mavropou-
los. By superpositions of χ and χ̃ states can be prepared with spins pointing in a specified
direction at a given position in the wire. Along the wire χ and χ̃ propagate with different phase
velocities. The spin rotates along the y-direction. The length for one complete revolution is
λs = 4π/δk. Based on this observation a spin transistor device has been proposed [6]. A

Fig. 8: Datta-Das Spin-transistor [6]

spin-polarised current is injected by a spin polarized source. The spins rotate along the wire
and can be detected by a polarised drain. The rotation length λs can be manipulated by a gate
and enable signal transmission. The problem here is that many spin-paired states cross εF . λs
is different for all pairs. Even if an electron was injected with a well defined spin direction
it would be a superposition of many states which rotate differently. The information on the
original spin direction will soon be lost, a simple spin relaxation mechanism (cf. lecture of Ph.
Mavropoulos).
The strength of the spin-orbit interaction increases with ky as seen from Eq. (14). Neighboring
bands are degenerate at ky = 0 for a wire with left-right symmetry. With increasing ky they
have the tendency to cross each other (cf. Fig. 9) These crossings are resolved by HR,D, such

k
y

W

ε [meV ]

.5

1.

− 5 0 5

B = 0

Fig. 9: Band structure of the wire. Pairs of bands with opposite spin orientation indicated.

that the spin orientation is transferred from the energetically higher to the lower state. A series
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y

W

ε
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[meV ]

1.08

0.54

ε
F
− ε

k

Fig. 10: confinement energy εc, i.e. the total energy minus the kinetic energy in the y-direction,
of the lowest bands

of crossings appears along the ky-axis (cf. Fig. 10). As a consequence at εF bands with the
highest ky will have the same spin orientation. For the case of square-well confinement the
first eight bands have equal spin orientation The spin polarised part (red in Fig. 11) amounts to

0

0.5

1.0

0 50 100 k
x

W

Σ
N

Fig. 11: Density of states at εF

approximately 10% of the total density of states at εF . With an appropriately charged gate these
states could be filtered out.
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Appendices

A Spin-orbit matrix-elements

The diagonal matrix-elements of the spin-orbit interaction 〈ν|HSO|ν〉 vanish. The defining
integrals of∇V × �p, e.g. for the z-component (�r = (x, y, z)):∫

U

d3�r u0,ν

(
∂

∂x
VC

∂

∂y
u0,ν − ∂

∂y
VC

∂

∂x
u0,ν

)
=

∫
U

d3�r VC

(
∂

∂x

[
u0,ν

∂

∂y
u0,ν

]
− ∂

∂y

[
u0,ν

∂

∂x
u0,ν

])
= 0 (18)

are zero, as seen by partial integration. The integral over the boundary of the Wigner-Seitz cell
U is zero because of the periodicity of the functions in the integrand.
Many off-diagonal matrix-elements 〈μ|HSO|ν〉 either vanish because of symmetry or may be
transformed into one another by symmetry operations. A set of degenerate p-states has three
functions u0,x, u0,y, u0,z which transform like the components of �r. Then e.g. for the pair
u0,x, u0,z∫

U

d3�r u0,x [∇V × �p ]z u0,z =

∫
U

d3�r u0,x
�

ı

(
∂

∂x
VC

∂

∂y
u0,z − ∂

∂y
VC

∂

∂x
u0,z

)
=

(via 〈x, y, z〉 → 〈−x,−y, z〉 -symmetry)

−
∫
U

d3�r u0,x
�

ı

(
∂

∂x
VC

∂

∂y
u0,z − ∂

∂y
VC

∂

∂x
u0,z

)
= −

∫
U

d3�r u0,x [∇V × �p ]z u0,z

Matrix-elements with two equal indexes are zero. For the pair u0,x, u0,y∫
U

d3�r u0,x [∇V × �p ]z u0,y =

∫
U

d3�r u0,x
�

ı

(
∂

∂x
VC

∂

∂y
u0,y − ∂

∂y
VC

∂

∂x
u0,y

)
=

(partial integration and [x,y]-symmetry)

−
∫
U

d3�r u0,y
�

ı

(
∂

∂x
VC

∂

∂y
u0,x − ∂

∂y
VC

∂

∂x
u0,x

)
=

∫
U

d3�r u0,y [∇V × �p ]z u0,x (19)

All matrix-elements
〈
α| ]∇V × �p ]β |γ

〉
with pairwise different indexes are equal. They vanish

if there is an inversion center in the crystal. Inversion symmetry transforms the integrands into
their negatives. In crystals without inversion symmetry (e.g. II-VI and III-V compounds) they

may be different from zero and define Δso = �

(2mec)
2

〈
α| [∇V × �p ]β |γ

〉
, the analog Δso of

atom (cf. Sect. 2).

B p-band edge states with spin-orbit coupling

[∇V × �p ] generates the matrices

Mx =

⎛
⎝ 0 0 0

0 0 −ıΔso

0 ıΔso 0

⎞
⎠My =

⎛
⎝ 0 0 −ıΔso

0 0 0

−ıΔso 0 0

⎞
⎠Mz =

⎛
⎝ 0 −ıΔso 0

ıΔso 0 0

0 0 0

⎞
⎠ .
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Scalar product with �σ extends these to a 6× 6 matrix

MS =

( Mz Mx − ıMy

Mx + ıMy Mz

)

The eigenvalue equation for the energy ε of the p-edge levels is (ε0 : energy without spin-orbit
coupling and U : 6× 6-unity matrix)

det [(ε0 − ε)U +MS] =
(
(ε0 − ε+ Δso)

2 (ε0 − ε− 2Δso)
)2

= 0

has two solutions: ε = ε0 + Δso, with 2 and ε = ε0 − 2Δso with 4 eigenvectors. The corre-
sponding spinors are (

u0,x − ı u0,y

−u0,z

)(
u0,z

u0,x + ı u0,y

)

(
u0,x + ı u0,y

0

)( −2 u0,z

u0,x + ı u0,y

)(
u0,x − ı u0,y

2 u0,z

)(
0

u0,x − ı u0,y

)
(20)

.
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1 Introduction

In the field of spintronics [1, 2] it is obviously highly important to gain control of spin popula-
tions, i.e., ensembles of spin-polarized carriers (electrons or holes). In paramagnetic materials
and in the absence of external fields a spin population represents a non-equilibrium state, which
after some characteristic spin relaxation time reaches equilibrium by becoming depolarized.
If, during this time, the spin population has diffused over a characteristic distance, then this
distance is called the spin relaxation length.
Spin relaxation has been studied for over half a century, long before the emergence of spin-
tronics. A number of experimental techniques, discussed in section 3, give direct or indirect
information on the relaxation time and length. Although phenomenologically one tries to boil
down all spin relaxation phenomena to a few parameters, defined in section 2, the related physics
is very rich, encompassing many effects and mechanisms which can vary with material, tem-
perature, etc. A summary of these mechanisms is given in section 4. However, perhaps the
most common source of depolarization is the spin-orbit coupling (introduced in section 5). This
manifests itself through a number of mechanisms, reviewed in sections 6-8.
The present manuscript is meant to be an introduction to the physics of spin relaxation in para-
magnetic metals and semiconductors. It should be noted, however, that spin relaxation in mag-
netic materials is also a very active field of research. In the that case, the equilibrium state
is spin-polarized, self-sustained by the exchange interaction; the term “spin relaxation” refers
again to the return to the equilibrium state after some distortion of the polarization. Furthermore,
spin relaxation in quantum dots is currently a subject of increasing importance and intense re-
search in view of their relevance in quantum computing. For a presentation of this subject, the
reader is referred to the manuscript by Carola Meyer.

2 Phenomenological aspects of spin relaxation and spin de-
phasing

Assume that a paramagnetic sample is subject to an external magnetic field �B(t) = B0 ẑ+ �B1(t)

that has a static z-component B0 and a transverse (x-y) oscillating component, �B1(t). After re-
laxation, an initial spin population density �s(�r, t = 0) will obtain an equilibrium value s0 ẑ (the
transverse field is considered weak and rapidly oscillating so that the equilibrium value is along
the z direction). The magnetization is given in terms of the spin density as M(�r, t) = γ �s(�r, t),
with γ the gyromagnetic ratio (see also Appendix A). The phenomenological equations describ-
ing the spin dynamics are the Bloch equations with an additional diffusion term, represented by
a diffusion constant D:

∂sx(�r, t)

∂t
= γ (�s× �B)x − sx(�r, t)

τ2
+D∇2sx(�r, t) (1)

∂sy(�r, t)

∂t
= γ (�s× �B)y − sy(�r, t)

τ2
+D∇2sy(�r, t) (2)

∂sz(�r, t)

∂t
= γ (�s× �B)z − sz(�r, t)− s0

τ1
+D∇2sz(�r, t) (3)

In these equations, two characteristic times appear: the relaxation time τ1, associated with the
z-component of �s, and the dephasing time τ2, associated with the transverse components. These
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depend, in general, on the magnetic field. Under weak magnetic fields, if carriers in the system
are electrons (e.g. in metals or n-doped semiconductors) and the system is isotropic, one has
τ1 = τ2; in this case, following Žutić et al. [1], we will denote both τ1 and τ2 by τs. In anisotropic
materials, however, there is no guarantee that τ1 = τ2, but it has been shown that τ2 ≤ 2τ1 [3].

The physical significance of τ1 is that 1/τ1 gives the rate for the spin system to reach equilib-
rium by exchanging energy and/or momentum with the lattice. Particularly on application of a
magnetic field, the initially unpolarized electron system must exchange energy with the lattice,
coming from the Zeeman splitting of the electron levels, to acquire the final polarization s0 ẑ. In
the absence of an external field energy exchange is also possible (e.g. if the spin population is
produced at high-energy states by optical pumping), but there is always a momentum relaxation
that accompanies the spin relaxation (we will return to this in the description of the Elliott-
Yafet and D’yakonov-Perel’ mechanisms). 1/τ1 is thus the equilibration rate of the diagonal
components of the spin-density matrix [2].

On the other hand, τ2 is associated with the equilibration of the non-diagonal elements of the
spin-density matrix [2]. If a spin population with perpendicular orientation with respect to the
magnetic field is injected in the sample, then this will start precessing about the magnetic field
with a frequency that depends on the g-factor. However, the g-factor itself depends on crystal
momentum and energy. Therefore there is bound to be a dispersion in the precession frequency,
coming from the spread of the initial population in k-space. On top of that come collisions that
further spread out the ensemble in k-space. Thus, 1/τ2 is the rate at which an initially polarized
ensemble, peaked around some particular spin direction perpendicular to the magnetic field,
will lose its phase coherence in spin space ending up in an unpolarized ensemble.

In the phenomenological approach to spin relaxation it is frequently implied that there is a
thermal “semi-equilibrium” separately among spin-up (↑) and spin-down (↓) electrons, charac-
terized e.g. by different Fermi levels E↑

F and E↓
F, which in a first approximation do not interact

with each other. In a second approximation, however, they do interact, and (E↑
F , E↓

F ) are taken
as time-dependent parameters that ultimately converge to a common Fermi level EF. This argu-
ment was physically justified by Overhauser [4] by noting that the characteristic spin-flip times
are long in comparison to the characteristic collision times which lead to momentum and energy
relaxation. In the same publication, Overhauser also set forth to calculate the time dependence
of E↑

F and E↓
F due to several mechanisms, and from these the spin density, and showed that a

relaxation time approximation (∂�s/∂t = −�s/τs in the absence of fields) is justified.

We close this section by commenting on the notion of spin-flip length Λsf vs. spin relaxation
length Ls [5]. An electron in a crystal, having an average Fermi velocity vF, can undergo
many collisions at impurities, phonons, etc., that change its momentum �p, before a spin-flipping
collision. If the mean free path between collisions is Lp, then the momentum relaxation time
is τp = Lp/vF. If N collisions are needed before a spin flip, then the spin relaxation time is
τs = Nτp, and the electron has travelled a total length of Λsf = NLp = Lpτs/τp. However,
due to the random collisions this length has been travelled in a random “zig-zag” motion, and
is therefore not the total distance from the point of origin. In the absence of an external electric
field, the total distance from the point of origin is determined by the electron random walk and
is therefore proportional to

√
N : Ls = Lp

√
(1/3)τs/τp =

√
(1/3)LpΛsf =

√
(1/3)LpvFτs =√

Dτs. This is the spin relaxation length, also called spin diffusion length. D = LpvF/3 is the
diffusion constant, with the factor 1/3 coming from averaging in three spatial directions.
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3 Experimental methods for detecting spin relaxation and
dephasing

We now summarily discuss some experimental techniques for detecting spin relaxation and
dephasing time and length. Among these there exist spectroscopic techniques, real-space, volt-
age or magnetocurrent measuring techniques, and combined real-space real-time spectroscopic
methods.

• Conduction electron spin resonance (CESR) is a technique based on the resonant absorp-
tion of electromagnetic radiation. Under the influence of a static external magnetic field
B, the electron levels split by an energy ΔE = gμBB. This is actually also a phenomeno-
logical definition of the g-factor. Under incident electromagnetic radiation of frequency
ν, one obtains a resonance by varying the field B up to the point hν = gμBB. The posi-
tion of the resonance gives information on the g-factor, while the width of the resonance
gives information on the spin relaxation time [6, 7]. (Due to orbital-momentum effects,
the g-factor differs from the free-electron g0 = 2.0023 · · · . The deviation can be partic-
ularly large in some semiconductors; e.g., for GaAs it varies between g = −0.47 and
g = −0.33 for temperatures between 0 and 300 K [8].)

• Nuclear polarization measurements can be used [9] to derive the electron spin population
s in semiconductors, and from this τ1. These experiments rest on the hyperfine interaction
of electron spins with nuclear spins �IN at positions �RN, Hhf ∼

∑
�RN

�IN · �s δ(�r− �RN) due
to which the nuclear spins are polarized in the presence of polarized electrons (actually
the nuclear magnetic moments react to the magnetic field created by polarized electrons
on contact). Because the nuclear gyromagnetic ratio is small, the interaction is weak and
the timescale of these experiments can be of the order of several hours.

• Polarized photoluminescence [10] refers to the emission of circularly polarized light due
to the recombination of spin polarized electrons with holes, after optical pumping (i.e.,
creation of spin-polarized electron population by absorption of circularly polarized light
[9]). This method is used in semiconductors. From the degree of circular polarization of
the emitted light, together with selection rules, the spin polarization of the recombining
electrons is derived (in the absence of spin polarization, the emitted light is not circu-
larly polarized). In early experiments [10] only a lower bound to the spin relaxation time
could be determined if the recombination time was known. However, recent techniques
allow for time-resolved measurements with picosecond accuracy, and the full dynamics
of conduction electron polarization is disclosed [11]. Polarized photoluminescence is
also used to detect the efficiency of electrical spin injection experiments. Polarized elec-
trons injected from a ferromagnet into the semiconductor conduction band traverse the
semiconductor and recombine with unpolarized holes in a quantum well at the far side
of the junction. Again the degree of spin polarization can be calculated by the polariza-
tion of the emitted light. Here, knowledge of τs and of the electron drift velocity in the
semiconductor can provide information on the polarization at the injection point [12].

• Faraday and Kerr rotation are phenomena related to the change of angle of linear po-
larization of light when it is transmitted through (Faraday) or reflected by (Kerr) a mag-
netized sample. Application of an external magnetic field can bring a splitting of the
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chemical potentials for spin up and spin down, which is gradually equilibrated by elec-
tron spin-flips resulting in a magnetization; during this equilibration, the time-dependent
magnetization is probed by Kerr rotation, revealing τs [13]. Alternatively, spin popula-
tions can be pumped by circularly polarized laser and later read-out by the Faraday or
Kerr rotation of linearly polarized laser. By virtue of the high (sub-picosecond) resolu-
tion of pump-probe experiments, these measurements can reveal the propagation of spin
populations in real space and real time [14, 15].

• Electrical spin injection and detection in “non-local” experiments. This type of exper-
iments was first introduced by Johnson and Silsbee [16]. A spin-polarized current is
injected into a non-magnetic material (metal or semiconductor) from a ferromagnetic
contact, say at position x = 0, and travels to the opposite electrode at some position
x < 0 (see figure 1). However, the non-magnetic material extends also in the direction
x > 0, and part of the spin population can diffuse also in that direction. Then one has a
so called “pure spin current” at x > 0, i.e., spin current without charge current. The spin
diffusion causes a chemical potential imbalance in the two spins, μ↑(x) �= μ↓(x), which
can be detected as a voltage difference by a second “read-out” ferromagnetic contact at
x > 0. The difference μ↑(x) − μ↓(x) ∼ exp(−x/Ls) drops with distance and becomes
negligible after the spin relaxation length. Thus by changing the position of the read-out
contact, the spin relaxation length can be identified as the distance where there is no more
voltage difference.

• Transit-time, spin-injection magnetocurrent experiments. In case of electrical spin injec-
tion and detection in semiconductors (i.e., via a ferromagnetic contacts), the experimental
setup can consist of a four-terminal device with spin-valve junctions for injection and de-
tection and an accelerating voltage Va through the semiconductor (see figure 2). Such a
device was used by Appelbaum and co-workers [17, 18] for demonstrating spin injection
in Si. The injected spin population precesses with frequency ω = γB due to an external
magnetic field B, and the collector current Ic oscillates with the accumulated precession
angle ωτtr: Ic = I0 + ΔI0(τtr) cos(ωτtr) = I0 + ΔI0(τtr) cos(γBτtr). The transit time
through the semiconductor, τtr, can be tuned by Va and evaluated by the period of os-
cillation as a function of B. On the other hand, the magnetocurrent ΔI0(τtr) (difference
between maximum and minimum collector current) depends on the ratio τtr/τ1. By fitting
an exponential decay to data for various transit times, ΔI0(τtr) ∼ exp(τtr/τ1), the spin
relaxation time can be found [18].

• Giant magnetoresistance (GMR) values depend on the spin diffusion length of the ferro-
magnet and of the (metallic) nonmagnetic spacer. Within the Valet-Fert model [19], GMR
in current-perpendicular-to-plane geometry can be calculated by using the spin diffusion
length as an input parameter (among others). By fitting the Valet-Fert model to measured
GMR values, the spin relaxation length can be extracted [5].

• Weak antilocalization experiments are based on the change of resistance by application
of a magnetic field in two- or one-dimensional structures (ultrathin metallic films, two-
dimensional electron gas, nanowires etc.). The effect is due to a change from destructive
to constructive interference of electron paths upon application of the field, as electrons are
scattered by impurities. The change in resistance is related to the phase relaxation length
of the electrons; spin-orbit coupling at the impurities gives additional contributions [20]
that can be experimentally observed.
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Electron (charge) current Decaying spin current s(x)

 Ferromagnetic

injector oror

x=0x<0 x>0spin relaxation

length

VV

Read-

out

Δμ(x)~ΔV(x)

Fig. 1: Schematic description of the non-local measurement experiment for the spin relaxation
length. The chemical potential difference, Δμ(x) = μ↑(x) − μ↓(x), is read out as a voltage
difference when switching the magnetization of read-out contacts at various x. At x larger than
the spin-relaxation length, the potential difference becomes negligible.

Depending on material, temperature, doping, etc., the spin relaxation times can vary by orders
of magnitude. For example, a collection of data [21] in n-doped GaAs at low temperatures
(4 K) shows a spread of τs between 0.01 and 100 ns, depending on donor concentration. In
pure Si, τs = 200 ns was reported at 85 K and 65 ns at 150 K [18]. Among metals, probably
the longest spin relaxation time is found in Li, which is chracterized by very low spin-orbit
coupling. Depending on impurity concentration (Li samples between 99% and 99.9% pure)
Feher and Kip [6] report τs between 3 and 300 ns at low temperatures.

4 Mechanisms of spin relaxation and dephasing

There are numerous phenomena and mechanisms that lead to spin relaxation. Which mecha-
nism applies to a certain material can depend on whether the material is a metal or a semicon-
ductor, on the strength of spin-orbit coupling, on the presence of inversion symmetry, on the
shape of the Fermi surface, on the gap with, etc. The type of mechanism that applies is not only
material-dependent, but also sample-dependent (sample size, type of impurities), and also de-
pendent on the experimental details (temperature, density of excited spins). Here we summarize
a number of possible spin relaxation mechanisms. In the next sections, after a brief introduc-
tion to spin-orbit coupling, we focus on its effect to spin relaxation via three mechanisms: the
Elliott-Yafet and D’yakonov-Perel’ mechanisms and spin-flip scattering at impurities.

• The Elliott-Yafet mechanism [22, 3] is most important in crystals with structural inversion
symmetry, where the Bloch states have predominantly up or down spin. It is based on
momentum scattering at phonons or impurities. The with a small but non-zero probability
the scattered electron can end up at a state of the band structure with opposite spin. We
discuss it in more detail in section 6.

• The D’yakonov-Perel’ mechanism [23] applies in semiconductors without inversion sym-
metry and semiconductor heterostructures. It is based on the appearance of a spin-orbit-
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Fig. 2: Left: Schematic description of the four-terminal spin injection device of Appelbaum
and co-workers [17, 18]. In the emitter circuit, only hot electrons (high above EF) are able to
penetrate the barrier. Due to the spin-dependent band structure of Ferromagnet 1, spin-down
electrons are scattered and lose energy, while spin-up electrons can traverse without significant
attenuation and enter the semiconductor. There they are accelerated by the voltage Va to a drift
velocity vd, their spin precesses due to an external magnetic field, and they reach the collector
circuit after transit time τtr. Here, Ferromagnet 2 allows only spin-up electrons to enter the
collector circuit and be detected. The collector current Ic depends on the spin polarization
(magnitude and direction) of the incident electrons at the second interface of the semiconductor
spacer: Ic = I0 + ΔI0 cos(γBτtr). Right: Schematic view of oscillations of collector current
due to spin precession caused by an external magnetic field. The damping at high fields is due
to the Hanle effect.

induced, �k-dependent spin quantization axis, around which electrons precess. Momentum
scattering to another�k changes the precession axis, so that in the end all information about
the spin phase is lost. We discuss this in more detail in section 7.

• Spin-flip scattering due to impurity spin-orbit coupling can obviously also lead to spin
relaxation. We focus on this subject in section 8.

• The Bir-Aronov-Pikus mechanism [24] is due to exchange interaction of electrons with
holes. The interaction hamiltonian is of the form H = A �S · �J δ(�re − �rh), where A is
a parameter describing the exchange strength, �S is the electron spin operator, �J the hole
angular momentum operator, and �re, �rh the positions of electron and hole. This exchange
interaction can lead to spin-flip scattering with cross-section (and τs) differing according
to temperature, hole concentration, etc. [1]. The Bir-Aronov-Pikus mechanism applies to
semiconductors.

• Exchange coupling among spin-polarized conduction electrons can enhance the spin re-
laxation time in semiconductors. This was observed by Stich et al. [25] by photoexciting
different populations of spin-polarized electrons in a two-dimensional electron gas sys-
tem. As the initial degree of spin polarization was varied between 0 and 30%, a signifi-
cant increase of τs from ∼ 25 ps to ∼ 200 ps was observed. Calculations [25] including
a Hartree-Fock term in the electron-electron interaction are consistent with experiment,
contrary to the case when the Hartree-Fock term is neglected; thus the importance of the
exchange coupling is demonstrated.
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• Hyperfine interaction with nuclear spins can be the most important source of spin relax-
ation in semiconductors at low temperatures, when other degrees of scattering are frozen.
This is especially true for the case shallow donor states (i.e., impurity bound states close
to the conduction band), which are occupied at low temperatures. The hyperfine inter-
action hamiltonian, Hhf = 8π

3
μ0

4π
μB� γN

∑
�RN

�IN · �s δ(�r − �RN), is weak because nuclear
gyromagnetic ratios γN are orders of magnitude smaller than the electronic one, therefore
the corresponding spin relaxation times can be long.

• The Hanle effect, manifest in transport experiments, is the dephasing of spin populations
when precessing in a magnetic field during propagation. Due to diffusion, different elec-
trons traverse the sample at slightly different times τtr. The accumulated total angle of
precession for each electron is φ = ωτtr, where ω is the precession frequency. A spread
Δτtr leads to a spread in Δφ = ωΔτtr. As ω is proportional to the magnetic field B,
if B is large enough Δφ becomes comparable to φ and the observed spin polarization is
suppressed [18]. This suppression at high fields is shown schematically in figure 2 (right).

• Inelastic electron-electron scattering in synergy spin-orbit coupling can lead to a signifi-
cant reduction of the spin relaxation time as the initial spin population energy rises above
the Fermi level. A recent calculation [26] based on the GW approximation including
spin-orbit coupling shows a reduction of τs by up to three orders of magnitude in metals
(depending on the material) if the initial spin is at a modest 0.3 eV above the Fermi level;
such energies are common in magnetic junctions due to the bias voltage.

• Electron-electron scattering at magnetic impurities can lead to relaxation of the spin cur-
rent by the following mechanism: a propagating spin-up electron hops on a magnetic
impurity site, temporarily paying Coulomb energy due to the higher occupation of the
impurity; this energy is regained when an electron hops off the impurity. If the second
electron is of spin-down type, the current spin-polarization has changed sign, while the
impurity has undergone a spin flip.

In general, more than one mechanisms for spin relaxations are simultaneously present. If they
can be considered as independent (this is in many cases, but not always, a correct assumption),
and if each one of them is characterized by a relaxation time τi, then relaxation rates can be
added and the combined relaxation time is given by [4]:

1

τs
=
∑
i

1

τi
. (4)

An additional mechanism that affects the spin dephasing time is motional narrowing. It is the
inhibition of phase relaxation caused by randomly fluctuating forces [1]. In the presence of
a constant Zeeman field the phase of a spin changes by Δφ = ωΔt over time t. If, on the
other hand, the field is rapidly and randomly fluctuating then the phase will perform a random
walk depending on the correlation time of the fluctuations τc. The average accumulated phase
will thus be proportional to the square root of the steps of the random walk,

√
t/τc, and to

the accumulated phase at each step, ω τc: Δφ ∼ √t/τc (ω τc) = ω
√
t τc [1]. As τc becomes

shorter (the fluctuations become more rapid), Δφ decreases: the spin does not have enough
time to accumulate phase in any direction, dephasing is inhibited, and the spin dephasing time
increases. This effect is important for instance in the D’yakonov-Perel’ mechanism.
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An example of different mechanisms being important at different temperatures in the same
material can be seen in the experiments by Lepine [27] (Lepine’s results are conveniently sum-
marized in figure IV.8 in the review by Fabian et al. [2]). Lepine considered spin relaxation in
Si doped with P, which provides a donor state 45 meV below the conduction band edge. Three
temperature regimes are revealed and discussed [27, 1, 2]. For T < 50 K, the electrons are
trapped in donor bound states, and the hyperfine interaction is responsible for the relaxation;
here, τs ∼ 10 ns. As the temperature rises to 50 < T < 75 K, τs increases because of motional
narrowing of the trapped electrons due to scattering with excited electrons at the conduction
band. At 75 < T < 150 K, also the first excited donor state becomes populated and contributes
to the hyperfine-induced relaxation; due to motional narrowing, τs continues to increase, up
to a peak at 120-150 K (at the peak value, the measured τs is between 90 and 30 ns, strongly
dependent on donor concentration which ranges between 7.4 × 1014 and 8 × 1016/cm3; high
concentration leads to low τs). Above 150 K the conduction band is richly populated and the
Elliott-Yafet mechanism sets in, causing a decrease of τs.

5 Spin-orbit coupling

Spin-orbit coupling, in synergy with momentum scattering, is probably the most common
source of spin relaxation. Therefore we shortly introduce the effect and its consequences on
the band structure, before discussing the spin-orbit induced relaxation mechanisms. For further
information, the reader is referred to the manuscripts of G. Bihlmayer and A. Bringer in this
volume, or to any book on quantum mechanics (more specialized are, e.g. the books by Rose
[28] and Strange [29]).

5.1 Short introduction

The spin-orbit coupling describes the coupling of the electron spin moment to internal or ex-
ternal electric fields. In a classical picture, it can be understood by realizing that an electric
field, Lorentz-transformed to the frame of reference of a moving electron, contains a magnetic
field component that couples to the electron magnetic moment. However, quantum mechani-
cally it is not obvious how to define a reference frame moving with the electron. In quantum
mechanics, the spin-orbit coupling follows from the Dirac equation as a relativistic effect. On
simplifying the Dirac equation to the Schrödinger equation with relativistic corrections added
to the hamiltonian, the term describing spin-orbit coupling is

Hsoc =
e�

4m2c2
�E · (�p× �σ). (5)

Here, �E = �∇V (�r) is the electric field, with V (�r) the electrostatic potential. From this equation
it is evident that the spin-orbit hamiltonian, in contrast to a usual potential, is non-local in nature,
as it includes a derivative of the wavefunction via the linear momentum operator �p.
In the case of a central potential, V (�r) = V (r), the spin-orbit hamiltonian can be rewritten after
some manipulations in the form

Hsoc =
e�

4m2c2
1

r

dV (r)

dr
�L · �σ = ξ(r) �L · �S (6)

whence a coupling of the electron spin with the angular momentum, �L = �r × �p, becomes
evident (ξ(r) is a shorthand notation for (�/2m2c2)(1/r)dV/dr, and �S = �σ/2 is the spin
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operator). In atoms, in principle one must account for the interaction of the electron spin with
the electric field generated by all other electrons, plus the nucleus. In practice, however, mean-
field equations are in many cases adequate, meaning that an average potential is taken, e.g. the
one found within density-functional calculations. This mean-field approximation is valid partly
due to the fact that the most important contribution in Eq. (6) comes from the strong nuclear
electric field, from positions r close to the nucleus—in the vicinity of the nucleus, Eq. (6) gives
(1/r)dV/dr ∼ −Z|e|/r3 (Z is the atomic number). This is also the reason that heavy atoms
show, as a rule, stronger spin-orbit coupling than light atoms. Furthermore, the appearance of
�L in the interaction implies that s-electrons are immune to spin-orbit coupling. The interaction
is expected to be especially strong for p orbitals that are closer to the nucleus than d or f
orbitals1—the term 1/r3 close to the nucleus outweighs the higher orbital momentum of d and
f orbitals.
In solids it is obvious that the potential cannot be spherically symmetric, even within mean-
field theory. However, in most cases an atom-site-dependent orbital momentum is defined,
and one accepts as an approximation a spin-orbit hamiltonian of the form

∑
n(1/r)dV (�r +

�Rn)/dr, where �Rn are the atom positions and �r is confined in the atomic cell. Again the physical
argument for this approximation is that the spin-orbit potential is spherical where it is strong
(close to the nucleus), and negligibly weak in the interstitial region, where non-spherical terms
appear.
It is mathematically convenient, but also insightful, to separate the term �L· �S = 1

2
�L·�σ appearing

in Eq. (6) in the following manner:

�L · �σ = Lzσz +
1

2
(L+σ− + L−σ+). (7)

Here, L± = Lx ± iLy are raising and lowering operators of the z-component of the angular
momentum (and similarly for the spins). Thus, denoting the angular momentum eigenvalues by
l (for L2) andm (for Lz), action of L+ on a state |l,m〉 yields a state |l,m+1〉, unlessm has the
highest possible value, m = l, for which L+|l,m = l〉 = 0 (similarly for lowering m by L−).
For the electron spin, s can only take the values ±1/2 (representing the spinor wavefunctions
|↑〉 = (1

0) and |↓〉 = (0
1)), so that the only non-vanishing results are σ+|↓〉 ∼ |↑〉, σ−|↑〉 ∼ |↓〉.

In Eq. (7), the first term is spin-conserving, while the second is spin-flipping and most important
for spin relaxation. We see, e.g., that action of the operator �L · �σ on a wavefunction |l,m〉| ↑〉
adds an admixture of |l,m+ 1〉| ↓〉 due to the term L+σ−. This means that, starting by a pure-
spin, pure-angular-momentum state, the action of the spin-orbit coupling produces a beating
between higher and lower m and up and down spin. I.e., the s and the m are not constants of
motion. However, the beating does not change the total angular momentum l, which remains a
constant of the motion. Also, a spin lowering is accompanied by a raising ofm, so that the total
z-component mj of the total angular momentum j, is not changed. These rules are elegantly
proven by observing that the squared orbital angular momentum, L2, and the total angular
momentum, �J = �L+ 1

2
�σ, commute with the spin-orbit hamiltonian: [L2, Hsoc] = [ �J,Hsoc] = 0.

There are two exceptions to the spin-beating: the spin-up state of highest m and the spin-down
state of lowest m are eigenstates of the spin-orbit hamiltonian, because application of the spin-
flip term on these gives zero (for example, starting from |l,m = l〉| ↑〉 one can neither raise the
spin, in order to lowerm, nor raise m, in order to lower s). However, such states are unlikely to
appear as eigenstates in solids (except in cases with special symmetry), because hybridization
of wavefunctions of neighbouring atoms will create an admixture of different orbitals.

1p wavefunctions start as ψ(r) ∼ r, while d and f as r2 and r3, respectively.
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5.2 Basics of spin-orbit coupling in semiconductors

From the above discussion it follows that the basis |l,m〉|s〉, although valid, should be better
replaced by a basis consisting of eigenstates of the spin-orbit operator (at least for the single
atom). These can be constructed by appropriate linear combinations. Actually, due to the
crystal environment of solids, the commonly used basis in the absence of spin-orbit coupling
is not |l,m〉, but linear combinations of the m states that correspond to oriented orbitals (such
as px, py, pz) but carry no z-component of the angular momentum.2 In semiconductors, an
appropriate basis that accounts for the spin-orbit coupling is given then (up to normalization
prefactors) by the following linear combinations [1]:

|0, 0〉 |↑〉 = |s〉 |↑〉 (j = 1
2
, mj = 1

2
) Γ6 (a)

|0, 0〉 |↓〉 = |s〉 |↓〉 (j = 1
2
, mj = −1

2
) Γ6 (b)

|1, 1〉 |↓〉 − |1, 0〉|↑〉 = (|px〉+ i |py〉) |↓〉 − |pz〉 |↑〉 (j = 1
2
, mj = −1

2
) Γ7 (c)

|1,−1〉 |↑〉+ |1, 0〉 |↓〉 = (|px〉 − i |py〉) |↑〉+ |pz〉 |↓〉 (j = 1
2
, mj = −1

2
) Γ7 (d)

|1, 1〉 |↑〉 = (|px〉+ i |py〉) |↑〉 (j = 3
2
, mj = 3

2
) Γ8 (e)

|1, 1〉 |↓〉+ 2|1, 0〉 |↑〉 = (|px〉+ i |py〉) |↓〉+ 2|pz〉 |↑〉 (j = 3
2
, mj = 1

2
) Γ8 (f)

|1,−1〉 |↑〉 − 2|1, 0〉 |↓〉 = (|px〉 − i |py〉) |↑〉 − 2|pz〉 |↓〉 (j = 3
2
, mj = −1

2
) Γ8 (g)

|1,−1〉 |↓〉 = (|px〉 − i |py〉) |↓〉 (j = 3
2
, mj = 3

2
) Γ8 (h)

(8)
Expressions (8a,b) are used to describe the conduction s-band, while (8c-h) are used to describe
the valence p-band, including heavy holes, light holes, and the split-off band. The notation
(Γ6,7,8) refers to the irreducible representation of the states.
A typical band structure of a semiconductor of the diamond structural type (e.g., Ge) or zinc-
blende type (e.g., GaAs) is shown schematically in figure 3. The most severe effect of spin-orbit
coupling is the splitting of the valence band top and the admixture of states of different spins.3

The former has consequences for the temperature-dependent hole population, while the latter
is of major interest for spin transport: the mixed-spin character of some of the Γ8 states, in
particular (8f and g), means that hole spin polarization holes has a very short lifetime. Therefore,
experimental attempts towards spin transport in semiconductors are focused on electrons.
A further effect of spin-orbit coupling in semiconductors is the spin splitting of the conduction
band, which, however, is much smaller and only present if there is no inversion symmetry in
the lattice. We discuss this in section 5.4.

5.3 Systems with inversion symmetry

Although the spin-orbit coupling is expected to lift of degeneracies, in many metallic systems
(e.g., alkali and noble metals) it is clear that there is a single branch of the Fermi surface,
indicating a double (spin-up–spin-down) degeneracy of the bands. This is due to the presence of
space-inversion symmetry in these systems; the same is true for the conduction band degeneracy
of diamond-structure semiconductors (as is Si and Ge). A comprehensive discussion of the

2For example, |l = 1,m = 1〉 = (|px〉 + i |py〉)/
√

2, |l = 1,m = 0〉 = |pz〉, |l = 1,m = −1〉 =
(|px〉 − i |py〉)/

√
2.

3The magnitude of the splitting Δ0 reflects the spin-orbit coupling strength of the p-states. As the atomic
number increases, Δ0 is enhanced. E.g., Δ0 = 0.044 eV for Si, 0.295 eV for Ge, 0.341 eV for GaAs, and 0.75 eV
for GaSb. Note that in III-V and II-VI semiconductors, the p-states of the valence band edge are centered at the
anion, therefore the anion atomic number is most important for Δ0.
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Fig. 3: Schematic description of the effect of spin-orbit coupling on the direct-gap semicon-
ductor valence and conduction bands (in semiconductors of tetrahedral geometry). Numbers
indicate the degeneracy of each band (including spin degeneracy). Δ0 is the spin-orbit splitting;
“lh” stands for light holes, “hh” for heavy holes, and “soh” for holes of the split-off band. (A):
Band structure in the absence of spin-orbit coupling. (B): Spin-orbit coupling is present, but
the structure has inversion symmetry (diamond structure). Then a splitting of the valence band
occurs, corresponding to orbitals of the type (8e-h) for the heavy and light holes and type (8c,d)
for the split-off holes. (C): In the absence of inversion symmetry (e.g., zinc-blende structure or
at semiconductor interfaces), the conduction band also splits as described by the Dresselhaus
or Rashba hamiltonians. The arrows on the conduction band indicate the �k-dependent spin
quantization axis. (D): Mechanism leading to the valence band splitting. In a first step, the
Γ7-type and Γ8-type orbitals split with respect to each other. However, crossings that appear
between them at finite k must lead to hybridization, leading to anti-crossings (right).
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subject, based on an analysis of the action of time-reversal and space-inversion operators in the
presence of the spin-orbit hamiltonian, is given by Yafet [3].
Although the band degeneracy is not lifted, the hamiltonian eigenstates ψ�k cannot be assigned
a single spin direction any more. Nevertheless, in most cases it is possible to choose ψ�k so
that they are predominantly of spin-up or spin-down character. Following Fabian and Das
Sarma [30], we denote these states by ψn�k ↑ if they are of spin-up character on the average,
i.e., if 〈ψn�k ↑|Sz|ψn�k ↑〉 > 0, and by ψn�k ↓ if 〈ψn�k ↓|Sz|ψn�k ↓〉 < 0. Elliott [22] has discussed the
spin-down admixture in ψn�k ↑ (and vice-versa) via a perturbation-theory approach as follows.
Suppose that, in the absence of spin-orbit coupling, ψn�k ↑ = χn�k|↑〉. On switching on spin-orbit

coupling, transitions to other states n′�k have to be accounted for (�k does not change, because
the spin-orbit potential is lattice-periodic). In first-order perturbation theory we have:

ψn�k ↑ = |χn�k〉|↑〉+
∑
n′ �=n

[
〈↑ |〈χn′�k|ξ�L · �S|χn�k〉|↑〉

En�k −En′�k
|χn′�k〉|↑〉+

〈↓ |〈χn′�k|ξ�L · �S|χn�k〉|↑〉
En�k − En′�k

|χn′�k〉|↓〉
]

= |χn�k〉|↑〉+∑
n′ �=n

[
〈χn′�k|ξLzSz|χn�k〉
En�k − En′�k

|χn′�k〉|↑〉+
1

2

〈χn′�k|ξ�L+|χn�k〉
En�k −En′�k

|χn′�k〉|↓〉
]

(9)

where Eq. (7) has been used to separate the spin-conserving and spin-flip contributions, spin
angular momenta have been raised and lowered by S±, and spinor-orthogonality relations have
been employed (〈s|s′〉 = δss′). The last term gives the spin-down admixture in ψn�k ↑ and is
usually small. However, if the energy difference En�k − En′�k becomes small, higher-order per-
turbation theory has to be employed, and the admixture can be large.
The perturbed Bloch wavefunction is thus written in the form

ψn�k ↑(�r) =
(
an�k(�r)|↑〉+ bn�k(�r)|↓〉

)
ei
�k·�r (10)

where an�k and bn�k are the lattice-periodic parts. An analogous relation to Eq. (10) holds for
ψn�k ↓(�r). However, the combination of time-reversal and space-inversion symmetry dictates

that the lattice-periodic parts of the spin-down wavefunction for +�k are related to the ones of
the spin-up wavefunction for −�k [3]:

ψn;+�k ↓(�r) =
(
a∗
n;−�k(�r)|↓〉 − b∗n;−�k(�r)|↑〉

)
e+i

�k·�r (11)

If we denote by En�k ↑,↓ the energy eigenvalues corresponding to the (non-pure-spin) eigenfunc-
tions ψn�k ↑,↓(�r), then

En;+�k ↑ = En;−�k ↓ = En;+�k ↓ (12)

with the first equation following from time-reversal symmetry (also known as Kramers degen-
eracy) and the second by space-inversion symmetry; this is the degeneracy discussed in the
beginning of the present section.
Usually, but not always, an�k and bn�k are such that |bn�k|/|an�k| � 1. Actually, the magnitude of
bn�k is determined by the smallest among the energy differences En�k − En′�k, since these appear
in the denominator in Eq. (9). Calling this Δ, we have the rule-of-thumb estimation:

|bn�k|/|an�k| ∼ 〈ξ〉/Δ. (13)
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where 〈ξ〉 is a parameter resulting from averaging the spin-orbit coupling strength ξ(r).
Relations (10-13) are central to the Elliott-Yafet theory for spin relaxation, as we shall discuss
in section 6.

5.4 Systems without inversion symmetry

In the absence of space inversion symmetry, the band degeneracy given by the second equation
in (12) is lifted. This was realized early [31] for semiconductors of the zinc-blende type, where
the two atoms of the unit cell are inequivalent, or semiconductor heterostructures [32] and
two-dimensional electron gas where there are built-in average electric fields E ẑ as well as
inhomogeneities of the effective massm∗(z) (z is the direction of growth of the heterostructure).
In these cases, a remarkable effect takes place. The semiconductor conduction band splits in
two branches, but in such a way that each k-vector in the band structure is associated with its
own spin quantization axis. The effect is modelled by the hamiltonian

H =
�

2

2m∗k
2 +

�

2
�σ · �Ω(�k ). (14)

The first part is the usual parabolic dispersion relation of the conduction band with effective
mass m∗, while the second part includes the spin. At each �k, a spin quantization axis �Ω(�k ) is
defined, with the absolute value |�Ω(�k )| determining the strength of the effect. The term �Ω(�k )·�σ
is a non-diagonal 2× 2 matrix in spin space; diagonalization yields the two energy eigenvalues
of the spin-split band, with opposite spin eigenvalues (one in the direction �Ω and one in the
direction −�Ω):

E�k↑,↓ =
�

2

2m∗k
2 ± 1

2
�|�Ω(�k )| (15)

The Kramers degeneracy, i.e., the degeneracy due to time-inversion symmetry, is still present,
yielding E�k↑ = E−�k↓ (with ↑ and ↓ defined with respect to the local spin axis), which also

implies that �Ω is an odd function of �k: �Ω(−�k ) = −�Ω(�k ).
�Ω(�k ) is material-specific, depending on the spin-orbit coupling strength, the band gap, the
proximity to the interface etc. Within perturbation theory, it is seen that hamiltonian (14) arises
from the interaction of the conduction band, which is of s character, with the spin-split p bands.
Here we present only two cases, and we refer the reader to [1] and [2] for a broader discussion.

• The k3-Dresselhaus term is present in bulk semiconductors (III-V or II-VI) of the zinc-
blende structure. In this case we have [31, 33]

�Ω(�k) =
α�

2

(2m∗Eg)1/2

(
kx(k

2
y − k2

z) x̂+ ky(k
2
z − k2

x) ŷ + kz(k
2
x − k2

y) ẑ
)

(16)

where Eg is the band gap width and α is a material-dependent parameter (e.g., for GaAs
α = 0.07).

• The Bychkov-Rashba term [34, 35] is present in asymmetric quantum well heterostruc-
tures, in deformed bulk systems, and in the two-dimensional electron gas (see also lecture
notes by Gustav Bihlmayer and Andreas Bringer). In this case,

�Ω(�k) = αBR

(
�k × ẑ

)
(17)
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kx

ky

Fig. 4: Constant-energy lines of the two-dimensional electron gas under the influence of the
Rashba hamiltonian. Arrows indicate the �k-dependent spin quantization axis.

where ẑ is considered in the direction of growth in quantum wells (or, equivalently, per-
pendicular to the plane in the two-dimensional electron gas). Here, �k is a two-dimensional
vector.

Schematically, the resulting spin-split conduction band structure is shown in figure 3C. The
spin-structure of the resulting constant-energy line in the case of the Rashba hamiltonian is
shown in figure 4.
In recent years, splitting of the Rashba type has been discovered also in the surface states of
metallic and semimetallic systems [e.g., Ag and Au(111), Bi(111), or surface alloys Bi/Ag(111)].
Since surface states are confined to the vicinity of crystal surfaces, they have many similarities
to a two-dimensional electron gas. It is interesting that the Rashba parameter and the splitting of
surface states in metals can be gigantic compared to semiconductor heterostructures. E.g., for
an GaSb/InAs heterostructure αBR = 0.09 eVÅ [36] while for Au(111) αBR = 0.33 eVÅ [37].
Taking into account that the Rashba splitting is proportional to k [see Eq. (17)], in Au, where k
is determined by the Fermi energy, the splitting is of the order of 100 meV, while in semicon-
ductor heterostructures, where the conduction band is very close to the Brillouin zone center,
it is much smaller. For a comprehensive description of the Rashba effect at metal surfaces we
refer to [38].

6 Elliott-Yafet mechanism

We turn now to a more detailed description of one of the spin relaxation mechanisms, namely the
Elliott-Yafet mechanism. The Elliott-Yafet mechanism is present in metals or semiconductors
with space inversion symmetry, and is based on the form (10) and (11) of the spin-dependent
wavefunctions together with momentum scattering.

Consider an electron occupying a predominantly spin-up state of the form (10): ψ�k ↑ =
(
a�k|↑〉+

b�k|↓〉
)
ei
�k·�r (we drop the band index n as it is irrelevant for this discussion). After a momentum-

scattering event at an impurity or a phonon, there is an amplitude that the electron is scattered in



B6.16 Phivos Mavropoulos

another spin-up state, ψ�k′ ↑(�r), but also in the corresponding spin-down state, of the form (11):

ψ�k′ ↓ =
(
a∗−�k′ |↓〉− b∗−�k′|↑〉

)
ei
�k′·�r. If one neglects the spin-orbit coupling during scattering (e.g.,

if the spin-orbit coupling of the impurity is insignificant), then the spin-conserving and spin-flip
scattering probabilities, P ↑↑

�k�k′
and P ↑↓

�k�k′
are, in the Born approximation,

P ↑↑
�k�k′

=
∣∣∣〈ψ�k ↑|δH|ψ�k′ ↑〉

∣∣∣2

=
∣∣∣〈a�k ei�k·�r|δH|a�k′ ei�k′·�r〉+ 〈b�k ei�k·�r|δH|b�k′ ei�k′·�r〉

∣∣∣2 (18)

P ↑↓
�k�k′

=
∣∣∣〈ψn�k ↑|δH|ψ�k′ ↓〉

∣∣∣2

=
∣∣∣− 〈an�k ei�k·�r|δH|b∗−�k′ ei�k′·�r〉+ 〈b�k ei�k·�r|δH|a∗−�k′ ei�k′·�r〉

∣∣∣2 (19)

where δH is the perturbation that causes the scattering [formally, neglecting the spin-orbit cou-
pling during scattering means that 〈↑ |δH| ↓〉 = 〈↓ |δH| ↑〉 = 0, which was taken into account
in Eq. (18,19)]. The important conclusion from Eq. (18,19) is that the spin-flip probability in-
cludes factors of the order |a|2|b|2, while the spin-conserving probability includes factors of the
order |a|4. According to Eq. (13), the following order-of-magnitude estimation follows for the
spin-flip compared to the spin-conserving probability:

P ↑↓
�k�k′

P ↑↑
�k�k′

∼
(〈ξ〉

Δ

)2

. (20)

The value of (〈ξ〉/Δ)2 varies very much among metals [39], but it usually is very small; e.g.,
taking the alkali metals from lighter to heavier (increasing 〈ξ〉), in Li it is of the order of 10−10,
in Na 10−5, in K 10−4, in Rb 10−3 and in Cs 10−2. This means that in Li one spin-flip happens
every 1010 momentum scattering events, while in Cs one expects one spin-flip in every 100
scattering events. However, there are also extreme cases: e.g., for Au, which has a very strong
spin-orbit coupling, (〈ξ〉/Δ)2 = 0.8 [39].
After a Fermi surface averaging of P ss′

�k�k′
, yielding the averaged probabilities P ss′ the spin relax-

ation time can be connected to the momentum relaxation time τp. Since the scattering probabil-
ity P = P ↑↑ +P ↓↓ +P ↑↓ +P ↓↑ is related to τp as P = 1/τp, while the spin-flip probability P ↑↓

is related to the spin relaxation time as P ↑↓ = 1/τs, it is expected, in view of relation (20), that
τ−1
s ∝ τ−1

p , with a proportionality constant of the order of (〈ξ〉/Δ)2. However, in many sys-
tems the band structure has a complex form, and Δ (and thus b) can strongly vary on the Fermi
surface. Then the Fermi surface average of P ↑↓

�k�k′
gives an average value of |b|, 〈b2〉. Realizing

that the |a| is of the order of unity, we obtain τ−1
s ∼ 〈b2〉 τ−1

p .
On the other hand, 〈b2〉 can be related to the deviation of the g-factor from the free-electron
value g0, δg = g − g0. To justify this, we note that δg is related to the expectation value of the
angular momentum [3] upon application of a magnetic field B along z: (δg+ g0)μBB = E�k↑−
E�k↓ = 2μBB〈ψ�k↑|(Lz + g0Sz)|ψ�k↑〉 (the last step following from perturbation theory), whence
δg = 2〈ψ�k↑|Lz|ψ�k↑〉. Also by perturbation theory [22] it is found that the matrix element of Lz
is proportional to b�k. Averaging over the the Fermi surface gives at the end δg2 ∼ 〈b2〉. This
leads to the Elliott relation,

1

τs
∼ δg2

τp
, (21)
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Fig. 5: Spin relaxation time (measured via conduction-electron spin resonance linewidth, 1
2
δB)

versus temperature for several metals, as reported by Monod and Beuneu in ref. [39]. TD is the
Debye temperature.

which gives a rough, order-of-magnitude estimate of τs.
A second expression, that gives a rough estimate of τs as a function of temperature, is the Yafet
relation, which relates the relaxation time τ1(T ) to the resistivity ρ(T ):

1

τ1(T )
∼ 〈b

2〉
ρ(T )

. (22)

A hand-waving argument supporting relation (22) is that the resistivity is related to the mo-
mentum relaxation rate 1/τp, so that the Yafet relation is expected due to the Elliott relation.
However, especially at low temperatures more detailed considerations are needed. These were
carried out by Yafet [3]. Considering the electron-phonon matrix elements, and taking into
account the change in spin-orbit coupling strength due to the lattice distortion by phonons, he
showed that the spin relaxation rate has a T 5 behavior at low temperatures in metals, just as is
known for the resistivity.
Experimental results on the temperature dependence of τs in metals were collected and analysed
by Monod and Beuneu [39, 40] (see figure 5). Actually, 1/τs was deduced from measurements
of the conduction-electron spin resonance linewidth, 1

2
δB, normalized to the predicted value of

〈b2〉, (〈ξ〉/Δ)2; the temperature was devided the Debye temperature TD, to normalize for the
amount of phonon scattering. It was found that the data for all monovalent metals fall on the
same curve, while very strong deviations were seen for polyvalent metals. The explanation for
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this was suggested by Silsbee and Beuneu [41], and later refined by Fabian and Das Sarma [30,
42], who also performed a quantitative calculation for Al. The central point is that the relation
〈b2〉 ∼ (〈ξ〉/Δ)2 (with some average value of Δ) is valid in monovalent metals, where the whole
Fermi surface is contained in the first Brillouin zone, but not for polyvalent metals, where the
Fermi surface crosses the Brillouin zone boundary. At such crossing points, two branches of
the Fermi surface could meet causing a degeneracy. However, the degeneracy is lifted due to
the presence of the periodic crystal potential V (�r). The degeneracy lifting is proportional to the
Fourier component of V , V �G ( �G is a reciprocal lattice vector), and therefore the magnitude of
Δ is approximately V �G, which can be small4 making b�k large for those particular k-points. The
same is true if there are more than one branches of the Fermi surface that approach each other or
cause accidental degeneracies within the first Brillouin zone (as in transition metals). It follows
that there are “hot spots” on the Fermi surface that strongly enhance the value of 〈b2〉 compared
to the estimate 〈b2〉 ∼ (〈ξ〉/Δ)2. For example, calculations for Al [30] show that, while the hot
spots amount only to a small portion of the Fermi surface, they are enough to increase 〈b2〉 by
two orders of magnitude. Then the spin relaxation rate is much higher. This is why polyvalent
metals deviate from the “regular” Monod-Beuneu curve (figure 5).

The Elliott-Yafet mechanism plays a significant role for spin relaxation also in semiconductors.
Here, the band structure close to the conduction band minimum is easier to model than in poly-
valent metals, and one can be based on semi-analytical approximations for the wave functions
(such as the �k · �p-approximation). Approximate analytical results are therefore possible. For
example, Chazalviel [43] was able to derive the following expression for the spin relaxation
time of electrons occupying a state of energy E in III-V semiconductor conduction bands (E is
measured from the conduction band edge):

1

τs(E)
= A

(
Δ0

Eg + Δ0

)2(
E

Eg

)2
1

τp(E)
(23)

Here Eg is the semiconductor gap, Δ0 the valence-band spin-orbit splitting (see figure 3), and
A a parameter which depends on the type of scattering mechanism (phonons, impurities, etc).
Depending on the energy distribution of a spin population, this expression should be averaged
over energies to obtain the mean spin-relaxation rate. What is important to recognize in this
expression is that the relaxation rate increases with spin-orbit coupling strength (expressed by
Δ0) but decreases with the gap width.

As regards the temperature dependence of the spin relaxation rate in non-degenerate semi-
conductors, 1/τs(T ) ∼ T 2/τp(T ), i.e., 1/τs(T ) varies according to the scattering mechanism
[1], as τp(T ) depends on the scattering mechanism; e.g., for scattering by charged impurities,
1/τp ∼ T−3/2, i.e., 1/τs(T ) ∼ T 1/2. In metals, on the other hand, 1/τs(T ) is expected to
obey the T 5-law at low temperatures (as shown by Yafet [3]), while 1/τs(T ) ∼ T at higher
temperatures.5

4If Δ ∼ V�G becomes small, first-order perturbation theory is not enough, and the expansion (9) should be taken
to higher order.

5The T 5-law is derived from the assumption of phonon scattering; however, in reality one expects 1/τs(T ) ∼
T 5 + const., where the constant comes from impurity scattering that is most important at low temperatures and is
related to the residual resistivity of metals.
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7 D’yakonov-Perel’ mechanism

Principles

A mechanism of quite different nature is the one discovered by D’yakonov and Perel’ [23],
which actually leads to dephasing, rather than relaxation. In the previous section we saw that
in the case of the Elliott-Yafet mechanism increased momentum scattering leads to increased
spin relaxation. On the contrary, when the D’yakonov-Perel’ mechanism prevails, increased
momentum scattering can lead to a decrease of linger spin lifetimes. The reason for this, as we
will discuss, is motional narrowing.
Consider a system without inversion symmetry, e.g., a III-V semiconductor or a semiconduc-
tor heterostructure. The spin-orbit coupling is described by a hamiltonian of the type (14).
According to the considerations of D’yakonov and Perel’ [23], the degeneracy-lifting term
(�/2)�σ · �Ω(�k ) can be viewed as a �k-dependent Larmor precession frequency Ω(�k ) = |�Ω(�k )|
around the axis defined by the direction of �Ω(�k ). To see this, note that the splitting (15)
of the two spin eigenstates by �Ω causes a time-dependent difference in phase of the two
eigenstates, ψ�k↑ and ψ�k↓, by δϕ = Ωt. If at time t = 0 a wavefunction ψ at �k has spin

along some arbitrary axis, different than �Ω(�k ), it will be partly projected to the ↑ and partly
to the ↓ eigenfunction, ψ(0) = a| ↑〉 + b| ↓〉. After time t it will have evolved to ψ(t) =
ei(�k

2/2m∗)t [eiΩt/2 a | ↑〉 + e−iΩt/2 b | ↓〉]. The time-dependent expectation value of the electron
spin, �s(t) = 〈ψ(t)|�σ|ψ(t)〉, will precess around the direction �Ω with frequency Ω. The concept
of precession is, of course, only valid if the energy spread of the wavepacket ψ is larger than
the spin-splitting �Ω, otherwise the electron experiences two states of opposite spin but with
the same energy, and there can be no precession (see figure 6, right).
Continuing with the D’yakonov and Perel’ idea, at some random time t1 a momentum scattering
will occur from �k to �k′. The electron spin �s(t1), which is assumed not to change during scatter-
ing, will start precessing around the new spin axis, �Ω(�k′). As the random scattering continues,
the memory of the initial spin direction will be lost. The idea is shown schematically in figure 6.

We now consider the effect of an increased random momentum-scattering rate τ−1
p . We saw that,

after each momentum scattering event, the spin precession axis �Ω changes. Since the scattering
is random (obeying some probability distribution P�k�k′),

�Ω changes randomly; and since the
time δt between subsequent scattering events is also random (determined again by P�k�k′), the
accumulated angle is also not fixed. Effectively, the electron spin is experiencing a randomly
changing force, and the accumulated angle after time t is subject to a random walk in spin
space. The correlation time of this walk, τc, is proportional to the momentum relaxation time
τp ∼ 〈P−1〉 (where 〈P−1〉 is loosely understood as an appropriate average of P−1

�k�k′
). Therefore

the total accumulated phase (spin angle) after time t is proportional to the square-root of the
number of random-walk steps,

√
N =

√
t/τp, and to the change in phase at each step, 〈Ω〉 τp:

δϕ = (〈Ω〉 τp)
√
t/τp = 〈Ω〉√t τp (where, loosely again, 〈Ω〉 is an average of �Ω(�k )). If we

define the spin relaxation time as the time needed for δϕ ∼ 1, we arrive at the result 1/τs =
〈Ω〉2 τp: rapid momentum scattering (small τp) leads to slower relaxation. This is precisely the
mechanism of motional narrowing: rapid, random changes in the “force” cancel each other out;
the spin does not have enough time to precess in any particular direction. Curiously, the spin
diffusion length resulting from the D’yakonov-Perel’ mechanism does not depend on τp. This
can be seen by writing Ls =

√
Dτs, with the diffusion constant D ∼ τp and 1/τs = 〈Ω〉2 τp.
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Fig. 6: Left: D’yakonov-Perel’ mechanism. A spin initially at “1” is precessing around the
�k-dependent spin quantization axis �Ω(�k ). After some time it is momentum-scattered from “2”
to “3” without change of the spin direction during scattering. However, it now starts to precess
around a new axis. After a few random scattering events, the information on the initial spin
direction is lost. In this picture, elastic scattering is assumed; the large circle represents a
constant-energy line of a two-dimensional electron gas system. Right: The D’yakonov-Perel’
concept is meaningful if the energy spread of the wavepacket is larger than the band separation
�Ω.

Boltzmann transport equation

The qualitative considerations presented so-far can be elaborated on and quantified by working
out expressions for 〈P 〉 and 〈Ω〉 and using an appropriate transport equation. We now shortly
discuss a transport equation of the Boltzmann-type, following ref. [2]. The Boltzmann equation
provides a semi-classical approach to electronic transport phenomena. Within this approach,
an electron wavepacket is treated as a classical particle which moves in the material under the
influence of external forces—electric and magnetic fields, or temperature and chemical potential
gradients. It is assumed to have a definite crystal momentum �k, but also a well-defined trajectory
�r(t). During collisions at impurities, phonons, etc., a transition probability P�k�k′ is assumed,
which is derived from quantum mechanics. The concept is meaningful if the collisions are rare
enough that a wavepacket can be formed between them that is localized enough in real space,
so that the notion of a trajectory is meaningful, but also in �k-space, so that the electron crystal
momentum is well-enough defined. Also, the scattering events should be random, so that at
the end the scattering probabilities can be added up instead of the amplitudes, i.e., correlated
scattering events and interference are neglected by the formalism. Under these assumptions,
the Boltzmann equation is essentially a continuity (i.e., particle-conservation) equation for the
electron distribution function f�k(�r; t) in phase space (�r,�k):

∂f

∂t
+
d�r

dt
· �∇�rf +

d�k

dt
· �∇�kf =

(
∂f

∂t

)
coll

. (24)

The term on the right-hand side describes the change in occupation of point (�r,�k) due to colli-
sions, depends on P�k�k′ , and must account for the fact that scattering from �k to �k′ is only possible
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if �k is occupied and �k′ empty. In absence of collisions, current conservation requires that the
left-hand side vanishes. By identifying the time derivatives of �r as the group velocity �v�k and
of �k as the acceleration by external electric and magnetic fields due to Newton’s second law,
�d�k/dt = e( �E + �v�k × �B), it is seen that the Boltzmann equation describes the response of the
distribution function to external stimuli. At equilibrium, and in the absence of external fields, f
is just the Fermi-Dirac function.
The next step is to include the spin distribution in the Boltzmann equation quantum-mechanically.
This is be done by introducing the spin-density matrix at t = 0, for an electron at �k, resolved
with respect to an initial “global” reference frame as ρ�k(0) = | ↑〉f0↑〈↑ | + | ↓〉f0↓〈↓ | =
1
2
(f0↑ + f0↓)1 + 1

2
(f0↑ − f0↓)σz. (In an arbitrary frame of reference the spin-density matrix is

of the form ρ1 + �s · �σ, where ρ is the particle density and �s the spin density.) The spin-density
matrix will evolve in time in accordance to the Heisenberg relation:

dρ�k(t)

dt
=
i

�
[Hspin,ρ�k(t)] +

∂ρ�k(t)

∂t
. (25)

Here, Hspin = �

2
�σ · �Ω(�k ) is the spin-part of the hamiltonian (14) that causes the spin precession.

The last term, ∂ρ�k(t)/∂t, represents the “explicit” time dependence of ρ, due to terms other than
the spin hamiltonian, and is given in analogy to Eq. (24) by the continuity equation together with
a collision term.6 The result is:

∂ρ�k(t)

∂t
− i

�
[Hspin,ρ�k(t)] +

1

�
e( �E + �v�k × �B) · �∇�kρ�k(t) + �v�k · �∇�rρ�k(t) =

(
∂ρ�k(t)

∂t

)
coll

(26)

Due to the term [Hspin,ρ�k(t)], the initial distribution ρ�k(0) that was diagonal in spin obtains
non-diagonal terms, ρ�k;ss′(t).
Next we focus on the collision term, assuming that the scattering is elastic and spin-conserving.
The squared modulus of the scattering amplitude from �k to �k′ is, as we defined earlier, P�k�k′ .
However, on top of this, one has to account for that �k must be occupied and �k′ empty (due to the
Pauli principle). This results in the expression

∑
�k′ P�k�k′ ρ�k;ss′(1−ρ�k′;ss′) for the loss rate from �k

to all �k′.7 But the collision term must also include the gain rate due to scattering from all �k′ into
�k, which is

∑
�k′ P�k′�k ρ�k′;ss′(1 − ρ�k;ss′). Due to the principle of detailed balance, P�k�k′ = P�k′�k.

Summing up we obtain (
∂ρ�k(t)

∂t

)
coll

=
∑
�k′

P�k�k′(ρ�k′ − ρ�k) (27)

At the end the observable spin density can be found by taking the trace of the spin-density
matrix with the spin operator: �s�k(�r, t) = Tr(�

2
�σρ�k(�r, t)). Thus, the kinetic equation for the

spin density is:

∂�s�k(�r, t)

∂t
− �Ω(�k)×�s�k +

1

�
e
[
( �E + �v�k × �B) · �∇�k

]
�s�k +

[
�v�k · �∇�r

]
�s�k =

∑
�k′

P�k�k′(�s�k−�s�k′) (28)

Expressions (26) and (28) are complicated integrodifferential equations that can be solved nu-
merically by iterative methods.

6From an alternative aspect the Boltzmann equation (24) can be written for ρ but with an extra term added to
account for the change due to the Heisenberg relation. The result is the same.

7Note that here the matrix elements appear, not the full matrices ρ�k and ρ�k′ .
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In the absence of external fields, and assuming a homogeneous spin distribution (created e.g. by
an initial homogeneous photoexcitation of a spin population in the material), we have �v�k · �∇ρ =
0 and the Boltzmann equation (26) becomes

∂ρ�k(t)

∂t
− i

�
[Hspin,ρ�k(t)] =

∑
�k′

P�k�k′(ρ�k′ − ρ�k) (29)

Under some simplifying approximations, this equation can be solved analytically, giving an
estimate for the spin relaxation time. Here we present the basic ideas, and refer to [2] for a
thorough derivation.
First, the matrix ρ�k is decomposed in a spherically symmetric part 〈ρ〉 (averaged over �k, assum-
ing an isotropic dispersion relation �

2k2/2m) plus a remaining anisotropic part, ρ1�k (for which〈
ρ1�k

〉
= 0): ρ�k = 〈ρ〉+ρ1�k. The anisotropic part is very rapidly brought to a semi-equilibrium

value, due to momentum relaxation. Also, ρ1�k turns out to be small, of the order of Hspin, so
that terms containing Hspinρ1�k are dropped, simplifying the analysis. First, a solution for the
semi-equilibrium value of ρ1�k is found, which is then used to find the time-dependence of 〈ρ〉.
Taking the cubic Dresselhaus term (16) in the spin hamiltonian, the following result is obtained
[2] for τs:

1

τs
=

32

105

1

γ3
τp α

2
E3
�k

�2Eg
. (30)

Here, γ3 is a measure of the momentum relaxation time relative to the randomization time of
�Ω(�k ) (the two cannot be very different, since �Ω(�k ) is randomized by momentum scattering, but
the exact value of γ3 depends on the details of the scattering mechanism).

Final remarks

In bulk systems, the D’yakonov-Perel’ mechanism is most important for wide-gap semiconduc-
tors. Furthermore, the related spin dephasing increases strongly with temperature. For degener-
ate semiconductors [where the scattering is is practically only atEF, so that we can setE�k = EF

in Eq. (30)], the temperature dependence of τs follows the one of τp; for example, for charged
defects, 1/τs ∝ 1/τp ∝ T 3/2 [1]. In non-degenerate semiconductors, an averaging that in-
cludes the Fermi distribution function is needed. An in-depth analysis of the D’yakonov-Perel’
mechanism, including the effect of external magnetic fields has been performed by Pikus and
Titkov [44]. Finally we note that, although in this section we mentioned phonons and impurities
as sources of scattering, electron-electron collisions can also be a serious source of scattering
especially at high energies, and can lead to spin relaxation of the D’yakonov-Perel type [45].

8 Spin-flip scattering due to impurity spin-orbit coupling

When electrons scatter off impurity atoms, there is an amplitude for spin flip merely due to the
spin-orbit coupling of the impurity. We will call this on-site spin flip, to distinguish it from the
band-structure-type spin flip of the Elliott-Yafet or D’yakonov-Perel’ type. This mechanism
for spin relaxation cannot be considered as independent from the Elliott-Yafet or D’yakonov-
Perel’ mechanisms in the spirit of Eq. (4), because interference effects can occur.8 However,

8For example, a spin is flipped at an impurity, but flipped again by the Elliott-Yafet mechanism, in a single step.
Then one must add the corresponding amplitudes, instead of adding the probabilities as Eq. (4) suggests.
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under certain conditions, the impurity-induced spin-orbit coupling will be the main source of
spin relaxation. These conditions are: (i) The host spin-orbit coupling should be small enough
compared to the impurity spin-orbit coupling, so that, at each impurity-scattering event, the
band-structure-type spin-flip is negligible compared to the on-site spin flip. (ii) The temperature
should be low enough that phonon-induced band-structure-type of mechanism should also be
negligible—actually, since the phonon-induced band-structure-type spin relaxation scales with
the number of phonons, while impurity scattering scales with the concentration of impurities,
the low-temperature limit depends on the impurity concentration. (iii) The energy of the initial
spin population should not be too high, otherwise electron-electron scattering can dominate.

Furthermore, impurities are usually considered as independent scatterers, meaning that the scat-
tering rate is assumed to increase linearly with impurity concentration, and scattering rates by
different types of impurities are also additive. This is mostly a good approximation, but can
break down at low dimensions (e.g., quantum wires or ultrathin films), at extremely low tem-
peratures, or if the impurities are not statistically distributed (e.g., if they tend to cluster). In
these cases, correlated scattering events can become important.

On-site spin-flip scattering has been calculated within density-functional theory for s-p impu-
rities in Mg [46, 47] and in Cu [48]. The spin-orbit coupling of the host was neglected in both
works. The calculations were done in two steps. First, neglecting the impurity spin-orbit cou-
pling, the the self-consistent impurity potential V (r) and the l-dependent scattering solution of
the Schrödinger equation, Rl(r;E) were found. Then the additional, spin-orbit related scatter-
ing was expressed [46] by the (j, l)-dependent scattering matrix δtsoc

jl , which was found within
first-order perturbation theory (Born approximation) as

δtsoc
jl (EF) =

∫
R2
l (r;EF)

{
l

−l − 1

}
ξ(r)r2dr, (31)

with ξ(r) = e�/(4m2c2)(1/r)dV (r)/dr [see Eq. (6)]. The factors l and −l − 1 are used for
j = l+1/2 and j = l−1/2, respectively. By using the t-matrix the spin-orbit cross section was
calculated and found to compare well to results from weak antilocalization experiments. Note
that the spin-flip part of the spin-orbit cross section, σsf , is related to the spin relaxation time
by σsf = xVat/(vFτs) where x is the impurity concentration, Vat the atomic volume and vF the
Fermi velocity [48].

It was found [46, 47] that, along the s-p series (Cu-Kr and Ag-Xe), the spin-orbit cross section
first increases strongly, peaks towards the end and finally drops. This behavior was interpreted
via the increase of the spin-orbit coupling strength with the atomic number together with the
decrease of the p-orbital matrix element of ξ(r), ξp, at EF towards the end of the series (as the
p electrons become fully occupied and are transferred to energies below EF).

In reference [48] the values of τp(�k) and τs(�k) were analyzed as functions of the position of �k
on the Cu Fermi surface. A clear correlation between the two was found, except for the case of
Ga impurities. The interpretation was that the Ga impurity is mostly an s-wave scatterer, and
s-electrons experience no spin-orbit coupling. An important conclusion of this work is that a
fully self-consistent treatment of the scattering problem, including charge relaxation around the
impurity, is essential for the correct description of the spin relaxation time.
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Appendix

A Notation and symbols

Matrices are presented in boldface: M . Vectors are designated by an arrow: �B. Unit vectors
are designated by a “hat”: x̂, ŷ, ẑ. The Pauli matrix vector is

�σ = σx x̂+ σy ŷ + σz ẑ

=

(
0 1

1 0

)
x̂+

(
0 −i
i 0

)
ŷ +

(
1 0

0 −1

)
ẑ

The spin operator is denoted by �S = �

2
�σ, while the angular momentum operator by �L = �r× �p;

�r and �p are the position and momentum operators. For the crystal momentum the symbol �k is
used.
The electron mass is denoted by m (the effective mass by m∗), the electron charge by e < 0,
Planck’s constant is h = 2π�, and the speed of light in vacuum is c. Time is denoted by t.
The symbol τ is used to denote characteristic times (e.g. relaxation time), while T is reserved
for the absolute temperature; kB is the Boltzmann constant. The symbol for the electronic
gyromagnetic ratio (ratio of magnetic moment to angular momentum) is γ = g μB/�, where
μB = |e|�/2mc is the Bohr magneton and g the electron g-factor; g0 = 2.0023 · · · is the free-
electron g-factor. The magnetic permeability of vacuum is denoted by μ0. Eg is the band gap
energy and EF the Fermi level. Frequencies are denoted by ω or Ω.
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1 Introduction

Galvanomagnetic transport denotes the transport properties of metals and semiconductors un-
der the simultaneous action of electric and magnetic fields. If we apply an electric field E to a
homogeneous metal or semiconductor it will generate a current that on a wide range of condi-
tions will obey Ohm’s law , which on a microscopic level states a linear relationship between
the local current density j and the field E:

j = σE. (1)

σ is the electrical conductivity. Equivalently, we could have written

E = ρj. (2)

where ρ is the resistivity, the inverse of the conductivity. More general, a charged particle
moving in an electromagnetic field is subject to the Lorentz force

F = q(E + v ×B), (3)

where q is the charge of the particle, E is an accelerating electric field, v is the velocity of the
particle and B is the magnetic flux density or magnetic induction. Thus, a free electron moving
with a constant velocity v (electric field E = 0) perpendicular to a homogeneous field B will
be forced into a circular motion according to

mv2

r
= |e|vB. (4)

Here |e| is the modulus of the electron charge, r is the radius of the trajectory and mv2/r is
the modulus of the centripetal force. The time of circulation is T = 2πr/v which defines the
cyclotron frequency

ωc =
2π

T
=
eB

m
, (5)

which for nonrelativistic particles does not depend on the particle velocity and the radius of the
trajectory. This equation remains valid for conduction electrons in solids, as well, if we replace
the free-electron mass m by the cyclotron mass mc. 1

Now, if we apply an electric field and perpendicular to it a magnetic field to a conducting solid
the vector of the current density will no longer be parallel to the electric field, at least for a short
time (see above). In general, the presence of a magnetic field will generate an anisotropy so that
the current-density vector will deviate from the direction of the applied electric field. We then
have to define a tensorial relationship between the current density and the applied fields which
for the vector components - referred to a right handed orthonormal reference system (x, y, z)
gives:

ji = σ0
ijEj + αijkEjBk + βijklEjBkBl + higher order terms (i, j, k, l = x, y, z). (6)

1In case of spherical energy surfaces (Fermi surfaces) the cyclotron mass is identical to the effective mass. In
more general cases it can be calculated from the effective mass tensor [1]:

m∗
ij(k) = [

1
�2

∂2ε(k)
∂ki∂kj

]−1.
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Here we have used Einstein’s summation convention which says that the sum has to be taken
over repeated indices on the right hand side of the equation. The extra index 0 at σ0

ij will
become clear below. The tensor components σ0

ij , αijk and βijkl are material constants and are
subject to symmetry restrictions which depend on the crystallographic symmetry of the sample
material [2]. This looks quite complicated, but if there are no second order or higher order
terms in the electric field components we can – as is usually done – include all the magnetic
field contributions into a generalized definition of the electric conductivity. The price, we have
to pay, is that now the conductivity tensor will depend on the magnetic field.

ji = σij(B)Ej. (7)

With these conditions the σ0
ij components in eq. 6 correspond to σij(B = 0). Using the Onsager

relations [3] we get the symmetry restriction

σij(B) = σj i(−B). (8)

That is, the conductivity tensor is symmetric with respect to a simultaneous reversal of the
magnetic induction. For the reverse relation (2) we now get:

Ej = ρj i(B)ji, (9)

where ρ is the inverse tensor of σ.
The components of both these tensors are related by

ρii = (σjjσkk − σjkσkj)/Δ(σ); ρij = (σikσkj − σijσkk)/Δ(σ) (10)

where Δ(σ) is the determinant of σij .
Similarly,

σii = (ρjjρkk − ρjkρkj)/Δ(ρ); σij = (ρikρkj − ρijρkk)/Δ(ρ). (11)

In the absence of a magnetic field, σij and ρ ij are symmetrical, σij = σj i, and this implies
that a sytem of orthogonal axes can be found, with respect to which they are diagonal. When a
field B is present the tensors are generally not symmetrical and each of them requires all nine
components for a complete specification.
In the following we will only consider constant currents, i.e. DC currents. Moreover, we will
assume that our sample is at a constant temperature. We will ignore the Joule heating and
therefore exclude any temperature gradients. We will also restrict the discussion to the low-
field limit throughout this contribution. In mathematical terms this situation is described by
ωcτ � 1 where τ is the scattering time of the charge carriers. This means that the charge
carriers are scattered many times by phonons, impurities or defects before they can complete
a full cyclotron orbit. In this case we do not need to worry about Landau level quantization or
any quantum oscillations that occur in the high field limit ωcτ � 1, and may lead, for example,
to the quantum Hall effect.
The remainder of this contribution is organized as follows. In Chapter 2 we will start with a
phenomenological description of the galvanomagnetic transport based on the classical equa-
tions of motion. In the subsequent chapters we will deal with the galvanomagnetic behaviour of
non-magnetic materials and first discuss the ordinary Hall effect and then the Lorentz magne-
toresistance. In this course we will soon realize that the classical description is insufficient and
that a quantum mechanical model based on the Pauli principle (Fermi statistics) and electronic
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band structure – the so called semiclassical model – will be needed to understand and interpret
the experimental observations. Within this framework we will then derive an equation for the
electrical conductivity with the aid of the Boltzmann equation. Finally, we will study what
changes when the materials are ferromagnetic themselves and carry an internal magnetization.
We will finish this contribution with a basic description of the anisotropic magnetoresistance
(AMR) and its applications.

2 Phenomenology of Galvanomagnetic Transport

The first attempt to calculate the electrical conductivity was made by Drude prior to the devel-
opment of the quantum theory [1, 4].
His model is based on the assumption of a free electron gas moving in the confinement of a
metal block, interacting with the metal ions only through elastic collisions. Today we know
that Drudes model is only valid within certain limits as we shall also see below. But much of
his Ansatz remains applicable when certain quantities like velocities, the carrier masses and the
results are interpreted in terms of band structure theory 2.
Drude’s starting point was the classical equation of motion:

m
dv

dt
+ γv = −e E, (12)

where he introduced a velocity dependent damping (γ = m/τ ) due to scattering processes. v is
the drift velocity of the electrons which decays with a relaxation time τ when the accelerating
field is switched off. The superimposed thermal motion of the carriers averages to zero. In the
stationary state we have dv/dt = 0 and we get

v = −eτ
m

E = −μE. (13)

Thus the drift velocity is proportional to the accelerating field where the quantity

μ =
eτ

m
(14)

is called the charge carrier mobility. With a charge carrier density n we then get a current
density

j = −env = enμE. (15)

Together with Ohm’s law
j = σE. (16)

we finally get the conductivity

σ = en
eτ

m
= enμ. (17)

The conductivity is proportional to the charge, the density, and the mobility of the charge car-
riers. It increases with the relaxation time which is a measure of the time between scattering
events.

2Sommerfeld extended his model to a quantum mechanical free electron gas by introducing the Pauli principle
through the Fermi-Dirac distribution function. This was later further extended by introducing the lattice periodicity
caused by a weak periodic potential and leading to the band structure model with Bloch functions, reciprocal
lattices, Brillouin zones etc [1].
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Now we extend equation (12) by introducing an additional magnetic field:

m
dv

dt
+
m

τ
v = −e (E + v ×B), (18)

In the stationary state dv/dt = 0 we then get

v = −eτ
m

(E + v ×B) = −μ(E + v×B). (19)

The current density now becomes:

j = −env = enμE− μ(j×B) = σ0E− μ(j×B) (20)

where σ0 = σ(B = 0). Without loss of generality we may assume that B is aligned with the
z-direction of our coordinate sytem. Then we can write equation (20) in terms of components:

jx = σ0Ex − μBzjy
jy = σ0Ey + μBzjx
jz = σ0Ez

(21)

or since μBz = τ e
m
Bz = τωc

σ0Ex = jx − τωcjy
σ0Ey = τωcjx + jy
σ0Ez = jz

(22)

or in matrix notation (ρ0 = 1/σ0):

⎛
⎝ Ex

Ey
Ez

⎞
⎠ = ρ0

⎛
⎝ 1 (τωc) 0

−(τωc) 1 0

0 0 1

⎞
⎠
⎛
⎝ jx

jy
jz

⎞
⎠ = ρij(Bz)jj (23)

or

⎛
⎝ Ex

Ey
Ez

⎞
⎠ = ρ0

⎛
⎝ 1 (μBz) 0

−(μBz) 1 0

0 0 1

⎞
⎠
⎛
⎝ jx

jy
jz

⎞
⎠ = ρij(Bz)jj (24)

and
⎛
⎝ jx

jy
jz

⎞
⎠ =

σ0

1 + (τωc)2

⎛
⎝ 1 −(τωc) 0

(τωc) 1 0

0 0 1 + (τωc)
2

⎞
⎠
⎛
⎝ Ex

Ey
Ez

⎞
⎠ = σij(Bz)Ej (25)

or
⎛
⎝ jx

jy
jz

⎞
⎠ =

σ0

1 + (μBz)2

⎛
⎝ 1 −(μBz) 0

(μBz) 1 0

0 0 1 + (μBz)
2

⎞
⎠
⎛
⎝ Ex

Ey
Ez

⎞
⎠ = σij(Bz)Ej . (26)

We see now that the presence of a magnetic field renders the resistivity and the conductivity
anisotropic quantities even for an isotropic material. The conductivities and resistivities have
changed in the (x, y)-plane. The consequences of this will be discussed in the next chapters.



B7.6 P. S. Bechthold

3 Hall Effect

This effect was discovered by Edwin H. Hall during his PhD-work and was published in 1879
[5, 6, 7]. Let us assume a non-magnetic slab of a conducting material with parallel planes,
length l, width b and thickness d like the one depicted in Fig. 1 and a coordinate system as
indicated in the figure. We apply an electric field parallel to the long axis and a magnetic field
perpendicular to the slab. When we switch on the electric field the charge carriers will initially
be deflected sideways by the Lorentz force, the charges will get accumulated at one side, until
the generated electric forces completely balance the Lorentz force. At steady state conditions
the current will flow parallel to the applied electric field and we can measure a “Hall”-voltage
UH between the sample sides. The stationary-state condition is that the Lorentz force and the
transverse electric force cancel each other, i.e.:

Fy = −e(v ×B)y − eEy = evxBz − eEy = 0, (27)

where vx is the drift velocity of the charges and Ey = UH/b is the Hall field. When we as-
sume that only electrons are the charge carriers – like in metals or n-doped semiconductors at
suffiently low temperatures – the current density in the x-direction is jx = −enevx = i/(b · d).
Here, ne is the electron density of the sample and i is the total current. Therefore we get

UH = Ey · b = − 1

nee
jxB · b = − 1

nee
i B/d = RHi B/d. (28)

RH is called Hall coefficient. Thus, by measuring the current i, the field B, the thickness d of
the slab and the Hall voltage UH we can determine the charge carrier density ne of our sample.
What we have obtained here is the standard textbook derivation of the Hall field [8]. We could
have obtained this result also from our equations (23) - (26) by putting the transverse current
jy = 0. We will now use this relation to calculate the current density in our sample. With jy = 0
from equation (26) we get (μBz)Ex + Ey = 0. Thus the longitudinal current density gets:

jx =
σ0

1 + (μBz)2
(Ex − (μBz)Ey) =

σ0

1 + (μBz)2
(Ex + (μBz)

2Ex) = σ0Ex. (29)

Fig. 1: Scheme of a Hall arrangement [8].
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Despite the anisotropy in equation (26) the resistivity of the longitudinal current has not chan-
ged. Experimentally, however, one might observe changes in the resistance. One simple reason
is in the velocity distribution of the charge carriers [9, 10]. This means that the Lorentz force
is slightly different for different charge carriers, while the action of the Hall field is always the
same. Accordingly, the Lorentz forces are compensated on average only. Individual charges
might still be slightly deflected from their ideal trajectories. The longer path lengths then lead
to an increase of the resistivity. Anyway, to measure significant changes in the resistance – the
so called magnetoresistance – we have to prevent the formation of the Hall field. How this can
be done will be discussed in the next section.
To get a significant Hall signal the sample should be thin and the charge-carrier density should
not be too large. That is why semiconductors are the preferred materials in Hall sensors.
In p-doped semiconductors the Lorentz force on holes is directed toward the same side of the
sample, because of their positive charge and opposite drift velocity. Thus, if we consider a p-
doped semiconductor at low temperature, where mainly holes are the charge carriers, the electric
field Ey and with it the polarity of the voltage UH and the Hall coefficient will change sign.
Therefore, from the sign of the voltage and the Hall coefficient we will be able to distinguish
the charge type of the main carriers.
While monovalent metals – particularly the alkalis – nicely obey this simple classical rule oth-
ers strongly deviate. The deviations observed in ferromagnetic metals will be addressed below.
Some divalent group IIA and group IIB metals even show a reversed sign of the Hall coefficient
3. The reason is found in their electronic structure, which has to be treated quantum mechani-
cally. The atoms of the group II metals all exhibit a fully occupied s2 electronic subshell. Thus,
one might rather expect a weak van der Waals like bond rather than a metallic bond. Dimers
and small clusters of these materials are indeed very weakly bound. They become metallic in
character at larger particle sizes, because the s-subshell finally hybridizes with the respective
p-subshell. Thus, at the Fermi level one expects an almost completely filled valence band with
a negative curvature resulting in a negative effective electron mass. This contribution can be
replaced by the compensating contribution of holes – now with positive effective mass.
A more rigorous treatment of positive charge carriers in metals can be obtained from a de-
tailed investigation of the Fermi surface. We want to illustrate this with the aid of Fig. 2.
It shows schematically the Harrison construction of a fictitious square reciprocal lattice with
Fermi spheres that exceed the first Brillouin zone. The rule that Fermi surfaces should cut the
zone boundary at right angles is ignored here for clarity. According to the Pauli principle only
a small fraction of electrons in the Fermi sphere can contribute to the charge transport. They
are located in an energy range of the order of kT around the Fermi energy. In a semiclassical
approach we may consider an electron as a wave packet moving in reciprocal space [1, 12]. Its
velocity in k-space is the group velocity of this wave packet:

v(k) =
∂ω

∂k
=

1

�

∂ε(k)

∂k
=

1

�
∇kε(k) (30)

Its momentum is p = �k. The equation of motion of the electron in a magnetic field is then

�
dk

dt
= −e(v(k)×B). (31)

From these equations we learn that the electron moves perpendicular to B and v(k) in k-space.
Moreover, v(k) points in the direction of a gradient of a constant energy surface which is the

3In this situation, the simple Drude model fails.



B7.8 P. S. Bechthold

Fig. 2: Simplified scheme of a reciprocal lattice with Fermi spheres that exceed the size of the
first Brillouin zone. A square hole pocket is formed that can contribute a positive part to the
Hall coefficient of a metal or semiconductor. See text for details. [11].

direction perpendicular to the surface. In other words: in k-space the electron moves tangential
to a constant energy surface which is the Fermi surface or in the simplified picture of fig. 2 the
Fermi sphere. Let us assume that all the electrons move counterclockwise around the Fermi
surface as indicated by the arrows in the figure. Then we see that at the surface of the accen-
tuated square the electrons move clockwise around the square. This is precisely the behaviour
of positive charges which make a positive contribution to the Hall coefficient. Thus, the square
is a hole pocket. This picture is also consistent with the imagination of an almost completely
filled band, because if we fill up the Fermi spheres with more electrons the Fermi spheres will
expand and the hole pocket will shrink. When the spheres completely overlap the hole pocket
will disappear. The respective band is then filled up and will no longer contribute to the charge
transport. This simple example shows that the Fermi surfaces of materials need to be studied
very carefully if Hall coefficients are to be determined.
From this simple consideration we must conclude that the charge transport in the quantum
mechanical treatment deviates drastically from the classical picture. In the classical picture the
current is equally carried by all the electrons. In the quantum mechanical picture only a small
fraction of the electrons in the vicinity of the Fermi level will contribute to the conductivity,
all moving approximately with the Fermi velocity. The rest is blocked by the Pauli principle.
The classical picture assumes that the electrons collide with ion cores. In quantum mechanics,
if the ion cores are kept in their perfect lattice positions there will be no scattering at all. This
is because the electrons are described by Bloch waves. They are eigenfunctions of the system
and therefore they are time independent. Thus, quantum mechanically scattering can occur only
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due to lattice imperfections, i. e. phonons, impurities and defects, including surfaces. In the
quantum picture the conduction phenomena occur close to the Fermi surface, and despite the
defects mainly the differences of the Fermi surfaces are determining the conduction behavior of
the materials.
Why then can we use classical formulas at all? This point will be addressed in chapter 5 on
the Boltzmann equation, which takes into account the Fermi-Dirac distribution and leads to the
same conductivity formula as the classical picture. With this in mind we have to check all the
results deduced from the classical approach for their consistency with quantum mechanics. It
is an interesting aspect of this consideration that the classical formulas could only be saved by
introducing positive charge carriers into quantum mechanics.
With these remarks we come back to the Hall effect. When both type of charge carriers con-
tribute to the Hall effect the equation for the Hall coefficient must be modified. In general the
signal will contain contributions from both electrons and holes and the sign of the Hall coeffi-
cient determines whether electrons or holes are the dominant charge carriers. This is particularly
the case for semiconductors at elevated temperatures, where (due to intrinsic conduction) elec-
trons and holes simultaneously contribute to the charge carriers. In the presence of both charge
carriers we then have to deal with an ambipolar current and the valence and conduction band
simultaneously. In this case not only the carrier densities (ne for electrons and nh for holes),
but also the drift mobilities (μe and μh) of the carriers become involved. In general, the charge
carriers will have different mobilities in both bands, usually μh < μe. With highly doped sam-
ples at sufficiently low temperatures essentially only one type of charge carriers will contribute
to the conduction. In such cases one can get back to the single-band picture discussed above.
The following equation allows us to calculate the Hall voltage. Its somewhat lengthy derivation
is given in the appendix.

UH = EH · b =
nhμ

2
h − neμ2

e

e(nhμh + neμe)2
jxBz · b =

nh − ne(μe/μh)2

e(nh + neμe/μh)2
iB/d. (32)

Here the ratio of the mobilities has been introduced. If electrons and holes had the same density
and the same mobility, they would completely compensate each other. In reality this is not the
case. The Hall field will change sign depending whether there are more electrons or more holes
accumulated by the Lorentz force. UH changes sign at nh = ne(μe/μh)

2 rather than at the
intrinsic concentration nh = ne. This equation is widely used to characterize Hall coefficients
of semiconductors and metals.
With these results we can now interpret the temperature behaviour of the Hall coefficient of
InSb as given in Fig. 3 [13, 9, 14, 15] . InSb is a low band gap semiconductor εg = 0.18eV
and an important sensor material. The figure shows the modulus of the Hall coefficient as a
function of the inverse temperature for various degrees of doping (temperature from right to
left given in the upper legend). The letters A and B refer to n-doped samples, the numbers 1
to 4 to p-doped samples with increasing concentration of the dopend in this order. The sample
denoted by V is the purest. The concentration of the dopant varies from 1013/cm3 (curve V)
to 2 × 1017/cm3 (curve 4) [13, 15]. As can be seen at low temperatures the modulus of the
Hall coefficient decreases with increasing doping due to the increasing carrier density. For
a given doping level it is largely constant at low temperatures, because of the fixed carrier
concentration supplied by the dopant. This is true also for the sample V, which seems to have a
small concentration of free electrons due to some remaining impurities. When the temperature
increases the growing number of electron-hole pairs finally leads to an exponential decrease
of the Hall coefficient as drastically demonstrated for the pure sample. Since electrons exhibit
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Fig. 3: Modulus of the Hall coefficient of InSb at various degrees of doping as a function of the
inverse temperature. [9, 13, 14, 15].
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a larger mobility the n-doped samples – as well as the pure sample – have a negative Hall
coefficient and gradually approach the line of intrinsic conduction (curves V, A and B). In
contrast, the initially positive Hall coefficient of the p-doped samples changes sign when the
density of intrinsic carriers reaches a certain level. Then, it even slightly overshoots the intrinsic
conduction line and finally approaches it from the other side. Naturally, the crossing of the zero
line occurs at lower temperatures for samples with initially lower p-dopend concentration.
So far, we have treated all carriers alike except for the sign. In reality, they may have an
energy distribution, anisotropic masses and different relaxation times. In such cases, it might be
necessary to include correction factors to the simple equations given above. These factors are
usually of the order of one [15, 16].
From the sign of the Hall coefficient we learn whether electrons or holes are the primary charge
carriers. For a single band from the measurement of the Hall coefficient we can determine the
density and the charge sign of the carriers. From the equation

μ = Rhσ

and a simultaneous determination of the conductivity, we can also identify the carrier mobil-
ity. Van der Pauw [17] has described procedures to avoid and minimize experimental errors in
Hall measurements. Today the Hall effect is widely used to either measure magnetic fields with
calibrated Hall sensors or to determine carrier densities and mobilities of carriers in semicon-
ductors.

4 Lorentz-Magnetoresistance

Just like the ordinary Hall effect, the Lorentz magnetoresistance (also called ordinary magne-
toresistance (OMR)) occurs in all conducting materials. It describes the change of the material’s
resistivity when an external magnetic field is applied.
Depending on the direction of the magnetic field with respect to the current flow we distinguish
between longitudinal and transverse magnetoresistance. The transverse effect is the more im-
portant. From our equations (23) - (26) we can see that the conductivity and the resistivity may
change in the (x, y)-plane when a magnetic field is applied in the z-direction perpendicular to
the film. To realize this situation we have to make use of the transverse current generated by
the Lorentz force. In the Hall measurements we have eliminated the transverse current (on the
average, see above) by building up an opposing electric field. As a result the resistivity of the
thin film did not change with the magnetic field applied, at least in our simplified approach.
Now we want to make use of the transverse current itself. To do so we have to avoid or to
shortcut the opposing electric field. Suppose we have shortened the Hall field in Fig. 1 and
apply an electric field in the x-direction Ex = E0 and Ey, Ez = 0, we get from eqs. (23), (24):
Ex = ρ0(jx + (μBz)jy. In addition, we have Ey = −(μBz)jx + jy = 0 or jy = (μBz)jx. For
the electric field component in x-direction Ex this gives

Ex = ρ0(1 + (μBz)
2)jx. (33)

The resistance grows quadratically with the applied field. The relative increase of the resistance
is usually measured by :

ρ(B)− ρ0

ρ0
=

Δρ

ρ0
= (μBz)

2 (34)
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Fig. 4: Reduced Kohler diagram where ρred = ρ(T )/ρ(Θ) and Θ is the Debye temperature of
the metal. [20].

It is this quantity that is usually called the “Lorentz magnetoresistance” or “ordinary magne-
toresistance” (OMR) . The effect is qualitatively easy to understand. In between two subse-
quent scattering events the Lorentz force deflects the electrons on their way to the counterelec-
trode. This increases the electron path way and therefore the average number of collisions with
phonons, impurities and defects. This consequently increases the resistance.
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Fig. 5: Left: Principle scheme of a Corbino disk. Right: Relative resistance as a function of
magnetic induction for samples of n-doped InSb of equal purity, but different geometrical shape.
The upper curve is that of a Corbino disk. Lower curves are for plain samples with differing
length/width ratios (l/w =1/3, 1/1 and 10/1 from above). This demonstrates the influence of
the geometrical factor. [9, 10].

In simple metals in the low field limit it follows the scaling law

ρ(B)− ρ0

ρ0
=

Δρ

ρ0
= const(B/ρ0)

2, (35)

i.e., for a given metal all measurements should follow the same parabola when Δρ/ρ0 is plotted
versus B/ρ0, independent of temperature or purity of the sample. This is known as Kohler’s
rule 4 [11, 19, 20, 21] . In our free electron approach this is evident, because μB ∝ τB and
the scattering time is inversely proportional to ρ0 for a given metal. Kohler’s derivation is more
rigorous, however, because it relies on the Boltzmann equation and thus includes the Pauli
exclusion principle. Fig. 4 demonstrates that a variety of elementary metals nicely follows this
rule. The Kohler rule is valid only, when all the participating charge carriers exhibit the same
scattering time τ , i.e. the same microscopic scattering mechanisms. Deviations from Kohler’s
rule therefore indicate, that different scattering mechanisms might be at play in a sample.
In normal metals the Lorentz magnetoresistance is a small effect and has no technological ap-
plications. The only exception is the semimetal Bi, which exhibits ∼ 18% magnetoresistance
in a transverse field of 0.6 T [22]. Therefore, in early applications of the magnetoresistive effect
a Bi-spiral was used to measure magnetic fields [23]. Later it was found that InSb shows an
even larger Lorentz magnetoresistance [10], and this, indeed, led to technological applications
(see below) .
Experimentally, the most effective way to avoid the formation of a Hall field is to use a Corbino
disk (Fig. 5) [10, 18] . It consists of two concentric circular electrodes with the metallic or semi-

4The rule can even be extended to higher field ranges, when the quadratic field dependence is replaced by a
material dependent function f :

Δρ
ρ0

= f(B/ρ0) (36)

where, of course, f is parabolic in the low field limit.
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Fig. 6: Micrographs of polished sections of an oriented InSb-NiSb eutectic as used in commer-
cial Lorentz magnetoresistors. The samples were cut perpendicular and parallel, respectively,
to the NiSb needles. The needles have diameters of about 1μm. The length is up to about
50μm. When oriented perpendicular to the applied electric field, the needles will shortcut the
Hall field. Inside the needles the current will flow parallel to the needle axis, outside the needles
it gets deflected by the Lorentz force [14, 24, 25].

conducting material, e.g. InSb, in between. The externally applied electric field is then pointing
in a radial direction and the equipotential lines are concentric circles, as well. Therefore, a
balancing transverse Hall field cannot build up in this geometry. The trajectory of the current
flow is a logarithmic spiral. The current meets every equipotential line at the same angle. The
angle ϑ is defined by the ratio of the transverse to radial current density: tanϑ = jt/jr and is
called the Hall angle. With an applied magnetic field the resistance grows due to the magnetic
field induced lengthening of the trajectories. Fig. 5 also shows the quadratic field dependence
of the relative magnetoresistance of InSb for the Corbino disk and three other InSb samples of
identical purity, but different length/widths ratio (1:3, 1:1 and 1:10). This demonstrates that
the resistivity also depends on sample geometry [9, 10]. The latter effect will not be further
dicussed here.

The Corbino Disk, while occasionally used in scientific studies is not suited for sensor applica-
tions, because it does not provide a large enough resistance to be useful for sensor applications.
For larger resistances one has to elongate the current path length. This can be easily achieved
by meandering a narrow stripe of material but then one has to meet precautions to avoid the
occurance of the Hall field. The elegant solution to this is the ”Feldplatte” also known as MDR
(Magnetic field Dependent Resistor) . It was invented in the 1960’s and since 1965 is available
as a commercial product. It contains a meandering thin layer (8−25μm) of InSb which is doped
with 1.8 % NiSb . At this concentration InSb and NiSb form an eutectic in which small needles
of NiSb (Ø1μm, length up to 50μm) grow inside the InSb. At favourable growth conditions
these needles orient parallel to the crystallographic growth front (e.g. in a Zone melting pro-
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Fig. 7: Upper left: Scheme of a meandering magnetoresistor based on the InSb-NiSb eutectic
with the NiSb needles oriented perpendicular to the direction of the applied electric field. Upper
right: the response curve of such a device. Lower left: Principle of magnetic bias for two
”Feldplatten” combined in a bridge circuit. Lower right: Arrangement of two ”Feldplatten” in
a commercial device. [14, 24, 25, 26].

Fig. 8: (a) Response of an unbiased Lorentz magnetoresistor. Positive and negative field di-
rections cannot be distinguished. (b) Response of a magnetically biased magnetoresistor with
the operating point shifted to the right in the figure. Now the field direction can be identified.
Simultaneously the sensitivity is increased. (c) Mounting of a biased ”Feldplatte” [25, 26].
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Fig. 9: Simulation of the EMR-effect. At B = 0 the current passes preferentially through the
gold contacts. With increasing magnetic field the current is more and more forced into the
semiconducting layer (HL). This leads to an increase of the magnetoresistance [28].

cess)(fig. 6) [14, 24, 25]. The conductivity of the NiSb is larger than that of InSb by two orders
of magnitude. When oriented perpendicular to the applied electric field the needles, therefore,
shorten the Hall field (fig. 7). Due to the meandering the resistance may be changed from a
few Ω to some kΩ. One obstacle of the ”Feldplatte” is its temperature sensitivity. Commercial
devices, therefore contain two of these resistors in a bridge circuit (figs. 7). One as a reference
for temperature compensation. Because of theB2 dependence of the resistivity, the ”Feldplatte”
cannot initially distinguish the direction of an applied magnetic field. Therefore, commercial
devices are biased by a permanent hard magnetic layer (figs. 7 and 8). Then the field direction
can be identified. It also increases the sensitivity due to the slope of the B2 parabola and al-
lows an adjustment of the operating point to the field strength desired. ”Feldplatten” have been
widely used as automotive sensors and even in space vehicles, but are currently more and more
replaced by other magnetoresistive sensors. One reason is found in the difficulties to embed
them into integrated circuits.
Nevertheless, InSb has recently regained new interest, since it was realized that it is possible
to achieve drastic increases of the magnetoresistance simply by choosing favourable geometric
arrangements of the resistor material and the metallic electrodes [27, 28, 29]. The arrangement
is such that at B = 0 the current flows preferentially through the metallic leads. An increasing
magnetic field more and more forces the current to flow through the semiconductor thereby
increasing the resistance of the device. An example of a computer simulation of such an ar-
rangement is shown in fig. 9 [28]. This effect is now called extraordinary magnetoresistance
(EMR) . It is believed to possess great technological potential for future applications.
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5 The Boltzmann Equation

With the aid of the Boltzmann equation we will now sketch how to derive an equation for the
conductivity of our system. In chapter 2 we have discussed the charge carrier motion in terms
of the classical Drude model. We have already seen that this is not in complete agreement with
experimental findings. We will therefore discuss the transport properties in a more realistic
band structure approach.
In the band picture the electrons are considered as independent particles moving in a weak
perfectly periodic potential. Quantum mechanical solutions to this single particle model are
the Bloch wave functions which have completely incorporated the interaction with the lattice
potential. In the strictly periodic potential where the ion cores of the metal occupy their ideal
periodic positions the Bloch electrons are not scattered because the Bloch waves are the eigen-
functions of the system. Thus scattering processes can occur only at deviations from the strict
lattice periodicity, i.e. at lattice phonons, impurities, defects like dislocations, and at surfaces.
Phonons are the dominant scatterers at higher temperatures, whereas defects and impurities be-
come important at low temperatures where the lattice vibrations are frozen out. In a solid at
thermal equilibrium the single particle energy levels are occupied according to the Fermi- Dirac
distribution function.

f(E) =
1

1 + exp[(E − EF )/kBT ]
. (37)

Therefore, most of the electrons cannot contribute to interaction processes because they are
hindered by the Pauly principle. Only those electrons with energies close enough to the Fermi
level can take part.
In the so called semiclassical approach an electron is described by a wave packet in k-space
consisting of a superposition of Bloch wave functions centered at a certain wave vector k. The
drift velocity of the electron is then given by the group velocity of this wave packet [1].

v(k) =
1

�
∇kεk =

1

�

∂ε(k)

∂k
(38)

v(k) is parallel to the gradient of the surface of constant energy in k-space, i.e. it is not in
general parallel to the wave vector. The electron wave packet is extended in r- and in k-space.
The Δr and Δk values thereby have to obey the uncertainty relation ΔrΔk ≈ 1. The spread
of the wavepacket is assumed to be small with respect to the dimensions of the Brillouin zone.
Then in the direct lattice its extension is large compared to the dimensions of the unit cell. For
completely free electrons the energy band is a parabola in k-space ε(k) = �

2k2

2m
and we get

v(k) = �k
m

.
If we consider �k as the momentum of the electron in k-space the equation of motion with an
applied Lorentz force is:

dk

dt
= −e

�
(E + v ×B). (39)

An external electric field will accelerate the electrons and therefore change the energy distribu-
tion. The small distortions due to phonons or due to impurities scatter the electrons with the
tendency to restore equilibrium.
We will now describe the effect of the externally applied fields and the scattering processes on
the distribution function of the electrons and seek the variation of the distribution function with
time. For simplicity we will assume that only one single band is involved.
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We consider a volume in phase space and consider the flow of particles in and out. The change
in the distribution function is:

df/dt = ∂f/∂t + (∂f/∂r)(∂r/∂t) + (∂f/∂k)(∂k/∂t) = (∂f/∂t)coll (40)

where the last term is the change of the function due to collisions. We can rewrite this equation
in the form:

df/dt = ∂f/∂t+ k̇ · ∇kf + ṙ · ∇rf =
∂f

∂t
|coll. (41)

This is the Boltzmann equation. It is the starting point for the discussion of the transport phe-
nomena. Introducing the above values for vk and dk/dt gives

∂f/∂t + v(k)(∂f/∂r)− (e/�)(E + v ×B)(∂f/∂k) = (∂f/∂t)coll (42)

Since we have assumed that there are no thermal gradients in our system we get ∂f/∂r = 0.
To proceed further we have to specify the collision term. This is quite complicated in general
[30, 31]. Here we will use the relaxation time approximation . Thereby it is assumed that the
deviation of the distribution function from the equilibrium distribution function f0 (the Fermi-
Dirac function) is small:

f(k) = f0(k) + f1(k). (43)

Further it is assumed that the collision term can be expressed as

(∂f/∂t)coll = −f(k)− f0(k)

τ
= −f1(k)

τ
. (44)

where τ is the relaxation time. It determines the rate of return to the equilibrium distribution
when the external field is switched off because then we have

(∂f/∂t) = −f(k)− f0(k)

τ
. (45)

The general solution to this is

f(t) = f0 + [f(0)− f0]e
−t/τ (46)

where f(0) is the distribution at the time when the fields are switched off. Thus the non-
equilibrium distribution decays exponentially towards the equilibrium distribution when the
driving fields are switched off. Introducing the collision term (44) into the Boltzmann equation
(42) we get

∂f/∂t− (e/�)(E + v ×B)(∂f/∂k) = −f(k)− f0(k)

τ
(47)

Since we are interested in a stationary state we have ∂f/∂t = 0. We will here also omit the
influence of the magnetic field.5 We are the then left with:

−(e/�)E(∂f/∂k) = −f(k)− f0(k)

τ
(48)

which can be rewritten as

f(k) = f0(k) + (e/�)τE(∂f/∂k) (49)
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Fig. 10: Displacement of the Fermi sphere, (a) by an electric field, (b) by an electric field and a
magnetic field normal to the page [12].

This equation can be solved iteratively by replacing ∂f/∂k by ∂f0/∂k in the first step [8]

f(k) ≈ f0(k) + (e/�)τE(∂f0/∂k). (50)

The right side may be considered as the first elements of a Taylor series of a function

f(k) = f0(k + (e/�)τE). (51)

Therefore the effect of a weak electric field in k-space is simply a shift of the Fermi sphere by
an amount δk = (e/�)τE in the direction of the electric field (Fig. 10(a)). A magnetic field
applied in addition will rotate the displaced Fermi sphere by the Hall angle about the direction
of the magnetic field (Fig. 10(b)) [12].
The carrier density is given by integration over k-space

n =
2

8π3

∫
f(k)dk. (52)

The factor 2 is due to the two spin directions spin ↑ and spin ↓, the factor 1/(2π)3 due to the
k-space integration [32]. With that the current density gets:

j = − e

4π3

∫
v(k)f(k)dk. (53)

This can be written

j = − e

4π3
(

∫
v(k)f0(k)dk +

∫
v(k)f1(k)dk) (54)

where the first term
∫

v(k)f0(k)dk = 0 because of the antisymmetric integrand. At zero
applied electric field there is no net current flow. Introducing the above value for

f1 = (e/�)τE(∂f0/∂k) = (e/�)τE(∂f0/∂ε)(∂ε/∂k) = eτEv(k)(∂f0/∂ε) (55)

gives

j = −e
2E

4π3

∫
τv(k)v(k)(∂f0/∂ε)dk. (56)

5a more general treatment including the magnetic field is given in the literature [9, 11, 12, 15, 30, 31]
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For the conductivity tensor this results in

σ =
e2

4π3

∫
τv(k)v(k)(−∂f0/∂ε)dk. (57)

Now consider a metal. The volume element in k-space dk can be replaced by

dk = dS
dk

dε
dε =

dSdε

dε/dk
=
dSdε

|∇kε| (58)

where dS is a surface element of the Fermi sphere (see fig. 10) and the gradient is perpendicular
to the Fermi surface. With this equation (57) can be written as

σ =
e2

4π3

∫
τv(k)v(k)

|∂ε/∂k| (−∂f0/∂ε)dSdε. (59)

The derivative of the Fermi-Dirac distribution function can be approximated by a δ-function
which gives

σ =
e2

4π3�

∫
FS

τv(k)v(k)

v
dS. (60)

Now the integration is over the Fermi surface. For isotropic or cubic materials the conductivity
tensor has only diagonal elements which are all identical. We can then replace vxvx = vyvy =
vzvz = v2/3 and get

σ =
e2

4π3�

∫
FS

τv

3
dS. (61)

Using for the Fermi Sphere the relations
∫
FS
kFdS = 4πk3

F , vF = �kF/m and for the carrier
density n = 1

4π3
4π
3
k3
F we get

σ =
ne2τ

m
. (62)

This is precisely the relation that we deduced initially from the Drude model. But note: The
physical picture behind it is here completely different. Here only electrons at the Fermi energy
are involved. Presumably it is this formal agreement that is responsible for the success of the
classical model at all.
So far, we have studied the influence of an external magnetic field on the conductivity or resis-
tivity of a nonmagnetic material. Now we will investigate what happens when the material is
ferromagnetic itself.

6 Resistivity of Ferromagnets

Up to now we have studied the galvanomagnetic effects that were generated in nonmagnetic
materials by an externally applied magnetic field. When dealing with ferromagnetic materials
the sample will show an intrinsic magnetizationM which is of course expected to contribute to
the Hall effect as well as the magnetoresistance.
The Hall effect, indeed, includes an additional contribution that is directly proportional to the
magnetization of the material but it is often much larger than what might be expected when
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Fig. 11: Temperature dependence of the relativ resistivities of Ni and Pd normalized to their
values at Tc of Ni (Tc = 631K)[39].

+

-

+

-

Fig. 12: Scheme of resistivities due to Mott’s two current model. Spin up and spin down chan-
nels are signed + and -, respectively.

μ0M is simply added to the externally applied magnetic field. The effect is therefore called the
”anomalous Hall effect”. The Hall resistivity may then be written 6

ρH = R0μ0H +Rsμ0M, (63)

where R0μ0H is the contribution of the ordinary Hall effect and Rsμ0M is the anomalous

6There are different notations used in the literature.
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Fig. 13: Scheme of the densities of states in the sp- and d-bands of ferromagnetic Fe, Co and
Ni. The occupation numbers of electrons in the down-spin and up-spin bands are also shown
[40, 41].

contribution. RS is usually much larger than the ordinary constant R0. Since M saturates at
high magnetic fields the anomalous Hall effect also saturates at high fields. Although the effect
has already been discovered more than a century ago by Edwin Hall himself [33], it is still not
fully understood. The anomalous Hall effect (AHE) is known to be a consequence of spin-
orbit coupling, but the details of the mechanisms that contribute are still subject to controversial
discussions.
The anomalous Hall effect has gained new interest because it is also related to the recently
discovered Spin-Hall effect. Therefore, two extra contributions are devoted to both these effects
in this spring school [34, 35] and therefore we will skip the discussion here.
The other effect caused by the intrinsic magnetization is the anisotropic magnetoresistance
(AMR) which was discovered in 1856 by William Thomson the later Lord Kelvin [36]. Be-
fore we go into the details of this effect,however, we want to discuss an anomaly that can occur
in a ferromagnet without an external magnetic field applied. Fig. 11 shows a comparison of the
relativ resistivities of Pd and Ni as a function of temperature [31, 37, 38, 39]. The data are
normalized to their values at the Curie temperature of Ni (631K). Pd is situated below Ni in
the periodic table. Therefore, their electronic structures are quite similar but Pd is paramagnetic
at all temperatures whileNi shows the ferromagnetic phasetransition when the temperature de-
creases below 631K. Therefore the curves suggest that the differences are due to the formation
of a spontaneous magnetization in Ni which is associated with an exchange splitting of the Ni
d-states. To explain this behavior Sir N. F. Mott suggested a two current model [42]. It formally
splits up the current into two spin channels, one for spin up electrons and the other one for spin
down electrons as schematically sketched in Fig. 12. In his approach Mott assumedindepen-
dent spin-up and spin-down currents, i.e. the spin information is conserved in the scattering
processes. The current is mainly carried by the s-electrons due to their small effective mass
(large curvature of the s-bands). The d electrons with their much bigger effective mass (flat
d-bands) can contribute only little to the conductivity. The electrons can undergo s − s and
s− d scattering transitions where the s− d transitions contribute the most to the resistivity. In
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Fig. 14: (Left: Density of states (3d) of a strong ferromagnet without spin-orbit coupling and the
spin-separated resistivity contributions according to Mott’s two-current model. In the absence
of spin-orbit coupling only s − d scattering processes in the spin-down channel are allowed.
Right: Inclusion of spin-orbit coupling opens up the possibility of spin-flip transitions in the s−d
channels. As a consequence, also the spin-up channel will now contribute to the conductivity.
[52].

the paramagnetic phase there is no difference in the resistivity of the two spin channels but in
the ferromagnetic phase the system develops a spin-dependent asymmetry. Specifically in Ni
the majority-spin d-states get completely filled and these states are no longer available for scat-
tering events (Fig. 13) - at least in the absence of spin-orbit coupling. This causes a reduction
of the resistivity of the majority spin channel and a reduction of the total resistivity.
A. Fert and I.A. Campbell have later refined Mott’s model by allowing also spin-flip scattering
due to spin-orbit coupling [43, 44, 45, 46, 47]. The spin-orbit coupling adds a spin-dependent
componenet to the scattering potential. In order to understand why spin-orbit coupling may
be responsible for spi-flip processes, we have to consider the respective quantum mechanical
operator L · S. It can be written with the aid of ladder operators (raising and lowering operators)
in the form

L · S = LxSx + LySy + LzSz = LzSz + (L+S− + L−S+)/2 (64)

where L± = Lx ± iLy and S± = Sx ± iSy. Applying L± to a wavefunction has the effect of
raising or lowering the ml quantum number of that wave function

L±ψ(ml) −→ ψ(ml ± 1). (65)
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Likewise S+ and S− can raise or lower the ms quantum number, i. e. flip a spin. The operator
(64) to the wavefunction acts first on the spin and then on the orbital part of the wavefunction
and thereby introduces spin-flips between different ml values, which opens the possibility for
additional spin-mixing s− d transitions. In a simple qualitative picture, the spin-orbit coupling
enables different transition channels. First of all, s spin-up (s↑) electrons can now scatter into
d spin-down hole states (d↓). As a second important mechanism, also transitions of the type
d↑ → s↑ become possible, which thereby create unoccupied d↑ states. These empty states open
up further channels for spin-flip and non spin-flip s − d scattering. However, the scattering
probability depends on the k-vector of the electrons and the orbital ml into which the electron
is scattered. This situation is sketched in the bottom, right part of fig. 14, illustrating selected
orbitals, which contribute to the resistivity ρ for the two geometries with current flowing parallel
and perpendicular to the magnetization M , respectively.
Next we discuss the influence of an external magnetic field on the anisotropic magnetoresis-
tance.

7 Anisotropic Magnetoresistance (AMR)

In ferromagnetic samples the resistance depends on the orientation of the magnetization with
respect to the direction of the electric current. Usually the resistivity is larger when the cur-
rent and the magnetization are parallel and smaller when they are perpendicular. Fig. 15 shows
typical examples how the resistivity changes when an external magnetic field is applied [48].
Initially the resistivity increases when an external field is applied parallel to the current and
decreases when it is applied perpendicular. These initial effects are due to the reorientation of
magnetic domains by the applied field. A field of a few Oersted magnitude is usually sufficient
to achieve saturation. Above saturation a slow increase or decrease of both resistivities is ob-
served. The increase can simply be explained by the normal magnetoresistance induced by the
Lorentz force, the decrease is attributed to the so called spin disorder resistivity. This contribu-
tion becomes particularly importent when the Curie temperature is approached and depends on
the scattering of conduction electrons into the exchange split d-states [48]. To obtain values of
ρ‖ and ρ⊥ which are independent of the externally applied field the measured curves are extrap-
olated to B = 0 as indicated in the figures. The difference between ρ‖(B = 0) and ρ⊥(B = 0)
is called spontaneous resistivity anisotropy. It disappears above Tc because it is associated with
the spontaneous internal magnetization. The resistivity anisotropy is often normalized to the
average resistivity ρ0 which is defined as

ρ0 = ρaverage = (
1

3
(ρ‖(B = 0) +

2

3
ρ⊥(B = 0)), (66)

where ρ‖(B = 0) and ρ⊥(B = 0)) are the extrapolated values. This ratio is called the
anisotropic magnetoresistivity ratio or coefficient. Note, that the average resistivity defined
above is not in general identical with the resistivity of the field free demagnetized sample [52].
The anisotropic magnetoresistance is caused by anisotropic scattering of the charge carriers
by spin-orbit coupling. The resistance varies with the orientation of the d-orbitals parallel or
perpendicular to the magnetic field.
Now consider a thin homogeneous strip of a magnetoresistive material, e. g. permalloy, with a
large aspect ratio, i.e. its length is much larger than its width. If the sample thickness exceeds
a certain value (a few 10 nm) we can expect the magnetization to lie in the plane of the film.
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Fig. 15: schematic resistivity change for ferromagnets. The extrapolated resistivities are also
shown. After saturation of the magnetization the resistivity either increases (a): normal positive
magnetoresistance or (b) decreases due to the reduction of spin-disorder. [48].

To minimize the stray field the magnetization will orient parallel to the long axis of the film
which therefore is the easy axis.7 We identify this axis with the z′-axis of an orthonormalized
coordinate sytem and the perpendicular in plane direction with the x′-axis.8 In this case we can

7The easy axis of a sample is the axis along which the sample is most readily magnetized.
8In the following we will use two coordinate systems: one (x′, y′, z′) in which the magnetization is fixed with

the z′ axis. The other one (x, y = y′, z) which is fixed to the sample geometry can be rotated about the common
y-axis by an arbitrary angle ϕ (see Figs. 16 and 17).
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Fig. 16: Geometric arrangement for the calculation of anisotropic magnetoresistance and pla-
nar Hall effect components as described in the text [54, 49].
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Fig. 17: Idealized easy axis (a) and hard axis (b) magnetization curves of an in plane magne-
tized anisotropic magnetic thin film as shown in the lower figure. The z-axis (long axis) is the
easy axis and the x-axis the hard axis. The rotation of the magnetization upon application of an
external magnetic field parallel to the hard axis is indicated. [54, 49].

easily guess the relation between an applied electric field and the current density achieved. It is:⎛
⎝ Ex′

Ey′

Ez′

⎞
⎠ =

⎛
⎝ ρ⊥ −ρH 0

ρH ρ⊥ 0

0 0 ρ‖

⎞
⎠
⎛
⎝ jx′

jy′

jz′

⎞
⎠ or E′ = (ρi′j′(M))j′ (67)



Galvanomagnetic Transport, Hall Effect, AMR B7.27

x x
x x
x xx x
x xx x

Fig. 18: Response of a permalloy thin-film magnetoresistor as described in the text [54, 49].

where ρ‖ and ρ⊥ are obviously in accordance with the description given above. ρH is the resis-
tivity corresponding to the anomalous Hall effect which we will not further consider. However,
in this form the resistivity tensor is only valid when the magnetization of the sample is fixed to
the easy axis. For a detailed analysis of the AMR we need a more general form of the tensor
where the current density j′ and the magnetization M include an arbitrary angle ϕ in the (x′, z′)-
plane. We derive this form by a similarity transformation of the AMR-matrix in the following
way:
We assume that the coordinate system defined above is fixed with the magnetization: M ‖ z′.
We rotate the sample and with it E′ and j′ by an angle ϕ and define a new rotated coordinate
system (x, y) so that the new orientation of the long sample axis is parallel to the new z-axis
together with the applied field E and the current density j. This situation is indicated in Fig. 16.
For the equation (67) to remain valid we have to rotate E and j back to the old system:

E′ = R(ϕ)E and j′ = R(ϕ)j (68)

where R(ϕ) is the transformation matrix that provides the backrotation. Thus from equation
(67) we get

E′ = R(ϕ)E = (ρi′j′(M))R(ϕ)j = (ρi′j′(M))j′. (69)

where (ρi′j′(M)) is the resistivity tensor defined above. Using the associativity of matrix mul-
tiplication we therefore get the AMR-matrix in the transformed coordinates:

ρij(M) = R−1(ϕ)(ρi′j′(M))R(ϕ)

=

⎛
⎝ cosϕ 0 sinϕ

0 1 0

−sinϕ 0 cosϕ

⎞
⎠
⎛
⎝ ρ⊥ −ρH 0

ρH ρ⊥ 0

0 0 ρ‖

⎞
⎠
⎛
⎝ cosϕ 0 −sinϕ

0 1 0

sinϕ 0 cosϕ

⎞
⎠
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Fig. 19: Examples of the anisotropic magnetoresistance effect in sputtered polycrystalline films
of Fe, Co,Ni and Ni81Fe19 (permalloy), Ni70Co30 and Ni50Co50. The full and dotted lines
correspond to magnetic field applied orthogonal and parallel to the current respectively in the
plane of the films. The films in each case are ≈ 1000 Å thick [40].

Fig. 20: left: Scheme of a permalloy (3) barber-pole magnetoresistor with canted conduc-
tor strips(2). Magnetization and current direction is indicated. right: Schematic Wheatstone-
bridge arrangement of four barber poles. [49].
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=

⎛
⎝ ρ⊥cos2ϕ+ ρ‖sin2ϕ −ρHcosϕ −ρ⊥sinϕcosϕ + ρ‖cosϕsinϕ

ρHcosϕ ρ⊥ −ρHsinϕ
−ρ⊥sinϕcosϕ+ ρ‖cosϕsinϕ ρHsinϕ ρ⊥sin2ϕ+ ρ‖cos2ϕ

⎞
⎠ (70)

Thus for the electric field applied in the z-direction we have

Ez = ρzz(ϕ)jz (71)

where
ρzz(ϕ) = ρ⊥sin2ϕ+ ρ‖cos2ϕ = ρ⊥ + (ρ‖ − ρ⊥)cos2ϕ. (72)

This is often rewritten as

ρzz(ϕ) = (
1

3
ρ‖ +

2

3
ρ⊥) + (ρ‖ − ρ⊥)(cos2ϕ− 1

3
) (73)

where ρ0 = (1
3
ρ‖ + 2

3
ρ⊥) is the average resistivity defined above. The resistivity coefficient is

then defined as
ρzz(ϕ)− ρ0

ρ0
=

Δρ

ρ0
=

(ρ‖ − ρ⊥)

(1
3
ρ‖ + 2

3
ρ⊥)

(cos2ϕ− 1

3
). (74)

By applying an electric field in the z direction we not only create a current jz in the direction of
the applied field but also generate an electric field perpendicular to this current.

Ex = ρxz(ϕ)jz (75)

where

ρxz(ϕ) = (ρ‖ − ρ⊥)cosϕsinϕ = (ρ‖ − ρ⊥)
1

2
sin2ϕ (76)

This effect is called the ”planar Hall effect” or ”pseudo Hall effect” and is believed to have
some potential for applications with micro- or nanostructured spintronic devices [50, 51]. It is
zero when the magnetization is parallel or perpendicular to the easy axis.
In the following we will calculate the AMR response of a sample under somewhat idealized
conditions. For instance we will ignore any demagnetizing effects and assume idealized hys-
teresis conditions. In accordance with our above premisis we consider a ferromagnetic thin film
(e.g. permalloy) with a large aspect ratio. We also assume that the magnetization is in the film
plane. Without a magnetic field applied the magnetization direction is parallel to the easy axis
of the film which again we identify with the long z-axis of our specimen. If a magnetic field
is varied parallel to this easy axis one observes a rectangular hysteresis (Fig. 17) [49]. On the
contrary, if the external magnetic field is varied along the coplanar hard axis the magnetiza-
tion in this direction will show a linear slope and finally saturate. The Magnetic moment of
the film rotates towards the hard axis. During this procedure the film is divided into elongated
antiparallel domains, whose magnetizations rotate at an angle ϕ for the parallel ones and π− ϕ
for the antiparallel ones when the vertical field Hx is applied in the film plane [49] (Fig. 17).
Neglecting demagnetization effects we have the relation:

Mx

Ms
= sinϕ =

Hx

HK
for −HK ≤ Hx ≤ HK . (77)

Here Mx is the x-component of the magnetization,Ms is the saturation magnetizationHx is the
applied magnetic field and Hk is the magnetization where saturation sets in. Introducing this
result into equation (72) gives:

ρzz(ϕ) = ρ⊥ + (ρ‖ − ρ⊥)(1− (
Hx

HK
)2). (78)
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The graph of this equation is an upside down parabola with the maximum at Hx = 0 and it
ends on the abscissa where the Hx value reaches the saturation point HK . This graph is plotted
in Fig. 18. Experimentally it is found that the function more smoothly approaches the abscissa
(solid line in the figure). This discrepancy is attributed to the demagnetizing fields that we have
ignored so far. As a consequence saturation is not reached at HK but at Hs = HK +Hd where
Hd is the demagnetizing field. It is clear from the curve that in the vicinity of zero field (Hx = 0)
the magnetoresistor is of low sensitivity and due to its quadratic response also highly nonlinear.
Moreover it cannot detect the polarity of the applied external field. For sensor applications it
is therefore desirable to shift the operating point to the inflection point of the curve (Fig. 18)
where the highest sensitivity can be achieved and the response is approximately linearized. At
this point the orientation of the field can also be detected. The shift of the operation point can
either be achieved by a biasing field of a nearby permanent magnet (just as in the case of the
Lorentz magnetoresistance described above) or by use of a so called barber-pole structure to be
discussed below. The sensitivity is optimal when the angle between the magnetization and the
current direction is kept at about 45o. This principle has been used in AMR-read heads which
have been used for a few years in hard disk technology before they were replaced by the GMR
based spin-valve read heads. Details on AMR-read head technology are found in the literature
[52, 53, 54, 55]. Fig. 19 shows magnetoresistance runs for thin films of Fe, Co,Ni, permalloy
Ni81Fe19, and two nickel-cobalt alloys [40]. Except for Fe and Ni the sensitivity is larger
when the magnetization is perpendicular to the current (solid lines) rather than parallel (dotted
lines). The effect is in the range of a few percent. The curves show a clear hysteresis. Obviously
the samples do not follow our idealized magnetization curve and show a little coercivity which
corresponds to the position of the two maxima. The magnetization cannot follow the external
field immediately. The occurance of the hysteresis is attributed to an easy axis dispersion in
the literature [49]. This means that the sample easy axis is a macroscopic average, but locally
inside the sample the easy axes might show in slightly different directions in different domains.
During the magnetization procedure the sample splits up into a multidomain structure with
longitudinal domains parallel to the average easy axis. The switching behavior of these domains
is responsible for the hysteresis. It was also reported that a slight vertical remanence could be
observed when the vertical field was reduced to zero.

As pointed out above the optimum operating point of an AMR-sensor is obtained when the cur-
rent and the magnetization include an angle of about 45o. There exists an alternative technique
to applying a bias field, namely to force the current into an angle of 45o with respect to the
magnetic easy axis. This is done in a barber-pole structure (Fig. 20). The name stems from
the similarity of the structure with barber poles which since the middle ages have been used as
signatures of barber shops and are sometimes still used today. The barber pole sensor consists
of a permalloy magnetoresistive film with its easy axis parallel to its length. It is covered by
conductor strips which are canted at 45o. The strips are up to 50 times better conductors than
the magnetoresistive layer. This forces the equipotential lines inside the magnetoresistor par-
allel to the strips so that the current flow in the magnetoresistor is perpendicular to the strips,
i. e. at 45o with respect to the magnetization. Miniaturized commercial sensors combine four
such barberpoles in a Wheatstone bridge arrangement. A typical chip size is 1.6mm× 1.6mm
at resistance of 1.7KΩ. They are used in contactless angular or linear position measurements.
They are characterized by high sensitivity and stability and high reliability. AMR-sensors are
very sensitiv and operate in the ≈ 1nT to 1mT range in contrast to Hall sensors which operate
in the ≈ 0.1mT to 100T range [56, 57].
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8 Conclusion

In this contribution we have discussed galvanomagnetic transport in nonmagnetic and ferromag-
netic materials. All the effects are bulk effects and since they are at the very basis of spintronics,
it is necessary to consider them in many spintronic measurements and devices. Due to their high
reliability the effects have been and are still partially used in technology, but are also slowly re-
placed by other spintransport effects, such as giant or tunneling magnetoresistance. We have
also shown that quantum mechanical techniques are necessary to properly interpret the eletrical
transport phenomena. From the theoretical point of view particularly the influence of spin-orbit
coupling needs further detailed analysis. For reasons of clarity, we have taken a somewhat sim-
plified point of view in our discussion of the effects, e.g. considering only the influence of a
single or at most two bands. In reality even more bands need to be taken into account. More-
over, there are additional effects, which become important in confined geometries like domain
wall resistivity or domain wall pinning, which can superimpose the described behavior and are
dealt with in other contributions of this Spring School.

Appendix

A Derivation of Equation (32)

In the following calculation we neglect the fact that the conductivity and with it the currents and
velocities in the (x,y)-plane are reduced by factors 1/(1 + (μe,hBz)

2) = 1/(1 + (τe,hω
(e,h)
c )2),

respectively 9, because these factors approximately cancel during the calculation and for weak
magnetic fields are close to 1, anyway: (τωc � 1).
Then to calculate the Hall field EH we start with the Lorentz force:

FL = q(v ×B) = q

⎛
⎝ vyBz − vzBy

vzBx − vxBz

vxBy − vyBx

⎞
⎠ . (79)

Since at stationary conditions we will have current flowing only in the x direction, i.e.
v = (vx, 0, 0) , and as B = (0, 0, Bz) the active component of the Lorentz force is

FL,y = −qvxBz, (80)

where for electrons q = −e and vx = −|vx| = v
(e)
x < 0 and for holes q = +e and vx = v

(h)
x > 0.

Thus, the resulting Lorentz force is

F
(e)
L,y = −(−e)(v(e)

x Bz) = ev(e)
x Bz for electrons (81)

and
F

(h)
L,y = −(e)(v(h)

x Bz) = −ev(h)
x Bz for holes. (82)

Neglecting the quadratic terms in equations (25) and (26) and by comparison with equation (13)
we write v(e)

x = −μeEx and v(h)
x = μhEx. Including the action of the Hall field EH we get:

F (e)
y = −e(EH − v(e)

x Bz) = −e(EH + μeExBz) for the electrons (83)

9compare with equations (25) and (26)
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and
F (h)
y = e(EH − v(h)

x Bz) = e(EH − μhExBz) for the holes. (84)

Putting these forces into the respective equations of motion gives

me
dv

(e)
y

dt
+
me

τe
v(e)
y = −e(EH + μeExBz) for the electrons (85)

and

mh
dv

(h)
y

dt
+
mh

τh
v(h)
y = e(EH − μhExBz) for the holes. (86)

At steady state the time derivatives are zero and therefore the currents in the y-direction for the
electrons and for the holes are given by

j(e)
y = −enev(e)

y = eneμe(EH + μeExBz) (87)

and
j(h)
y = enhv

(h)
y = enhμh(EH − μhExBz). (88)

Once equilibrium is reached, there will be no net current in the y-direction:

j(e)
y + j(h)

y = 0. (89)

Here it is not required that the force generated by the Hall field EH cancels the Lorentz forces
for the electrons and holes separately. However the currents in the y-direction cancel each other.
The total current in the y-direction then gets

j(e)
y + j(h)

y = 0 = eneμe(EH + μeExBz) + enhμh(EH − μhExBz) (90)

and thus
(neμe + nhμh)EH = (nhμ

2
h − neμ2

e)ExBz. (91)

Finally, replacing Ex = jx/σambipolar = jx/[e(neμe + nhμh)] we derive the Hall voltage:

UH = EH · b =
nhμ

2
h − neμ2

e

e(nhμh + neμe)2
jxBz · b =

nh − ne(μe/μh)2

e(nh + neμe/μh)2
iB/d (92)

where the ratio of the mobilities has been introduced.
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1 Introduction

The generation of nonequilibrium electron spin, as well as the nonequilibrium spin itself, in
electronic materials (metals and semiconductors), is called spin accumulation.1 The most im-
portant techniques for spin accumulation are electrical spin injection, optical spin orientation,
and spin resonance. By electrical spin injection, or simply spin injection, we mean spin accu-
mulation by injecting spin-polarized electrons from one material to another, by electric current.
The source material could be a ferromagnetic metal, for example Fe, in which there is a differ-
ence in the densities of spin up and spin down electrons. Such a difference is characterized by
a spin polarization. In the ferromagnet the spin polarization exists in equilibrium. In contrast,
if electrons from the ferromagnet are injected into a nominally nonmagnetic metal, say, Al, the
resulting spin polarization in Al is a nonequilibrium one: spin accumulates in Al. Another pos-
sibility is an electrical spin injection between two nonmagnetic materials, say Al and Cu. If one
of the materials has a nonequilibrium spin, electric current can lead to spin accumulation in the
other material. Electrical spin injection is the main topic of these lecture notes.

The two other techniques for spin accumulation historically preceded spin injection. Optical
orientation is a process of generating nonequilibrium spin optically, by exposing the material
to a circularly polarized light. The angular momentum of the photons is transferred to the
electron spin. Optical orientation is most effective in direct band semiconductors such as GaAs.
The historically first technique for investigation nonequilibrium spin has been electron spin
resonance. Application of a magnetic field splits the spin up and spin down electron states
(Zeeman splitting) with a corresponding equilibrium spin polarization. A microwave radiation2

can induce transitions between the spin-split states, generating nonequilibrium spin. The spin
resonance technique has been used in metals and semiconductors. There are other ways to
generate spin accumulation, typically much less efficient as with the three ways mentioned
above. One example is the spin Hall effect, in which electric current leads to a separation of
spin up and spin down electrons at the edges parallel to the current flow. Another possibility is
to first accumulate nuclear spin in the lattice ions; electron spins can be then polarized via the
hyperfine interaction.

The standard model of spin injection originates from the proposal of Aronov [1] who suggested
the possibility of electrical spin injection from a ferromagnetic to a nonmagnetic conductor.
The thermodynamics of spin injection has been developed by Johnson and Silsbee, who also
formulated a drift-diffusion transport model for spin transport across ferromagnet/nonmagnet
(F/N) interfaces [2, 3]. This model has been shown to be essentially equivalent to the standard
model as presented here [4, 5]. The theory of spin injection was further developed in [6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. In particular the presentation of Rashba [14, 15]
has inspired the formulation of the standard model of spin injection in the reviews [4, 5] which
these lecture notes follow and extend. These reviews should be consulted for original references
and examples of experimental results.

1By spin in spin injection is meant a spin ensemble, rather than an individual electron spin.
2Microwave photons have energies matching the electron Zeeman splitting which is typically 0.01− 1 meV’s,

in fields of order tesla. Radio waves are typically used for nuclear spin resonance.
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2 Simple model of spin injection
Perhaps the simplest model of spin injection considers a steady flow of a spin-polarized elec-
tric current from a ferromagnet to a nonmagnetic conductor. The ferromagnet has an electron
spin polarization P0; for the present purposes P0 is the relative difference between the “rele-
vant” densities of spin up and spin down electrons. More specific definitions of the term are
given later. In a typical ferromagnetic metal P0 is 10–50%. In nonmagnetic metals the spin
polarization at equilibrium vanishes.
Calling the ferromagnetic conductor F and the nonmagnetic conductor N , we have a simple
F/N junction. We wish to answer the following question:

Given the equilibrium spin polarization P0 in the ferromagnet, what is the spin accumulation in
the nonmagnetic conductor if electric current j flows through the junction?

In order to answer this question, we need to know how much spin per unit time arrives from F
to N . The simplest answer would be js0/(−e), where the spin current

js0 = P0j, (1)

as the spins are attached to the electrons flowing through the interface. We can take this value
as a very rough estimate of what to expect. What Eq. 1 neglects is the possibility of spin accu-
mulation in the ferromagnet. As we will see later, spin indeed accumulates in the ferromagnet,
strongly modifying the above estimate for js0. Another simplification we made is to suppose
that the spin is preserved during crossing the interface. This approximation is actually quite
good and will be used in the standard model as well.
Knowing the spin current at the interface, we can focus on the N region. What happens to
the spin which crosses the interface? Unlike charge, spin is not conserved. Spin relaxes to the
equilibrium value (which is zero in N ) due to spin-flip scattering and other spin-randomizing
processes. As a result, the motion of the spin in the presence of spin current will be diffusive.3

For the spin density s(x) in the N region we can then write a diffusion equation

d2s

dx2
=

s

L2
s

, (2)

where Ls is the spin diffusion length in the nonmagnetic conductor. In terms of diffusivity D
and the spin relaxation time τs the spin diffusion length is given as

Ls =
√
Dτs. (3)

The diffusion equation has a general solution,

s(x) = s0e
−x/Ls , (4)

where s0 = s(0) is the spin density at the interface, x = 0. Above we applied the physical
condition that s(∞) = 0.
What remains is to connect the spin density s0 with the spin current js0. Since the transport of
spin is diffusive, the spin current is

js = (−e)×−Dds

dx
. (5)

3In general, the motion will be a combination of drift and diffusion. At reasonable electric fields driving the
electric current the drift is much smaller than diffusion and can be neglected.
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Note that we define the spin current as the electric current corresponding to the spin flow—that
is why the multiplication by −e above. At x = 0, using Eq. 4, we obtain

js =
−eD
Ls

s0e
−x/Ls . (6)

Assuming that the spin current is continuous across the interface (spin relaxation is absent
there), js(0) = js0, we find

s0 = js0
Ls
−eD

. (7)

The full spin density profile in N is given by

s(x) = js0
Ls
−eD

e−x/Ls . (8)

The total amount of accumulated spin is

sacc =

∫ ∞
0

s(x)dx =
js0L

2
s

−eD
=
js0
−e

τs. (9)

In effect, the spin is pumped into the N region. The steady state is achieved by spin relaxation:
The more pumping and the less spin relaxation, the higher is the spin accumulation.4

3 Spin-polarized transport: concepts and definitions
Quasichemical potentials. In thermodynamic equilibrium the chemical potential η through-
out the electronic system is uniform, determining the electron density

n0(η) =

∫
dεg(ε)f0(ε), (10)

where g(ε) is the electronic density of states at the energy ε and f0 is the equilibrium Fermi-
Dirac distribution function at a given temperature T ,

f0(ε) =
1

exp(ε− η)/kBT + 1
. (11)

In the presence of an electrostatic potential φ(x) giving rise to electric current due to the electric
field E = −∇φ inside the conductor, the chemical potential is no longer uniform (the system is
no longer an equilibrium one):

η → η + eµ(x), (12)

where the space dependent addition µ(x) is the quasichemical potential. Since typically the
momentum relaxes on length scales smaller than the variation of φ, we can assume the local
nonequilibrium electron distribution function to be only energy dependent,

f(ε, x) = f0[ε− eφ(x)− η − eµ(x)]. (13)

Then the nonequilibrium electron density is

n(x) =

∫
dεg(ε)f(ε, x) = n0(η + eµ+ eφ). (14)

4Think of inflating a raptured balloon: the more you blow and the tinier is the hole the bigger the balloon gets.
The rapture symbolizes spin relaxation.
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Local charge neutrality. We make the assumption that charge does not accumulate inside
the conductor under bias φ. This is an excellent approximation for metals and highly doped
(degenerate) semiconductors. On the other hand, charge can be injected and accumulated in
nondegenerate semiconductors due to the large screening length. For such cases the standard
spin injection model does not apply. The local charge neutrality means that

n(x) = n0. (15)

This gives the general condition,
µ(x) = −φ(x). (16)

The quasichemical potential fully balances the electrostatic potential.

Electric current. The electric current comprises the drift current, proportional to the electric
field E = −∇φ, and the diffusion current, proportional to the gradient of the electron density
∇n:

j = σE + eD∇n. (17)

The two proportionality parameters are conductivity σ and diffusivity, D. Due to charge neu-
trality the diffusion current is absent. We will keep it in the discussion as diffusion will be
present in the spin flow. Using Eq. 14, we write

∇n =
∂n0

∂η
e∇φ+

∂n0

∂η
e∇µ. (18)

Substituting to Eq. 17 gives

j =

(
−σ + e2D

∂n0

∂η

)
∇φ+ e2D

∂n0

∂η
∇µ. (19)

There are two important consequences of this equation. First, if the chemical potential is uni-
form, ∇µ = 0, the current has to vanish. This gives the condition on the conductivity,

σ = e2D
∂n0

∂η
, (20)

known as the Einstein relation. To a good approximation ∂n0/∂η = g(η), where g(η) is the
electron density of states at the Fermi level. Second, using the Einstein relation, the electric
current is expressed through the quasichemical potential only,

j = σ∇µ. (21)

This equation generalizes the familiar j = σE to situations with diffusive currents. The gradient
of µ carries information on both drift and diffusion.
In a steady state, the continuity of the electric current requires that

∇j = 0, (22)

that is, the current is uniform. We can also identify the total increase of the quasichemical
potential across the system with applied voltage. Indeed, for a uniform system of length L
integration of Eq. 21 gives

∆µ =
L

σ
j = Rj, (23)

whereR is the electric resistance of the system.5

5We consider conductors of a unit area cross section. For rectangular conductors of cross-sectional area S all
the resistances that appear in this article should be divided by S.
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Contact resistance. At sharp contacts the chemical potential need not be continuous. Instead
of Eq. 21 we write

j = Σ∆µ, (24)

in which Σ is the contact conductance and ∆µ is the increase of the chemical potential across
the interface. The contact electrical resistance is

Rc =
1

Σc

. (25)

Problem. Consider two conductors, A and B, forming a junction with contact resistance Rc. The
conductivities of A and B are σA and σB . Integrate Eq. 21 for each conductor, and apply the
condition of the electric current continuity together with Eq. 24 to obtain j as a function of the
applied voltage. What is the total junction resistance? The standard model of spin injection goes in
the same spirit as this exercise.

Spin density and spin polarization. Consider a conductor with the electron density n. This
density comprises the densities of spin up and spin down electrons:

n = n↑ + n↓. (26)

We define the spin density as
s = s↑ − s↓. (27)

A relative difference between the spin up and spin down densities is the spin polarization of the
density,

Pn =
s

n
. (28)

We add the label n to stress that we speak about the density spin polarization. For a general
spin-resolved quantity X , we will have

PX =
X↑ −X↓
X↑ +X↓

, (29)

and call it the “spin polarization of X.”

Spin accumulation. Let us allow for different densities of states g↑ and g↓ at the Fermi level,
as well as different quasichemical potentials µ↑ and µ↓ for spin up and spin down electrons. The
equilibrium chemical potential η is the same for both spin species.6 Then

n↑(x) = n↑0 (η + eµ↑ + eφ) ≈ n↑0 +
∂n↑0
∂η

(eµ↑ + eφ) , (30)

n↓(x) = n↓0 (η + eµ↓ + eφ) ≈ n↓0 +
∂n↓0
∂η

(eµ↓ + eφ) , (31)

6The energy can flow between spin up and down electrons leading to a common temperature. Similarly, spin-
flip processes lead to exchange of particles among the two spin pools, giving a unique equilibrium chemical
potential.
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where we have expanded the nonequilibrium densities assuming that µ + φ is much smaller
than the equilibrium chemical potential η; this is a good approximation as it is the electrons
close to the Fermi level that contribute to spin accumulation in degenerate conductors. Since
∂n0/∂η = g, we find

n↑(x) = n↑0 + g↑eµ↑ + g↑eφ, (32)
n↓(x) = n↓0 + g↓eµ↓ + g↓eφ. (33)

The local charge neutrality, n↑ + n↓ = n0, then leads to the condition,

g(µ+ φ) + gsµs = 0, (34)

where

g = g↑ + g↓ (35)
gs = g↑ − g↓. (36)

For nonmagnetic conductors gs = 0, recovering Eq. 16. From Eqs. 32 and 33, using the charge
neutrality Eq. 34, we obtain for the spin density

s = s0 + egs(µ+ φ) + egµs = s0 + 4eµs
g↑g↓
g
. (37)

Here we denoted the quasichemical and spin quasichemical7 potentials

µ = (µ↑ + µ↓)/2, (38)
µs = (µ↑ − µ↓)/2. (39)

The accumulated nonequilibrium spin δs defined by

s = s0 + δs, (40)

is then
δs = 4e

g↑g↓
g
µs. (41)

Both the nonequilibrium spin density δs and the spin quasichemical potential µs are often
termed spin accumulation.

Charge and spin currents. Charge current is the total electric current carried by spin up and
spin down electrons,

j = j↑ + j↓. (42)

By contrast, spin current is the difference between the electric currents carried by spin up and
spin down electrons:

js = j↑ − j↓. (43)

The two spin components of the electric current are given by

j↑ = σ↑∇µ↑, (44)
j↓ = σ↓∇µ↓. (45)

7Beware of factors of “2”. In the literature µs is sometimes defined by the plain difference µ↑ − µ↓.
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We have labeled the conductivities and the quasichemical potentials with the corresponding spin
index. In nonmagnetic conductors σ↑ = σ↓. Let us introduce the charge and spin conductivities
as follow:

σ = σ↑ + σ↓, (46)
σs = σ↑ − σ↓. (47)

The electric charge and spin currents become

j = σ∇µ+ σs∇µs, (48)
js = σs∇µ+ σ∇µs. (49)

For a nonmagnetic conductor σs = 0 and the charge and spin currents decouple; the charge
current is driven by the gradient of the quasichemical potential while the spin current is driven
by the gradient of the spin accumulation. In a ferromagnetic conductor σs 6= 0 and a gradient
in spin accumulation can cause a charge current. Similarly, a gradient in the quasichemical
potential alone would cause a spin current.

Current spin polarization. The spin polarization of the electric current Pj is defined accord-
ing to Eq. 29,

Pj =
j↑ − j↓
j↑ + j↓

=
js
j
. (50)

Extract ∇µ from Eq. 48,

∇µ =
1

σ
(j − σs∇µs) , (51)

and substitute into Eq. 49:

js = σs∇µ+ σ∇µs = Pσj + 4
σ↑σ↓
σ
∇µs. (52)

Here Pσ is the conductivity spin polarization,

Pσ =
σ↑ − σ↓
σ↑ + σ↓

=
σs
σ
. (53)

The spin and charge currents are coupled through Pσ. Finally, the current spin polarization is

Pj =
js
j

= Pσ +
1

j
4∇µs

σ↑σ↓
σ

. (54)

In nonmagnetic conductors Pσ = 0 and spin current is due to the gradient in spin accumulation
only.

Spin-polarized currents in contacts. The above formalism can be rewritten for contacts with
discrete jumps of the quasichemical potentials. Following Eq. 24, the spin-resolved currents
are

j↑ = Σ↑∆µ↑, (55)
j↓ = Σ↓∆µ↓. (56)
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Defining the contact charge and spin conductances as

Σ = Σ↑ + Σ↓, (57)
Σs = Σ↑ − Σ↓, (58)

we can write

j = Σ∆µ+ Σs∆µs, (59)
js = Σs∆µ+ Σ∆µs. (60)

Going through similar steps as above of Eq. 54, we obtain for the spin current polarization in
the contact

Pjc = PΣ +
1

j

∆µs(0)

Rc

. (61)

Here
PΣ =

Σ↑ − Σ↓
Σ↑ + Σ↓

=
Σs

Σ
, (62)

is the contact spin conductance polarization and

Rc =
Σ

4Σ↑Σ↓
, (63)

is the effective contact resistance,8 determining the drop of the spin accumulation across the
contact; Rc is a quarter of the series resistance of the spin up and spin down contact resistances.
In a spin unpolarized contact Rc = Rc = 1/Σ.

Diffusion of spin accumulation. In nonmagnetic systems it is sufficient to use the continuity
of the charge current, Eq. 22, to find the profile of the quasichemical potential µ(x). In the
presence of spin polarization, we need a continuity condition for the spin current as well; the
continuity of the charge current remains unchanged: ∇j = 0. Since, unlike charge, spin is not
conserved, the continuity equation for the spin current is

∇js = e
δs

τs
, (64)

where δs is the deviation of the spin density from its equilibrium value: s = seq + δs. The
divergence of the spin current is proportional to the rate of spin relaxation 1/τs, with τs denoting
the spin relaxation time. On one hand,

∇js = e
δs

τs
= 4e2µs

g↑, g↓
g

1

τs
(65)

where we used Eq. 41 for δs. On the other hand, Eq. 52 gives

∇js = ∇
(
Pσj +∇µs

4σ↑σ↓
σ

)
= 4

σ↑σ↓
σ
∇2µs. (66)

8This is the first of a series of effective resistances which appear in the spin injection problem. To distinguish
them from the corresponding electrical resistances we use calligraphic symbols for the latter.
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Comparing the two we get the following diffusion equation for spin accumulation:

∇2µs =
µs
L2
s

, (67)

where the generalized spin diffusion length Ls is

Ls =

√
Dτs, (68)

and the generalized diffusivity
D =

g

g↑/D↓ + g↓/D↑
. (69)

In a nonmagnetic conductor D = D. Representative spin relaxation times τs in nonmagnetic
metals and semiconductors are nanoseconds, and spin diffusion lengths micrometers. In ferro-
magnetic conductors these quantities are smaller by several orders of magnitude.

Spin-charge coupling. Let us write Eq. 51 as

∇µ =
j

σ
− Pσ∇µs, (70)

and integrate it over a homogeneous region of a conductor:

∆µ = jR− Pσ∆µs, (71)

where R is the electrical resistances of the region. Consider a homogeneous ferromagnetic
conductor of length L � Ls, stretching from x = −L to x = 0. Assume that at x = 0 there is
a spin accumulation µs(0). Applying the above equation gives

µ(0)− µ(−L) = jR− Pσµs(0), (72)

where the conductor’s electric resistance isR = L/σ and we assumed absence of spin accumu-
lation at x = −L. In a nonmagnetic conductor Pσ = 0 and the increase of the quasichemical
potential is due to the charge current flow only. In a ferromagnetic conductor the increase is
also due to the spin accumulation. In an open circuit (j = 0) the increase in the quasichemical
potential is

µ(0)− µ(−L) = −Pσµs(0), (73)

This increase defines the electromotive force (emf) per unit charge9 generated by the spin accu-
mulation in the ferromagnetic conductor. Similarly, we can calculate the corresponding drop in
the electric potential,

φ(−L)− φ(0) = (Pg − Pσ)µs(0), (74)

where we used the local neutrality condition, Eq. 34. The density of states spin polarization is

Pg =
g↑ − g↓
g↑ + g↓

=
gs
g
. (75)

Equation 74 is an example of spin-charge coupling: The presence of a spin accumulation in a
conductor with an equilibrium spin polarization, a nonequilibrium voltage drop (electromotive
force) develops. Electrostatic detection of the voltage drop then allows to extract the magnitude
of the spin accumulation.

9The spin accumulation at first generates spin diffusion and the connected electron flow—since we are dealing
with a ferromagnet. In the open circuit a balancing electric field develops preventing unlimited buildup of charges
at the two ends of the conductor. The resulting emf is the work done by the source of the spin accumulation in
bringing the electrons through the conductor against the built-up electric field.
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Fig. 1: The F /N junction above comprises a ferromagnetic conductor F , a nonmagnetic con-
ductorN , as well as the contact C between them at x = 0. It is assumed that the widths of the F
and N regions are much larger (we call their size “∞”) than the corresponding spin diffusion
length.

4 The standard model of spin injection: F /N junction
We pose the following question:

Knowing the equilibrium materials parameters of a ferromagnet (F ), a nonmagnetic conduc-
tor (N ), as well as the properties of the contact (C) between them, what is the spin current
polarization and spin accumulation in N , in the presence of electric current j?

The scheme of the F /N junction we consider is in Fig. 1. The spin current polarization at the
contact is termed spin injection efficiency. We denote it as Pj . To obtain Pj we need to consider
spin-polarized transport separately in the three regions: F , C, and N . The solutions for the
transport equations will then be connected by suitable continuity conditions. We also add labels
F , C, and N to the quantities pertaining to the three regions.

Ferromagnetic conductor. The ferromagnetic conductor occupies the region (−∞, 0). The
spin accumulation profile is given by the solution of the diffusion equation, Eq. 67, as

µsF = µsF (0)ex/LsF . (76)

We have applied the condition that there is no spin accumulation at x = −∞: µsF (−∞) = 0.
This condition is well satisfied if the length of the ferromagnet, indicated by “∞”, is much
larger than the spin diffusion length LsF . From the above we have

∇µsF (0) =
µsF (0)

LsF
. (77)

Substituting to Eq. 54 we obtain the spin current polarization in the F region of the contact

PjF (0) = PσF +
1

j

µsF (0)

RF

, (78)

where we denote
RF =

σF
4σF↑σF↓

LsF , (79)
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the effective resistance of the ferromagnet; RF is a quarter of the serial resistance of the spin up
and spin down resistances of a piece of the ferromagnet of length LsF . We stress that RF is not
the actual resistance of the F regionRF , which is

RF =
“∞”

σ↑ + σ↓
, (80)

given as a parallel resistance of the two spin channels over the entire size “∞” of the ferromag-
net. The two resistances, RF andRF can be very different!

Nonmagnetic conductor. In a nonmagnetic conductor the transport and materials parameters
are spin independent and all the equilibrium polarizations, such as Pσ or Pg, vanish. The profile
of the spin accumulation is

µsN = µsN(0)e−x/LsF , (81)

satisfying the boundary condition µsN(∞) = 0. We then have

∇µsN(0) = −µsN(0)

LsN
, (82)

and the spin current polarization at the contact

PjN(0) = −1

j

µsN(0)

RN

, (83)

where
RN =

LsN
σN

, (84)

is the effective resistance of the N region; RN is the resistance of a piece of a conductor of size
LsN . Again, RN can be very different from the actual electric resistance of the N region,RN .

Contact region. The contact region is described by Eq. 61. For our F /N contact the spin
current polarization is

Pjc = PΣ +
1

j

µsN(0)− µsF (0)

Rc

. (85)

Spin injection efficiency. We have three equations for the spin current polarizations, Eqs. 78,
83, 85, in three different regions. We assume that spin is conserved across the contact. As a
consequence, the spin current (and thus spin current polarization) is continuous there:

Pj ≡ PjF (0) = PjN(0) = Pjc. (86)

Solving this straightforward algebraic problem leads to the important expression for the spin
injection efficiency:

Pj =
RFPσF +RcPΣ

RF +Rc +RN

= 〈Pσ〉R. (87)

This equation is one of the main results of the standard model of spin injection. The spin
injection efficiency is the weighted average of the equilibrium spin conductance polarizations
of the system; the weight is the relative effective resistance.

Problem. F /F junction. Calculate the spin injection efficiency for a F /F junction of two different
ferromagnets. Show that Pj = 〈Pσ〉R still holds.
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Fig. 2: Sketch of the spatial profile of the spin current js and the spin quasichemical potential µs
in an F /N junction in the spin injection regime. While the spin current is continuous throughout
the junction, the spin quasichemical potential experiences a jump at the contact.

Fig. 3: Equivalent circuit of a F /N junction in the spin injection regime. The electric current
splits into spin up and spin down channels, each with a series of three effective resistances as
indicated.

Spin injection and spin extraction. Knowing Pj we can calculate the spin accumulation in
the N region,

µsN(0) = −jPjRN , (88)

and the corresponding spin density polarization,

Pn(0) =
s(0)

n
= eµsN(0)

gN
n

= −jeRN
gN
n
Pj. (89)

Since the spin polarization is proportional to the electric current, the electric spin injection is a
realization of spin pumping. In a typical spin injection experiment electrons flow from F to N ,
so that j < 0. In this case Pn(0) has the same size as Pj and we speak of spin injection. If the
electric current is reversed, j < 0, electrons from N flow into F . Now Pn(0) has the opposite
sign to Pj and we speak of spin extraction. For a positive Pj , for example, more spin up than
spin down electrons are transported through the contact, leaving a negative spin density in the
N region. A sketch of the profile of the spin current and spin quasichemical potential across an
F /N junction is shown in Fig. 2.

Equivalent circuit. The standard model of spin injection can be formulated by a simple equiv-
alent circuit model, shown in Fig. 3. The model is a parallel circuit with spin up and spin down
channels. Each region is characterized by the corresponding effective resistance.

Problem. Calculate Is = I↑−I↓ from the equivalent circuit model and show that Pj = Is/I agrees
with Eq. 87.



C1.14 Jaroslav Fabian and Igor Žutić

Problem. Formulate the equivalent circuit model for a F/F junction.

Problem. F /N /N junction. Consider electrical spin injection in an F /N /N junction in which the
two N regions are different (say, GaAs and Si). Calculate the spin injection efficiency at the N /N
interface. What is the spin accumulation at both sides of this interface? Sketch the profile of the
spin accumulation across this junction.

5 Nonequilibrium resistance and spin bottleneck
In the absence of spin accumulation the resistance of the F/N junction isRF +RN +Rc. Spin
accumulation leads to an additional positive resistance δR so that the increase of the quasi-
chemical potential (which generates the emf) is

µN(∞)− µF (−∞) = (RF +RN +Rc + δR)j. (90)

Let us apply Eq. 71 to the three regions, F , C, and N , successively:

µF (0)− µF (−∞) = jRF − PσFµsF (0), (91)
µN(0)− µF (0) = jRc − PΣ [µsN(0)− µsF (0)] , (92)
µN(∞)− µN(0) = jRN . (93)

We have used that µsF (−∞) = 0. Summing up the above equations gives for the nonequilib-
rium resistance

δR = −(PσF − PΣ)µsF (0)− PΣµsN(0). (94)

Expressing the spin quasichemical potentials at x = 0 in terms of the spin injection efficiency,
see Eqs. 78 and 83,

µsF (0) = jRF (Pj − PσF ), (95)
µsN(0) = −jRNPj, (96)

we get
δR = −PΣ(Pj − PΣ)Rc − PσF (Pj − PσF )RF . (97)

Using the expression for Pj in Eq. 87, we obtain the final result

δR =
RN(P 2

ΣRc + P 2
σFRF ) +RFRc(PσF − PΣ)2

RF +Rc +RN

> 0. (98)

The nonequilibrium resistance is always positive!

Problem. Obtain the nonequilibrium resistance δR from the equivalent circuit model in Fig. 3, as
δR = R− LsF /σF − LsN/σN .

What is the reason behind the additional positive resistance due to spin accumulation? As the
nonequilibrium spin piles up in the ferromagnet and the spin-polarizing contact region, the spin
diffusion there pushes the electrons against the flow of the electric current. Indeed, the electric
current brings electrons from the spin-polarized region to the nonmagnetic conductor, while the
spin diffusion in the ferromagnet and the contact drives them back to the ferromagnet. This spin
bottleneck effect causes the additional electrical resistance of the junction.
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6 Transparent and tunnel contacts, conductivity mismatch
Two important cases are analyzed: transparent and tunnel contacts.

Transparent contacts. By transparent contacts we mean the condition

Rc � RN , RF . (99)

This is the case of usual ohmic contacts between two metals or degenerate semiconductors. Us-
ing our results for the F /N junction, a transparent contact is characterized by the spin efficiency

Pj =
RF

RF +RN

PσF . (100)

For metals σF is usually somewhat less than σN , as LsN � LsF . We then get

Pj ≈ (σN/σF )(LsF/LsN). (101)

If N is a semiconductor while F is a metal, so that σN � σF , the spin injection efficiency is
greatly reduced. This inefficiency of the spin injection from a ferromagnetic metal to a nonmag-
netic semiconductor via a transparent contact is known as the conductivity mismatch problem,
since it comes from the greatly different conductivities of the two regions of the junctions.
The nonequilibrium resistance of a transparent contact is

δR =
RNRF

RN +RF

P 2
σF . (102)

Again, since typically RN is greater than RF ,

δR ≈ RFP
2
σF =

LsF
σF

P 2
σF . (103)

In the extreme limit of the conductivity mismatch, the nonequilibrium resistance will be negli-
gible as compared to the usual electrical junction resistance which will be dominated byRN .

Tunnel contacts. By tunnel contacts we mean

Rc � RN , RF . (104)

The contact dominates the electric properties of the junction. The spin injection efficiency for a
tunnel contact is

Pj ≈ PΣ. (105)

The contact also dominates the spin injection efficiency. The conductance mismatch in tunnel
contacts plays no role and spin injection from a ferromagnetic metal to a nonmagnetic semicon-
ductor can be highly efficient.
The nonequilibrium resistance of a tunnel contact is

δR = RNP
2
Σ +RF (PσF − PΣ)2. (106)

This is in general much less than the electric resistance of the contact,Rc.
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Fig. 4: Scheme of the Silsbee-Johnson spin-charge coupling. A spin source at the far right of
the N region drives spin by diffusion towards the spin-polarizing contact and ferromagnet. The
proximity of the nonequilibrium spin and the equilibrium spin polarization gives rise to an emf
in the open circuit (or electric current when the circuit is closed).

Problem. Spin accumulation in transparent and tunnel junctions. Calculate the spin accumulation
µsN (0) and the spin density polarization PσN (0) in a transparent and a tunnel F /N junction. What
is the spin density polarization in the conductivity mismatch problem? Can it be significant?

Problem. Equivalent circuit of the conductivity mismatch problem. Draw the equivalent circuit for
the conductivity mismatch problem of a transparent F /N junction and use it to explain the spin
injection inefficiency.

7 Silsbee-Johnson spin-charge coupling
Driving electric current through a F /N interface generates spin accumulation by the process of
spin injection. The Silsbee-Johnson spin charge coupling is the inverse of spin injection: emf
develops by the presence of a spin accumulation in the proximity of a ferromagnetic conductor.
We will analyze the coupling in an open F /N junction, that is in the absence of electric current
(j = 0), under the condition of µsN(∞) 6= 0 which models a source of nonequilibrium spin far
in the nonmagnetic region. The scheme is shown in Fig. 4.
The induced emf is the increase of the quasichemical potential across the junction,

emf = µN(∞)− µF (−∞). (107)

The charge neutrality and the physical condition that µsF (−∞) = 0 guarantee that the emf can
be detected as a drop of the electric voltage:

emf = µN(∞)− µF (−∞) = φF (−∞)− φN(∞). (108)

Our strategy is to first express the quasichemical potential increase in terms of the spin accu-
mulations at the contact, and then use the spin current continuity at the contact as well as the
diffusion of the spin accumulation to find the spin accumulations.
In the absence of electric current we can apply Eq. 71 to F , C, and N regions sequentially:

µF (0)− µF (−∞) = −PσF
µsF (0), (109)

µN(0)− µF (0) = −PΣ [µsN(0)− µsF (0)] , (110)
µN(∞)− µN(0) = 0. (111)
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Fig. 5: Sketch of the spatial profile of the quasichemical potential µ (left) and the spin quasi-
chemical potential µs (right) in a F /N junction in the spin-charge coupling regime.

In the nonmagnetic conductor there is no voltage drop associated with the presence of spin
accumulation if j = 0. Summing up the above equations gives

emf = µN(∞)− µF (−∞) = µsF (0)(PΣ − PσF )− µsN(0)PΣ. (112)

In the N region, due to the presence of spin accumulation at the far right, the spin accumulation
diffusion profile is

µsN(x) = µsN(∞) + [µsN(0)− µsN(∞)] e−x/LsN , (113)

as can be verified by direct substitution to the diffusion equation, Eq. 67. To calculate the spin
current at x = 0 in the N region we need the gradient,

∇µsN(0) = − 1

LsN
[µsN(0)− µsN(∞)] . (114)

We are now ready to calculate the spin currents at the interface, for the three regions. Equation
52 gives

jsN(0) = − 1

RN

[µsN(0)− µsN(∞)] , (115)

jsF (0) =
1

RF

µsF (0), (116)

jsc =
1

Rc

[µsN(0)− µsF (0)] . (117)

Assuming that the three spin currents are equal,

js ≡ jsF (0) = jsc = jsN(0), (118)

we obtain

js =
µsN (∞)

RF +Rc +RN

. (119)

The emf is then found from
emf = (PσFRF + PΣRc)js, (120)

which gives the spin-charge coupling in the final form

emf = PjµsN(∞), (121)
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Fig. 6: Sketch of an F /N /F junction. The magnetization of the F2 conductor can be up or
down, giving parallel and antiparallel configurations.

where Pj is the spin injection efficiency of the junction, given in Eq. 87. The spin-charge
coupling allows electrical detection of spin accumulation. Placing a ferromagnetic electrode
over a conductor with nonequilibrium spin generates emf in the open circuit, or electric current
if the junction is part of a closed circuit. The spin accumulation can be generated electrically
(see the section on the nonlocal geometry) or by other means (optically or by spin resonance).
Figure 5 shows the profile of the quasichemical potentials across the junction.
The origin of the spin-charge coupling can be traced to the presence of the spin current in the
ferromagnet. If Pσ 6= 0 the spin current would also induce electric current. In an open circuit
there is instead a balancing emf induced.

Problem. Sketch the spatial profiles of µ, µs, and js in the F /N junction in the Silsbee-Johnson
spin-charge coupling regime.

8 Spin injection in F /N /F junctions

The same technique which we applied to study the spin injection in F /N junctions is applicable
to more general structures. We will use it to analyze the spin injection in F /N /F junctions.
By independent switching of the orientations of the magnetizations of the two F regions, the
junctions can be in the parallel (↑↑) or antiparallel (↑↓) configurations. We will in particular
be interested in the difference of the junction electrical resistance for antiparallel and parallel
configurations,

∆R = δR↑↓ − δR↑↑. (122)

This difference contains only contributions of the respective nonequilibrium resistances.

Spin injection efficiencies. The described geometry is shown in Fig. 6. The width of the
nonmagnetic conductor is d. The two ferromagnetic layers are labeled F1 and F2. We start with
a generic asymmetric configuration in which F1 and F2 are different. Going through similar
steps as in the F /N junction, we find that the spin current polarizations in the ferromagnets at
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x = 0 and x = d are

PjF1(0) = PσF1 +
1

j

µsF1(0)

RF1

, (123)

PjF2(d) = PσF2 −
1

j

µsF2(d)

RF2

. (124)

Similarly, at the two contacts we have

Pjc1 = PΣ1 +
1

j

∆µs(0)

Rc1

, (125)

Pjc2 = PΣ2 +
1

j

∆µs(d)

Rc2

. (126)

In contrast to the F /N junction, theN region is of finite width d. Considering the quasichemical
potentials µsN(0) and µsN(d) as yet unknown boundary conditions, the solution to the diffusion
equation 67 is

µsN(x) = µsN(d)
sinh(x/LsN)

sinh(d/LsN)
− µsN(0)

sinh [(x− d)/LsN ]

sinh(d/LsN)
. (127)

By evaluating ∇µsN(0) and ∇µsN(d) from the above equation, we obtain for the spin current
polarizations in the nonmagnetic region,

PjN(0) =
1

jRN

1

sinh(d/LsN)
[µsN(d)− µsN(0) cosh(d/LsN)] , (128)

PjN(d) =
1

jRN

1

sinh(d/LsN)
[µsN(d) cosh(d/LsN)− µsN(0)] . (129)

The above equations for the spin current polarizations need to be supplemented by the continuity
conditions for the spin currents at the two contacts:

Pj1 ≡ PjF1(0) = Pjc1 = PjN(0), (130)
Pj2 ≡ PjF2(d) = Pjc2 = PjN(d). (131)

The algebraic system is now complete and we can solve it to obtain the spin injection efficiencies
Pj1 and Pj2 at the two junctions F1/N and N /F2:

Pj1 = P 0
j1R1

RN coth(d/LsN) +Rc2 +RF2

D0

+ P 0
j2

R2RN

D0 sinh(d/LsN)
, (132)

Pj2 = P 0
j2R2

RN coth(d/LsN) +Rc1 +RF1

D0

+ P 0
j1

R1RN

D0 sinh(d/LsN)
. (133)

Here

D0 = R2
N + (Rc1 +RF1)(Rc2 +RF2) +RN(Rc1 +RF1 +Rc2 +RF2) coth(d/LsN), (134)

and P 0
j1 and P 0

j2 are the spin injection efficiencies of the individual junctions giving by Eq. 87;
similarly R1 and R2 are the two effective junction resistances:

R1 = RF1 +Rc1 +RN , R2 = RF2 +Rc2 +RN . (135)
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For a thick N region, if d � LsN , we recover the spin injection efficiencies of the individual
junctions: Pj1 ≈ P 0

j1 and Pj2 ≈ P 0
j2, as expected for spin uncoupled contacts. In the opposite

limit of a thin N , if d� LsN ,

Pj1 = Pj2 =
P 0
j1R1 + P 0

j2R2

Rc1 +RF1 +Rc2 +RF2

. (136)

The spin injection efficiencies are a weighted mixture of the efficiencies of the two individual
junctions. Finally, for tunnel contacts, such as Rc � RN , RF , and RN(Ls/a), we recover the
limit of independent junctions, Pj1 ≈ P 0

j1 and Pj2 ≈ P 0
j2.

Nonequilibrium resistance. In order to find the value of the nonequilibrium resistance due
to the spin bottleneck, we need to find the increase of the quasichemical potential ∆µ across the
junction:

emf = µF2(∞)− µF1(−∞) = jR+ jδR, (137)

where

R = RF1 +Rc1 +RN +Rc2 +RF2, (138)

is the electrical resistance of the junction in the absence of spin accumulation.
Let us apply Eq. 71 to the five regions of the F /N /F junction: F1, C1, N , C2, and F2. In this
sequence, the regional increases of the quasichemical potential are

µF1(0)− µF1(−∞) = jRF1 − PσF1µsF1(0), (139)
µN(0)− µF1(0) = jRc1 − PΣ1∆µs(0), (140)
µN(d)− µN(0) = jRN , (141)
µF2(d)− µN(d) = jRc2 − PΣ2∆µs(d), (142)

µF2(∞)− µF2(d) = jRF2 + PσF2µsF2(d). (143)

We have used that µsF1(−∞) = µsF2(∞) = 0. Summing these equations up we extract

jδR = −PσF1µsF1(0)− PΣ1∆µs(0)− PΣ2∆µs(d) + PσF2µsF2(d). (144)

Expressing the spin chemical potentials in terms of the spin injection efficiencies Pj1 and Pj2,

µsF1(0) = (Pj1 − PσF1)jRF1, (145)
∆µs(0) = (Pj1 − PΣ1)jRc1, (146)
∆µs(d) = (Pj2 − PΣ2)jRc2, (147)
µsF2(d) = (PσF2 − Pj2)jRF2, (148)

we find for the nonequilibrium resistance

δR = −PσF1(Pj1−PσF1)RF1−PΣ1(Pj1−PΣ1)Rc1−PΣ2(Pj2−PΣ2)Rc2−PσF2(Pj2−PσF2)RF2.
(149)
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Resistance difference ∆R. Denoting as

∆Pj ≡ P ↑↓j − P
↑↑
j , (150)

∆+Pj ≡ P ↑↓j + P ↑↑j , (151)

the difference and the sum of the spin injection efficiencies for antiparallel and parallel magne-
tizations of the two ferromagnets, we find (assuming that the spin efficiencies are positive, for
example)

∆R = −(RF1PσF1 +Rc1PΣ1)∆Pj1 − (RF2PσF2 +Rc1PΣ2)∆+Pj2. (152)

From Eqs. 132 and 133 we find

∆Pj1 = −2
R2RN

D0 sinh(d/LsN)
P 0
j2, (153)

∆+Pj2 = −2
R1RN

D0 sinh(d/LsN)
P 0
j1. (154)

With that we finally get our desired result,

∆R =
4R1R2

D0 sinh(d/LsN)
RN |P 0

j1P
0
j2|. (155)

As expected, ∆R vanishes exponentially if d � LsN , as the differences between parallel and
antiparallel cases diminish. On the other hand, for d� LsN ,

∆R ≈ 4R1R2

RF1 +Rc1 +Rc2 +RF2

P 0
j1P

0
j2. (156)

Transparent contacts. PutRc1 = Rc2 = 0 and consider the interesting case of a thinN layer,
d� LsN . For simplicity assume the same ferromagnets, RF1 = RF2. Then

δR ≈ 2RFP
2
σF . (157)

Problem. Analyze ∆R in Eq. 156 in the conductivity mismatch regime, RN � Rc, RF .

Tunnel contacts. Suppose now that the most resistive regions are the contacts and the N
region is thin, d� LsN . Assuming a symmetric junction, the nonequilibrium resistance differ-
ence is

∆R ≈ 2RcP
2
σ

1 + (Rc/RN)(d/2LsN)
. (158)

The spin accumulation detection by ∆R will be most sensitive if

dRc � LsNRN , (159)

as then ∆R ≈ Rc and the resistance change is maximized. Let us find the physical meaning of
the above inequality by invoking the definition ofRN , the diffusion length LsN , and the Einstein
relation:

1� drc
rNLsN

=
d

L2
sN

rcσN =
d

DNτsN
rce

2gNDN ≈ e2(dgN)
1

Σc

1

τs
. (160)
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Expressing the tunnel conductance Σc through an effective tunneling probability per unit time,
Ptunnel,

Σc = e(dgN)Ptunnel, (161)

and introducing the dwell time
τdwell = 1/Ptunnel, (162)

we come to the conclusion that the spin accumulation detection in F /N /F tunnel junctions is
most efficient if

τdwell � τsN . (163)

In words, the dwell time of the electrons in between the two tunnel barriers (the average time
the electron spends in the N region) must be much smaller than the spin relaxation time.

Problem. N /F /N junction. Calculate the spin efficiency Pj and the nonequilibrium resistance δR
for a symmetric N /F /N junction.
a) Show that in the limit of a thin F layer (d� LsF )

Pj =
RcPΣ

Rc +RN
, (164)

δR =
2RcRNP 2

Σ

Rc +RN
. (165)

b) Verify that in the limit of a thick F layer (d � LsF ) the spin injection efficiency Pj reduces to
its value for a single F /N junction, and that δR of an N /F /N junction is twice the nonequilibrium
resistance of the individual F /N junctions.

9 Nonlocal spin-injection geometry: Johnson-Silsbee spin in-
jection experiment.

In the F /N /F junction studied in the previous section the electric current flows through both
contacts. As the current often brings spurious effects from the point of view of spin detection,
especially in the presence of an external magnetic field (the Hall effect or anisotropic magne-
toresistance), it is important to consider spin injection geometries in which the spin detection
circuit is open. We have already met one example of an open circuit spin detection: the Silsbee-
Johnson spin-charge coupling. This scheme can be naturally extended to include a spin injection
contact, giving what is called a nonlocal spin-injection geometry (as the injection and detection
circuits are independent) or the Johnson-Silsbee spin injection experiment, after the original
spin injection scheme.
Our goal is to answer the following question:

Suppose electric current drives spin injection in the spin injection circuit F1/N as indicated in
Fig. 7. What is the emf in the open F2/N junction?

The two ferromagnetic electrodes are on the top of a nonmagnetic conductor, separated by spin-
polarizing contacts. Spin is injected into N from F1. While the electric current flows in the
closed circuit formed by F1/N , the spin current flows also towards the spin detection circuit
N /F2. The charge and spin flows are indicated in Fig. 8. For spin the contact F1/N acts as a



The standard model of spin injection C1.23

Fig. 7: Nonlocal geometry for spin injection and detection. The F1/N circuit is closed, the
F2/N is open; the electrode F1 acts as a spin source, F2 as a spin drain. The axes labels are
indicated. The directions of the z axis are opposite for the two junctions.

spin source, while N /F2 as a spin sink. The source and sink will appear as special boundary
conditions for the spin transport in N . The axes labels are defined in Fig. 7.
We need to be a little careful with this geometry since in principle we are now dealing with
a two (if not three) dimensional problem. Nevertheless, the problem can be decoupled to one-
dimensional ones if we assume, realistically, that the dimensions of the ferromagnetic electrodes
are much greater than the spin diffusion length in the ferromagnets. Indeed, a representative LsF
would be on the order of 10 nm or so. In that case we can consider the spin current in F1 and F2
one-dimensional, along z. On the other hand, we assume that the contact dimensions between
F and N , as well as the thickness of N , are much smaller than the spin diffusion length in the
non-magnetic conductor, so that the spin current in N can be considered one-dimensional as
well. Typically LsN would be more than 1 µm. In most other cases one would need to set up a
two-dimensional drift-diffusion problem.10

With the above physical restrictions, the quantities labeled N vary along x, while those of F1

and F2 along z, as indicated in Figs. 7 and 8. For example, if we write µsF2(0) we mean
µsF2(z = 0), the value of the spin quasichemical potential in F2 at the place of contact with N .
Any variation of µsF2 along y or x is insignificant, occurring at the contact edges only.
We now apply the boundary conditions for the spin quasichemical potentials µs at infinities:

µsN(±∞) = µsF1(−∞) = µsF2(∞) = 0. (166)

Let us consider each junction separately.

Spin injector: F1/N junction. The distribution of the spin currents is shown in Fig. 8. In
F1 the spin accumulation has the profile

µsF1(z) = µsF1(0)ez/LsF2 , (167)

giving for the spin current at the contact, using Eq. 52

jsF1(0) = jPσF1 +
1

RF1

µsF1(0). (168)

10Suppose, for example, that the thickness of N would be much greater than LsN . Then the spin injected from
F1 would diffuse not only left and right, along x, but also down, along z, forming a complicated diffusion profile.
If the contact would be point-like, the surface of an equal spin density would be a semisphere.
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Fig. 8: Cross view of the nonlocal geometry. The upper graph indicates the flow of electrons,
the lower graphs shows the flow of spins. From the point of view of the spin flow in N , the
injector plays a role of a spin source, while the detector acts as a spin sink, taking away some
of the spin current.

The spin current through the spin-polarizing contact C1 is

jsc1 = jPΣ1 +
1

Rc1

[µsN(0)− µsF1(0)] . (169)

To obtain the spin current in N , we need to know the profile of the spin quasichemical potential
µsN . Treating the chemical potential at x = 0 and x = d as yet unknown, the profile is given by
Eq. 127 for x > 0. The profile in the whole N region is

µsN(x ≤ 0) = µsN(0)ex/LsN , (170)

µsN(0 < x < d) = µsN(d)
sinh(x/LsN)

sinh(d/LsN)
− µsN(0)

sinh [(x− d)/LsN ]

sinh(d/LsN)
, (171)

µsN(x ≥ d) = µsN(d)e−x/LsN . (172)

The spin current is not continuous at x = 0, due to the presence of the spin source:

jsN(0+) =
1

RN

[
−µsN(0) coth (d/LsN) +

µsN(d)

sinh (d/LsN)

]
, (173)

jsN(0−) =
1

RN

µsN(0). (174)

The continuity of the spin current at the contact requires that11

jsN(0+) = jsN(0−) + jsc1 = jsN(0−) + jsF1. (175)

Using the above algebraic system, we find

µsN(0)

[
RN

Rc1 +RF1

+
exp (d/LsN)

sinh (d/LsN)

]
− µsN(d)

1

sinh (d/LsN)
= −jRN

PΣ1Rc1 + PσF1RF1

Rc1 +RF1

.

(176)
11Mind the sign convention: the reference current is always along the positive axis.
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The spin current in the spin injector contact is

jsF1 = j
PΣ1Rc1 + PσF1RF1 + µsN(0)/j

Rc1 +RF1

. (177)

Finally, we define the spin injection efficiency for the spin injector in the nonlocal geometry as

Pj1 =
jsN(0+)

j
. (178)

Only the spin current which gives rise to the spin accumulation at the detector circuit is relevant.

Spin detector: F2/N junction. There is no electric current flowing in the spin detector:
j = 0. The flow of spin is indicated in Fig. 8. Similarly to the F1/N junction, we obtain for the
spin currents in the ferromagnet and the contact,

jsF2(0) = − 1

RF2

µsF2(0), (179)

jsc2 =
1

Rc2

[µsF2(0)− µsN(d)] . (180)

The spin current along x is again discontinuous at x = d, due to the presence of the spin sink:

jsN(d−) =
1

RN

[
− µsN(0)

sinh (d/LsN)
+ µsN(d) coth (d/LsN)

]
, (181)

jsN(d+) = − 1

RN

µsN(d). (182)

(183)

The continuity for the spin currents at x = d gives

jsN(d−) = jsN(d+) + jsc2 = jsN(d+) + jsF2(0). (184)

Solving the above algebraic system yields

µsN(0)
1

sinh (d/LsN)
− µsN(d)

[
RN

Rc2 +RF2

+
exp (d/LsN)

sinh (d/LsN)

]
= 0. (185)

Let us denote the spin current in the contact as js2:

js2 ≡ jsc2 = jsF2(0). (186)

We will need to know the value of this current to calculate the emf at the detector circuit. We
find that

js2 = − µsN(d)

Rc2 +RF2

. (187)
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Spin quasichemical potentials. Equations 176 and 185 form a closed system, allowing us to
extract the spin quasichemical potentials at the two contacts:

µsN(0) = −j
RNP

0
j1

2

[
1− RN

2R2

(
1 + e−2d/LsN

)] 1

κ
, (188)

µsN(d) = −j
RNP

0
j1

2

(
Rc2 +RF2

R2

)
e−d/LsN

κ
, (189)

where

κ =
R2
N

4R1R2

[(
1 + 2

Rc1 +RF1

RN

)(
1 + 2

Rc2 +RF2

RN

)
− e−2d/LsN

]
. (190)

Recall that R1 and R2 are the total effective resistances of the two junctions; see Eqs. 135.
Similarly, P 0

j1 and P 0
j2 are the spin injection efficiencies of the individual F /N junctions, given

by Eq. 87.

Problem. Calculate the spin injection efficiency Pj1 of the spin injection circuit. What do you get
in the limit of d � LsN? Does the result agree with that for an isolated F /N junction studied
earlier?

emf in the detector circuit. Due to the presence of a nonequilibrium spin in the detector
circuit, an emf will develop there. We can obtain it as the increase of the quasichemical potential
from the far end of the F2 to the far right of the N region, as shown in Fig. 7. Since the spin
flow in F2 is confined to the distance of order LsF2 from z = 0, the quasichemical potential
µsF2 far away from the contact, at y → ±∞ (we are mixing the third dimension here!) will be
the same as that at the contact itself, y ≈ 0, but at z =∞:12

emf = µN(∞)− µF2(∞). (192)

Since j = 0 in the F2/N junction, we can write,

µF2(0)− µF2(∞) = −PσF2µsF2(0), (193)
µN(d)− µF2(0) = −PΣ2 [µsN(d)− µsF2(0)] , (194)
µN(∞)− µN(d) = 0. (195)

Summing these equations up we get, after substituting for the spin quasichemical potentials
Eqs. 179 and 180,

emf = (Rc2PΣ2 +RF2Pσ2)js2. (196)

This is just another realization of Silsbee-Johnson spin-charge coupling: An electromotive force
develops due to the presence of a spin current in a spin-polarized contact or a ferromagnetic
conductor. Due to charge neutrality this emf can be detected as a voltage drop.

12Since j = 0, we have that∇µ = −Pσ∇µs. Integrating this equation in the (y, z) plane of F2 we get

µF2(y, z) = µF2(y0, z0)− PσF2 [µsF2(y, z)− µsF2(y0, z0)] , (191)

where (y0, z0) is a reference point. Choosing y0 from the contact region and letting z0 → ∞, we get that
µF2(∞, z) ≈ µF2(y0,∞), since the spin accumulation vanishes both at y → ∞ and z0 → ∞. The far ends
of the F2 electrodes (y0 →∞) are thus equipotential with the z =∞ points in the contact region.
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Substituting for js2 using Eq. 187 and using Eq. 189 for µsN(d), the emf can be readily
obtained:

emf = j
RN

2
P 0
j1P

0
j2

e−d/LsN

κ
. (197)

The emf is in general positive for parallel and negative for antiparallel magnetization orienta-
tions.
Often what is detected is the nonlocal resistance,

Rnl =
emf

j
=
RN

2
P 0
j1P

0
j2

e−d/LsN

κ
, (198)

or the corresponding difference in the nonlocal resistance for parallel and antiparallel orienta-
tions of the magnetizations of F1 and F2:

∆Rnl = R↑↑nl −R
↑↑
nl = 2|Rnl|. (199)

Tunnel contacts. For tunnel contacts we find κ ≈ 1 and

emf = j
RN

2
PΣ1PΣ2e

−d/LsN , (200)

as one would expect. The factor of “1/2” appears due the geometry of the spin injector: only
half of the injected spin current in the F1/N junction flows towards the F2/N junction. The
other half flows towards x→ −∞.

Transparent contacts. The most general expression for transparent contacts is the same as
Eq. 197, with Rc1 = Rc2 = 0. In the conductivity mismatch regime, for RN � RF1, RF2, the
emf simplifies to

emf = 2jRNPσF1PσF2

(
RF1RF2

R2
N

)
e−d/LsN

1− e−2d/LsN
. (201)

The conductivity mismatch limits the spin injection/detection in the nonlocal geometry.

Problem. Tunnel/transparent contacts. Calculate emf for the mixed case of tunnel and transparent
contacts of the nonlocal spin injection geometry.
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[4] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323–410

[5] Fabian J, Matos-Abiague A, Ertler C, Stano P and Žutić I 2007 Acta Phys. Slov. 57 565–
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1 Introduction

The anomalous Hall effect (AHE) is one of the oldest and most famous transport phenomena in
magnetic materials. Long ago it was discovered by Edwin Hall [1, 2] that in ferromagnets the
resistivity of the sample in the direction perpendicular to external electric E and magnetic H
field acquires an additional contribution due to the magnetization of the sample [3, 4]:

ρxy = ρOH + ρAH = R0H + 4πRSM, (1)

where R0 is the usual Hall coefficient, RS is the anomalous (spontaneous) Hall coefficient,
ρOH is the ordinary Hall resistivity and ρAH is the anomalous Hall resistivity. (In the course of
this manuscript we will be equivalently using ρAH and ρxy for the anomalous Hall resistivity).
Graphically the anomalous contribution to ρxy is very easy to see: upon increasing the magnetic
field H the magnetization of the sample eventually reaches the saturation value MS and the
transverse resistivity becomes linear in the magnetic field. The term 4πRSMS is then easy to
determine as an offset along the ρxy axis in the ρxy(H) dependence. In Fig. 1 it is illustrated how
in such a way the anomalous Hall coefficient can be determined as a function of temperature,
sample thickness, sample’s direction of magnetization etc.
The revival of interest in the anomalous Hall effect during past years can be attributed to sev-
eral reasons. From the practical point of view, utilizing the AHE for the purposes of modern
spintronics would enable us with a unique tool for generating and controlling spin-polarized
currents in complex magnetic nanoscale systems. On the other hand, deeper understanding of
the mechanisms behind the AHE is necessary for further advances in young and promising field
of spin Hall effect related phenomena, which are based on propagation of pure spin currents
without accompanying charge transport. Moreover, recent progress in understanding the AHE
from the point of view of Berry phases and topological structure of the crystal electronic bands
led to the fact that many abstract quantities and objects in this part of quantum physics became
measurable and feasible to tackle experimentally.
The mysterious beauty of the anomalous Hall effect lies in the fact that even without an applied
magnetic field a non-vanishing resistivity ρxy can be measured. Indeed, everywhere further on
in this lecture we will assume that the only external field present in the system is the electric
field E along the x-axis of the system, which generates a longitudinal flow of electrons Jx and
a transverse current Jy. Expression (1) implicitly assumes that the anomalous contribution is
proportional to magnetization M , and it is used as an experimental tool to measure magnetiza-
tion as a function of temperature in e.g. studies on ferromagnetic semiconductors with dilute
magnetic impurities, which are promising materials for applications in spintronics. Only re-
cently it was demonstrated experimentally and theoretically that ρxy can be highly non-linear as
a function of external parameters, including the magnetization M .
The finite anomalous Hall resistivity, arising due to the spin-orbit coupling (SOC), can be ob-
served only in materials with broken time reversal symmetry, of which the widest class consti-
tute ferromagnets. When the time reversal symmetry is present in the system, the anomalous
contribution to the conductivity cancels out when integrated over degenerate bands. In fer-
romagnets, the time reversal symmetry is broken due to the presence of a finite intra-atomic
exchange field, which causes splitting between the bands of different spin.
Upon moving in the longitudinal electric field Ex electrons experience scattering of different
physical origin responsible for ”anomalous” contribution to the transverse velocity. In a sim-
ple picture, due to the spin-orbit coupling, this scattering depends on the spin of an incoming
electron which results in the anomalous velocity of opposite sign for electrons of opposite spin
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Fig. 1: Left: isothermal Hall resistivity of a 20 nm and 188 nm Co films in magnetic fields
applied perpendicularly to the film plane. The determination of the anomalous Hall resistivity
ρAH and the ordinary Hall resistivity at the field of magnetization saturation ρOH is indicated.
The data are taken from [5]. Right: the Hall resistivity plotted against the external field at room
temperature for different directions of the magnetization in single crystals of Ni, as well as in
polycrystal samples. The data are taken from [6].

(Fig. 2). In a non-magnetic material with an equal number of spin-up and spin-down electrons
this results in a zero transverse anomalous (charge) conductivity, but leads to the so-called spin
Hall effect [7, 8]. In the spin Hall effect, spin-up transverse current propagates to the ”left”,
while the spin-down transverse current propagates to the ”right”, which leads to a non-zero
spin accumulation of opposite sign at the opposite edges of the sample, which can be measured
experimentally.
In a ferromagnet, due to a finite exchange splitting of the electronic bands the number of spin-
up electrons is different from the number of spin-down electrons. Integrated over the occupied
states, the anomalous contribution to the transverse electron velocity is not cancelled and the
transverse current in the AHE is not zero. Following this line of thought is seems logical to
assume that the anomalous Hall current would be directly proportional to the magnetization M
of the sample, or, equivalently, to the difference between the number of spin-up and spin-down
carreers. Indeed, almost all conventional theories for the AHE which we will review in the
next section derive equation (1), as they are based on perturbative expansion of the spin-orbit
coupling λ, which is responsible for asymmetric scattering, i.e. RS ∼ λ. It is not always the
case, however, as it was shown recently that certain points in the band structure can lead to
significant singularity-like contributions to the anomalous Hall conductivity (AHC), when the
Fermi energy is varied in their vicinity [9].
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Fig. 2: Spin-asymmetric scattering picture of the anomalous and spin Hall effects. Upon moving
in the longitudinal electric field Ex electrons experience ”intrinsic” (left) or impurity (right)
scattering which leads to the ”anomalous” contribution to the transverse velocity opposite for
electrons of opposite spin.

It has been a long time since the first attempts to explain the AHE were made. The history of
theoretical understanding of the AHE is particularly messy, with different models and ways of
solving them providing totally different results, correcting, disregarding and contradicting each
other. The complete and consistent picture of the AHE emerges quite slowly with years and
debates on certain issues are still going on. Nevertheless, in this manuscript we would like to
provide as little confusion as possible by considering the AHE in terms of, perhaps, the most
appealing language of semiclassical dynamics of wavepackets and semiclassical Boltzmann
equation. Semiclassical philosophy and formalism of the anomalous transport in solids has
recently reached a degree of self-consistency and consistency with other more rigorous quantum
mechanically approaches [10] which makes it possible to use it as a common foundation for
considering most of the mechanisms of the AHE.

Among various novel issues in the area of the AHE which we do not consider in this manuscript
we would like to mention particularly the many-body effects in the AHE and Berry curvature
contribution to them [11], as well as optically induced AHE [12]. Recently, it was demonstrated
that the AHE emerges even in paramagnetic materials in applied external magnetic field which
is able to polarize the electron spins [13]. In this case the semiclassical theory of the AHE should
be modified accordingly, as it is difficult to make a clear separation between the anomalous and
ordinary Hall contributions. While in the manuscript we restrict our discussion of the AHE
to the case of ferromagnets, another interesting and important aspect of current investigations
in the field is the appearance and behavior of AHE in systems with non-collinear spins. In a
situation where a spin hops along the loop connecting three non-collinear spins Si, Sj and Sk
the total phase acquired by the electron along this loop will be equal to the half of the solid angle
Ω spanned by these three spins on a unit sphere. For a small Ω, this phase will be proportional
to the scalar spin chirality ξijk = Si ·(Sj×Sk). Appearance of this phase can act as a gauge, i.e.
fictitious magnetic field, and it is expected to produce an effect when its uniform component is
finite [14]. The issue of the AHE for a periodic non-coplanar spin configuration on the Kagome
lattice was studied by Ohgushi et al. [15], who pointed out that the spin chirality produces a
gauge field in the reciprocal space leading to the AHE. Recently, the relationship between the
spin chiralities in real and reciprocal spaces was established by Onoda et al. [16].
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2 Theories of the AHE

The first attempt to relate the AHE and the spin-orbit interaction was made by Karplus and Lut-
tinger (KL) in 1954 [17]. They argued that due to relativistic corrections the effective Hamilto-
nian of an electron in a solid acquires an additional term due to spin-orbit interaction:

Ĥso = − 1

4m2c2
σ̂ · (p×∇V ), (2)

where V (r) is the one-electron effective lattice potential. This additional part of the Hamil-
tonian modifies the periodic parts un(k) of the Bloch wavefunctions ψn(k) in a characteristic
way. Applying an external electric field results in an additional contribution to the Hamilto-
nian ΔĤ = eE · r, which couples states of different bands un(k) and um(k), n �= m. This
mixing eventually leads to the linear in the electric field ”anomalous” contribution to the trans-
verse velocity of electrons. Upon treating the electric field as a perturbation Karplus and Lut-
tinger correctly predicted that the intrinsic, i.e., impurity-free band structure contribution to the
anomalous Hall resistivity is proportional to the diagonal part of the resistivity tensor squared
ρ2
xx, which agreed with many experiments available at the time. By arguing that the average

value of the Hamiltonian (2) for a magnetic electron would be proportional to the magnetiza-
tion M , they stated the proportionality of the Hall current to the sample magnetization.
Theory of the AHE suggested by Karplus and Luttinger was a clear success at the time. How-
ever, this theory was still very far from the ”ultimate” theory: the influence of the impurities
was not included and the expressions for the current were not gauge invariant, i.e. dependent
on unphysical phase of the wavefunctions. These were serious obstacles on the way to practical
applications of the KL theory to real materials. Smit was the first to try to develop a gauge
invariant theory of the AHE [18, 19]. He approached the problem from a different side via
solving a Boltzmann-like equation for the wavepackets (for a definition of a wavepacket see
section 3). In this way he was able to treat semiclassically the influence of the impurities on
the dynamics of the wavepackets in the phase space. By doing so he discovered the so-called
skew scattering mechanism of the AHE. This mechanism can be attributed to the asymmetry
in scattering to the ”right” and to the ”left”, or, in other words, k → k′ and k′ → k scattering.
It arises already in the second order of the Born expansion of the scattering rate if the impurity
Hamiltonian includes a k′ ↔ k asymmetric part, in particular, spin-orbit coupling. In contrast
to the KL predictions, Smit’s anomalous Hall resistivity is proportional to ρxx. His estimated
magnitude of the AHE appeared to be four orders of magnitude smaller than the experimentally
observed, which was, as realized later, due to neglecting the intrinsic spin-orbit coupling in the
crystal. Interestingly, investigating the dynamics of a wavepacket in an external electric field
Smit also found an intrinsic anomalous velocity of electrons which he wrongly argued is exactly
canceled out.
Investigating the dynamics of wavepackets Smit discovered that the center of mass of a prop-
agating wavepacket rc is changed according to the following law (compare to equation (54) in
section 6):

rc(k, t) =
∂ε(k)

∂k
+ A(k), (3)

where A(k) is the so-called Berry connection:

A(k) =

〈
u(k)

∣∣∣∣ i ∂∂ku(k)

〉
. (4)
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According to Smit, when the electric field accelerates the wavepacket, vector k changes, which
in turn changes the Berry connection A(k), the wavepacket becomes deformed and an addi-
tional charge transport in the transverse to the electric field direction emerges. Further on, Smit
pointed out that the wavepackets cannot be constantly accelerated by the electric field and it
is scattering on impurities which stabilizes the transport and produces on average an exactly
opposite change in k in the steady state. Smit suggested that this is realized via coordinate
shifts at scatterings. These coordinate shifts at scatterings, first introduced by Smit [19] play an
important role in the modern theory of the AHE (see sections 6 and 7). They were named side
jumps by Berger, who studied them in more detail [20, 21, 22].
Cancellation arguments of Smit fail for two reasons. The Berry connection term A(k) entering
the wavepacket dynamics is not gauge invariant, therefore, applying classical balance arguments
to it is not justified. Secondly, the change in the kinetic energy of the particles during side jumps
leads to an additional, so-called anomalous correction to the distribution function (see section
7) which can contribute to the Hall current. Nevertheless, Smit’s works were at the beginning
of the modern semiclassical approach. He made a first attempt to understand the anomalous
Hall effect in classical terms, such as corrections to velocity, asymmetric scattering, jumps at
impurities− ideas, which are currently incorporated in the modern theory.
In 1958 Luttinger provided a rigorous quantum mechanical description of the AHE [23] which
was further generalized to the regime of an ac external field by Lyo and Holstein [24]. Luttinger
considered the equation for the evolution of the density matrix ρ̂:

∂ρ̂

∂t
= i[ρ̂, Ĥ ], (5)

where Hamiltonian Ĥ includes both electric field and impurity potential:

Ĥ = Ĥ0 + V (r) + eExx̂ (6)

In the stationary state

∂ρ̂

∂t
= 0. (7)

For the density matrix which satisfies this equation, the transverse electric current can be found
via

Jy = −eTr[v̂yρ̂]. (8)

The velocity operator v̂y is diagonal in k-space, therefore, to calculate the current, only k-
diagonal part of ρ̂ is in principle needed. However, the velocity operator can have off-diagonal
elements in the band index due to the presence of the electric field. From Eqs. (5)-(8) Luttinger
derived an analog of the Boltzmann equation, the quantum Boltzmann equation, which operates
in terms of the k-diagonal part of the density matrix. Using this equation Luttinger managed to
decompose the part of the density matrix linear in electric field δρ̂ into series with respect to the
strength of the impurity potential V :

δρ̂ = V −2δρ̂(−2) + V −1δρ̂(−1) + V 0δρ̂(0) + ... (9)

Luttinger found that the δρ̂(−2) term is diagonal in band index and does not contribute to the Hall
current but makes a major contribution to the longitudinal current. The next term, δρ̂(−1), is still
diagonal in band index and contains an antisymmetric contribution is the transverse direction
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and contributes to the transverse conductivity which behaves as 1
n

as a function of the impurity
concentration n. This term leads to a conventional skew scattering contribution. The zeroth
order term can be distinctively separated into four terms:

δρ̂(0) = δρ̂int + δρ̂sj + δρ̂ad + δρ̂sk, (10)

of which first two are purely off-diagonal and the other two are diagonal in band index, and
all four contribute to the Hall current. Since the terms are of zeroth power in V and the veloc-
ity operator does not depend on V , the resulting conductivity due to these contributions for a
Gaussian correlated disorder becomes independent on the impurity concentration. These four
terms lead to intrinsic, side jump, anomalous distribution and intrinsic skew scattering channels
of transverse conductivity, respectively, and we will analyze them later.
The approach developed by Luttinger is rigorous quantum-mechanically, but it remains cum-
bersome and lacks transparency which can be achieved only within the semiclassical picture.
In 1959 Adams and Blount tried to develop a semiclassical theory of the AHE which was based
on the concept of non-commuting coordinates [25]. Adams and Blount noticed that as far as
the electric field couples the states of different bands n and m a part of a wavepacket starts fast
oscillations with the frequency εn(k)− εm(k), and technically a wavepacket looses its classical
meaning. The remedy lies in constructing a new set of Bloch orbitals u′n(k) (to linear order in
electric field Ex):

|u′n(k)〉 = |un(k)〉+ ieEx
∑
m�=n

〈
um(k)

∣∣∣ ∂un(k)
∂kx

〉
εn(k)− εm(k)

|um(k)〉. (11)

Using this new set of orbitals one can prepare a wavepacket which does not split into parts
of different frequencies under applied electric field. It is straightforward then to calculate the
transverse velocity, which reads:

vy =
∂εn(k)

∂ky
− eExΩn,z(k), (12)

where Ωn,z(k) is the z-component of the so-called Berry curvature Ωn(k) of the n’th band given
by expression:

Ωn,z(k) = Im

(〈
∂un(k)

∂ky

∣∣∣∣ ∂un(k)

∂kx

〉
−
〈
∂un(k)

∂kx

∣∣∣∣ ∂un(k)

∂ky

〉)
. (13)

(A more general semiclassical derivation of the expression for the Berry curvature-driven anoma-
lous velocity will be given in section 3). Generally speaking, it appears that instead of working
with the mixing of different bands due to the electric field, one can assume that the Hamiltonian
is the original diagonal Hamiltonian, only the coordinate operators should be changed to:

r̂ −→ i
∂

∂k
+ A(k), (14)

where A(k) is the Berry connection given by (4), Ω(k) = ∇×A(k). The anomalous velocity
is due to the fact that these operators are not commuting. The comprehensive theory of non-
commuting coordinates in Bloch bands is presented in [26]. Adams and Blount also pointed
out that their approach can be applied to the problem of impurity scattering given that a moving
wavepacket experiences only a small gradient. Their theory was applied by Chazalviel [27],
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Noziéres and Lewiner [28], Berger [20, 21, 22] and by Lyo and Holstein [24] to the AHE in
III-V n-type semiconductors.

3 Semiclassical approach to transport

Quantitative treatment of transport phenomena in real materials with standard Green’s function
techniques is normally quite difficult and at times lacks transparency. Therefore, the theories of
the AHE normally employ simple Hamiltonians and normally do not go beyond one-electron
mean-field picture. The complexity of the task is amplified by the fact the the anomalous Hall
conductivity is normally much smaller than the diagonal part of the conductivity tensor. Within
the perturbative analysis in the weak disorder limit the AHE-relevant terms appear only in
subdominant terms of higher powers of small parameters. Many techniques fail in those orders
and it becomes difficult to fish out and group the terms of the same magnitude. On the other
hand, using such rigorous techniques as Kubo or Keldysh normally results in operating with
non-gauge invariant objects until the very end of the calculation. This in turn complicates the
analysis of the physics of the relevant terms and microscopic origins of the AHE.
An alternative and very powerful approach to electron transport properties presents the classical
Boltzmann equation. In sufficiently clean materials the motion of electrons can indeed be con-
sidered as motion of localized in real and reciprocal space wavepackets rather then delocalized
in real space Bloch functions. In the dilute disorder limit such a wavepacket can travel in a
solid for a long time as a conventional classical particle. Moreover, it is possible to describe
the motion of a wavepacket in external fields from this classical point of view and describe the
electron dynamics in clear and concise terms.
A general Hamiltonian of a slowly perturbed crystal reads:

H(r̂, p̂; β1(r̂, t), ..., βr(r̂, t)), (15)

where {βi(r̂, t)} are the modulation functions characterizing the perturbations. They can rep-
resent deformations, gauge potentials, electromagnetic fields or slowly varying impurity poten-
tials.
Let us take now a wavepacket centered at rc in real space with its spread small compared
to the length scale of the perturbations. In this case the approximate Hamiltonian which the
wavepacket feels can be obtained by linearizing the Hamiltonian around rc:

Ĥ = Ĥc +
∑

(r̂− r̂c)∇rcβi(r̂c, t), (16)

where Ĥc = H(r̂, p̂; {βi(r̂c, t)}) is the so-called ”local” Hamiltonian. The terms in the right
hand side of Eq. (16) following the local Hamiltonian are normally small and are usually treated
perturbatively. The local Hamiltonian has the periodicity of the lattice and has an energy spec-
trum of bands with Bloch eigenstates satisfying:

Ĥc(r̂c, t) |ψk(rc, t)〉 = εc(rc,k, t)|ψk(rc, t)〉, (17)

where we omit the band index for simplicity. Both the wavepacket center rc and time t enter the
Bloch states and energies parametrically which results in Berry phase effects in the equation of
motion.
The Bloch eigenstates form a convenient basis to construct a wavepacket Ψ:
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|Ψ〉 =

∫
a(k, t)|ψk(rc, t)〉 dk, (18)

where a(k, t) is the amplitude with the normalization condition
∫
|a(k, t)|2 dk = 〈Ψ|Ψ〉 = 1. (19)

In order that Ψ is really a ”packet”, it is required that |a(k, t)|2 is peaked in the Brillouin zone
around a certain vector kc:

kc =

∫
k · |a(k, t)|2 dk. (20)

Then packet’s center of mass in real space lies at rc:

rc = 〈Ψ|r̂|Ψ〉. (21)

The equations which describe how the center of the wavepacket (rc,kc) moves in (r,k)-space
when the perturbations β are present describe the electron dynamics in the system. In the
simplest case of free electrons in the external electric field E such equations are easy to derive.
In this case the Hamiltonian of the system is Ĥ = k̂2

2
+ eE · r̂, so the local Hamiltonian is the

Hamiltonian of free electrons Ĥc = k̂2

2
and the basis used for the expansion of wavepackets

is the plane-wave basis {eik·r−i k2

2m
t}. It is a textbook exercise then to derive the semiclassical

equations of motion for the wavepackets:

ṙc =
kc
m

and k̇c = −eE. (22)

In the general case, equations for the motion of the mean position rc and crystal momentum kc
can be derived from the Schrödinger equation for the wavepacket, which is most conveniently
obtained using a time-dependent variational principle with the Lagrangian given by [29]:

L =

〈
Ψ

∣∣∣∣i ddt − Ĥ
∣∣∣∣Ψ
〉
, (23)

where d
dt

means the derivative with respect to the time dependence of the wave function explic-
itly or implicitly through rc and kc. Taking into account the locality of the wavepacket, it can
be shown that L ≈ L(rc, ṙc,kc, k̇c, t) reads:

L = −E + kc · ṙc + k̇c ·
〈
u

∣∣∣∣ i ∂u∂kc
〉

+ ṙc ·
〈
u

∣∣∣∣ i ∂u∂rc
〉

+

〈
u

∣∣∣∣ i∂u∂t
〉
, (24)

where energy E is the εc(rc,kc, t) energy corrected by a gradient correction term ΔE [29]. In
case of a magnetic field B present in the system the energy correction ΔE acquires a form of the
magnetization energy e

2m
B(rc) · L(kc), where L is the angular momentum of the wavepacket

around its center of mass. The first two terms in this Lagrangian are the same as those for a
classical particle with a classical Hamiltonian corresponding to energy E . The last three terms
can be grouped into a single term 〈u|idu

dt
〉, which turns out to be the net rate of change of

Berry phase of a wavepacket motion within the band. This term is geometric, meaning that its
contribution to the action depends on the trajectory in the phase space but not on the rate of the
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motion along this trajectory. It is truly remarkable that, as we will see, the intrinsic anomalous
Hall conductivity stems from the latter term and is a purely geometrical property.
The Lagrangian formulation provides a fully gauge invariant approach to the study of the
wavepacket dynamics. When external magnetic and electric fields B and E are present in
the system, the wavepacket equations of motion can be derived variationally from the La-
grangian (24):

ṙc =
∂E
∂kc
− k̇c ×Ω and k̇c = −eE − erc ×B, (25)

and with electric field only they reduce to

ṙc =
∂ε

∂kc
− k̇c ×Ω and k̇c = −eE, (26)

where Ω is the Berry curvature of the Bloch state defined in section 2:

Ω(k) = −Im

〈
∂u

∂k

∣∣∣∣×
∣∣∣∣ ∂u∂k

〉
. (27)

Comparing equations (22) and (26) we observe that the difference is the k̇c × Ω term to the
velocity, also known as the anomalous velocity . We will see that the anomalous velocity gives
rise to the intrinsic anomalous Hall conductivity. Wavepacket equations (26) show that the
Berry curvature Ω acts as an unusual magnetic field acting in the momentum space. Unlike
the ”real” magnetic field of classical electrodynamics, however, the Berry curvature originates
from a point source, or, so-called magnetic monopole. Its analog in Bloch bands are the points
of band crossings in the band structure [9, 26, 30].

4 Intrinsic anomalous Hall conductivity

The semiclassical dynamics coupled with the Boltzmann equation provides a comprehensive
theory of transport phenomena in solid state physics [31]. In this theory the Bloch electrons
are considered as classical wavepackets whose distribution in the (r,k) space is described by
a distribution function f(r,k, t). The normalization of the distribution function is fixed by the
requirement that f(r,k, t) dr dk/2π is the number of electrons in the phase space volume dr dk
around the point (r,k).
There are two sources that make f change in time. Firstly, it is changing of r and k according
to semiclassical equations of motion from the previous section, and, secondly, abrupt jumps
in k due to collision of wavepacket with impurities, phonons and other electrons. It can be
seen already from (22) that under the action of electric field the wavepacket will accelerate
indefinitely. This never happens in metals because of the second scattering mechanism. Micro-
scopically, it is impossible to trace trajectories of all wavepackets and the natural language to
describe such a system is provided by the semiclassical Boltzmann equation. In the relaxation
time approximation [31] the Boltzmann equation for the distribution in the steady state reads:

ṙ · ∂f
∂r

+ k̇ · ∂f
∂k

=
f0 − f
τ(k)

, (28)

where τ(k) is the transport relaxation time of the Bloch electron and f0 = 1/(e(ε(k)−μ)/kBT +1)
is the equilibrium distribution function. The problem of calculating the relaxation time τ has to
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be considered separately and we will come to this issue later, but for the purposes of this section
it is enough to assume it to be constant. The solution of the Boltzmann equation depends on τ
only for those states that are near the Fermi surface within an energy width of kBT .
In the electric field E we can substitute expressions (26) for the ṙ and k̇ into Eq. (28) and solve
it to the first order in the electric field, which yields:

f = f0 + τe · E · ∂ε
∂k

∂f0

∂ε
, (29)

where we have assumed that the chemical potential and temperature are constant in space. The
∂f0
∂ε

factor enables that the electric field modifies the distribution only around the Fermi surface.
Then the electron current density can be decomposed in the following way:

J = − e

(2π)3

∫
ṙf dk = JΩ + Jτ , (30)

where the diffusion current due to disorder scattering is given by

Jτ = − e2τ

(2π)3

∫
∂ε

∂k

(
E · ∂ε

∂k

)
∂f0

∂ε
dk, (31)

while JΩ is the anomalous Hall current:

JΩ = − e2

(2π)3
E×

∫
f0(ε(k))Ω(k) dk. (32)

The Jτ current gives a symmetric conductivity tensor and depends only on the properties of the
system near the Fermi energy. The JΩ current comes from the anomalous velocity due to the
Berry curvature and gives a Hall conductivity tensor which is antisymmetric. For systems with
time-reversal symmetry the Berry curvature is antisymmetric in k, while f0 is k-symmetric.
This means that for materials with time-reversal symmetry, e.g., non-magnetic, the anomalous
Hall current averages to zero. In magnetic materials in which the time-reversal symmetry is
broken, e.g., ferromagnets, the anomalous Hall current is non-zero. In this case the spin-orbit
coupling has to be taken into account, as it leads to the modifications in the spatial wave func-
tions due to time-reversal asymmetry in spin [26].
Expression (32) allows us to write down the antisymmetric part of the conductivity (already in
the multi-band case):

σxy = − e2

(2π)3

∑
n

∫
BZ

fn0 (k) Ωn,z(k) dk, (33)

where Ωn,z(k) is the z-component of the Berry curvature for n’th band given by Eq. (13) from
section 2 and fn0 (k) is f0(εn(k)). Analogous expression for the transverse conductivity in
case of insulators was derived already in 1982 in the milestone paper by Thouless, Kohmoto,
Nightingale and den Nijs [32]. Their derivation was based on the Kubo formula for the conduc-
tivity [33]:

σxy(ω) = i
∑
k,n,m

〈mk|Jx|nk〉〈nk|Jy|mk〉
εn(k)− εm(k)

· fn0 (k)− fm0 (k)

ω + iδ + εm(k)− εn(k)
, (34)

where iδ enables the analyticity of the response function. In the static limit of ω = 0 and setting
iδ to zero, we arrive at the following expression:
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σxy = 2Im
∑

k,n �=m

〈mk|Jx|nk〉〈nk|Jy|mk〉
(εn(k)− εm(k))2

fn0 (k), (35)

where the current operators are defined as Jμ =
∑

k c
+
k
∂h(k)
∂kµ

ck with ck as creation operators and

Hamiltonian as Ĥ =
∑

k c
+
kh(k)ck. The equivalent expression for the Berry curvature therefore

reads:

Ωn,z(k) = −2Im
∑
m�=n

〈mk|Jx|nk〉〈nk|Jy|mk〉
(εn(k)− εm(k))2

(36)

Now taking into account derived from the Feynman theorem [34] expression

〈nk|Jμ|mk〉 = (εm(k)− εn(k))

〈
nk

∣∣∣∣ ∂

∂kμ

∣∣∣∣mk

〉
(37)

we arrive at the expression (33). Note that assuming that iδ = 0 is justified only in the case of
a band insulator such as for example an integer quantum Hall system [32]. In this case the con-
ductivity is e2× integer, and this integer is a topological number called the Chern number [35].

5 Theory meets experiment

Until recently, it was unclear when we will be able to calculate and predict the anomalous Hall
effect in real materials. Attempts to estimate the magnitude of the anomalous Hall conductivity
stemming from extrinsic contributions at least qualitatively fail quite often, as the real impurity
potentials in considered materials are normally unknown. Depending on the impurity potential
taken for the calculation computed conductivity values can differ by orders of magnitude. One
of the first successes in computing the AHE in a very good agreement to experiments came
when Jungwirth et al. [36, 37] applied Sundaram-Niu derived expression for the intrinsic AHC
(Eq. (33)) to study the AHE in (III,Mn)V ferromagnetic semiconductors, and found a very good
agreement with experiments.
The first truly ab initio successful prediction of an intrinsic AHC in elementary bcc Fe was made
by Yao et al. [38] in 2004. The reported calculated value of σxy of 751 (Ω ·cm)−1 was only 25%
off the experimental value of 1032 (Ω · cm)−1, extracted from data on iron whiskers at room
temperature [39]. In this calculation, millions of k-points were used in order to obtain reliable
values of the AHC. Such slow convergence is caused by the appearance of large contributions
of both signs to Ωz(k) which come from very narrow regions in k-space. Generally speaking,
the effect of the spin-orbit coupling is very small in Fe, except for the case when states are
mixed which are degenerate or nearly degenerate. A completely occupied pair of such states
contributes very little to the Berry curvature and the largest contribution appears when the Fermi
energy lies in the middle of a spin-orbit induced gap. For example, as shown in Fig. 3 the large
spike near H(1,0,0) point in the direction of P(1

2
, 1

2
, 1

2
) is due to a pair of spin-orbit coupled

bands, one occupied and one unoccupied in a small k-interval. The small energy gap gives
rise to a small energy denominator in Eq. (36), making the contribution to the Berry curvature
very large in this small interval. The largest peaks and valleys in the distribution of the Berry
curvature are, however, located off the k-space symmetry lines. For example, as can be seen
from Fig. 3, the Berry curvature shows sharp peaks and valleys of several orders of magnitude
in height and depth at general k-points in the (010)-plane.
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Fig. 3: Left: Band structure of bcc Fe near the Fermi energy (upper panel) and corresponding
summed over occupied bands Berry curvature−Ωz(k). Right: Fermi surface of bcc Fe in (010)
plane (solid lines) and the color map of the Berry curvature −Ωz(k) in atomic units.

Fang et al. considered the influence of the spin-orbit induced band degeneracies on the anoma-
lous Hall conductivity in more detail on an example of SrRuO3 [9]. They (as well as Onoda and
Nagaosa in two dimensions [40]) considered a general case of a two-band Hamiltonian:

Ĥ(k) = a0(k) +
∑

μ=1,2,3

fμ(k)σ̂μ, (38)

where σ̂μ are the Pauli matrices and {a0, fμ} are certain functions of a Bloch vector k. For
a particular example of spin-up (t2g) dxz, dyz orbitals with SOC in a cubic perovskite SrRuO3

these functions are given by a0(k) = −2t1 cos kz−t1(cos kz+cos ky), f1(k) = 2t2 sin kx sin ky,
and f2(k) = −λM, f3(k) = −t1(cos kx−cos ky), where t1 and t2 are effective inter- and intra-
orbital hopping elements, λ is the SOC constant and M is the magnetization.
Let us establish a correspondence between a k-vector and a vector f(k) = (f1(k), f2(k), f3(k)).
The eigenvalues of Hamiltonian (38) are ε±(k) = f0(k)±|f(k)| and the band degeneracy occurs
when f = 0. Substituting the corresponding eigenvectors into Eq. (33) we get the contribution
to the σxy-AHC from the two bands:

σxy =
e2

8πh

∫
(f0(ε+(k))− f0(ε−(k)))

(
∂ϕ

∂kx

∂θ

∂ky
− ∂ϕ

∂ky

∂θ

∂kx

)
sin θ dk, (39)

where f0 is the Fermi distribution function and ϕ and θ are the polar coordinates of vector
f(k) = (f sin θ cosϕ, f sin θ sinϕ, f cos θ). The expression for the AHC can be rewritten as:

σxy =
e2

8πh

∫
(f0(ε+(k))− f0(ε−(k))) dkz dΩf , (40)

where dΩf = [∂(θ, φ)/∂(kx, ky)] sin θ dkx dky = sin θ dϕ dθ is the solid angle in f-space corre-
sponding to an infinitesimal area dkx dky in k-space (see Fig. 4(A)). It can be easily shown that
dΩf is the integral of the gauge field

Ω(f) = ± f

|f |3 (41)
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Fig. 4: A: geometrical meaning of the contribution to the AHC when two bands are nearly
degenerate, B: calculated Berry curvature Ωz(k) for t2g bands as a function of (kx, ky) with
kz = 0 for cubic SrRuO3. The sharp peak around kx = ky = 0 and the ridges along kx = ±ky
are due to the near degeneracy of dxz and dyz bands.

due to a ”magnetic monopole” at f = 0 (i.e. the point of degeneracy) over the infinitesimal
surface in f-space corresponding to dkx dky. This means that when the Fermi energy is near
the monopole point of degeneracy, the electrons are subject to a strong gauge field and the
contribution to the conductivity is large. This observation establishes a close relation between
the anomalous Hall conductivity and the magnetic monopole in reciprocal space, existence of
which was postulated in real space by Dirac in 1931 [41] and which was found as a solution
of enormous energy (≈ 1016 GeV) to the equation of the non-Abelian gauge theory for grand
unification [42, 43]. From expression (40) it is also easy to see that the integrated contribution
from fully occupied couple of bands is zero due to f0 distribution function.
In case of SrRuO3 the parameters of the Hamiltonian satisfy t1 >> t2 >> λM , which results in
near degeneracy of the bands along the lines kx = ky = 0 and kx = ±ky due to symmetry [9].
According to first-principles calculations, this results in a large peak of the Berry curvature
Ωz(k) at the Γ point and its enhancement along the kx = ±ky lines in the Brillouin zone, as can
be seen in Fig. 4(B).
Experimental measurements as well as ab initio calculations of Fang et al. show that in SrRuO3

the anomalous Hall resistivity changes non-monotonously with temperature and even includes a
sign change. Such behavior is far beyond the expectation based on the conventional expression
in Eq. (1). In Fig. 5 the AHC σxy is shown as a function of the Fermi level position with respect
to the real converged value of EF . When the Fermi level is shifted not only the absolute value
of σxy is changed drastically, but also its sign. The sharp and spiky structure in this plot is a
natural consequence of the singular behavior of the magnetic monopoles in reciprocal space.
For the converged solution without any shift in the Fermi energy the calculated value of AHC
of −60 (Ω · cm)−1 is very close to that obtained in experiment of −100 (Ω · cm)−1. In general,
the calculated AHC follows the same trend and matches very well with experiment as a function
of the sample magnetization M , shown in Fig. 5. In this graph the change in the magnetization
is taken into account by the rigid splitting of spin-up and spin-down electronic bands. The
non-monotonous behavior of σxy as a function of temperature T can be attributed to the non-
monotonous dependency of σxy on the magnetization M (M itself is a monotonous function of
T ), which arises due to integration over the occupied bands in k-space.
To summarize, evaluating the anomalous Hall conductivity according to Eq. (33) becomes a
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Fig. 5: B: AHC σxy as a function of the Fermi level position for the orthorhombic structure of
single-crystal of SrRuO3. The Fermi level is shifted rigidly relative to the converged solution
(zero point), D: AHC σxy as a function of the magnetization M together with the results of
first-principles calculations for cubic and orthorhombic structures.

common technique in electronic structure community [45, 46]. Due to the simplicity of this in-
trinsic mechanism formulation it became possible to work out the magnitudes of the quantities
observed in experiment directly from the electronic structure of considered materials, which
can be computed with any electronic structure code nowadays. The ways to optimize the inte-
gration of the Berry curvature over the occupied bands in the Brillouin zone, which can be quite
tricky due to Berry curvature’s nontrivial structure, were proposed [44], and even reformulation
of Eq. (33) as a Fermi surface integral was suggested [45]. The whole arsenal of methods rou-
tinely applied in electronic structure calculations, such as LDA+U , magnetic non-collinearity
etc., can be now used to study the anomalous Hall effect in, e.g., non-collinear magnets or
strongly correlated materials directly from their electronic structure without referring to un-
known impurity potentials. In some sense, the validity of equation (33) marks the beginning of
the ”first-principles” era in the practical application of the anomalous Hall effect.

6 Boltzmann equation and semiclassical theory of side jump

The near equilibrium dynamics of a uniform (∂f
∂r

= 0) system of classical charged particles
(wavepackets) in a weak electric field E with elastic impurities is described by Boltzmann
equation for the distribution function f (l = (n,k)):

∂fl
∂t

+ eE
∂fl
∂k

= −
∑
l′
ωll′ (fl − fl′), (42)

where ωll′ is the scattering rate (probability) between volumes in phase space centered around
l and l′. The scattering rate depends on details of the scattering potential and should be found
separately. The semiclassical equation (42) is very powerful since it automatically takes care
of the summation of various infinite series of Feynman diagrams that appear in quantum linear
response theory and it keeps the physical meaning of all terms transparent. It operates only
with gauge invariant quantities, such as the side jump, the scattering rate, anomalous and usual
velocities, distribution function.
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In spite of the classical form of Eq. (42) the scattering rate ωll′ has to be calculated purely
quantum mechanically and it is given by the golden rule. The golden rule connects the classical
and quantum descriptions of a scattering event and can be expressed in terms of the scattering
matrix T :

ωll′ = 2π|Tll′|2δ(εl′ − εl), (43)

where the elements of the scattering matrix T are defined as

Tll′ = 〈l|V̂ |ψl′〉, (44)

where V̂ is the impurity potential and ψl is the eigenstate of the full Hamiltonian Ĥ = Ĥ0 + V̂
satisfying the Lippmann-Schwinger equation:

|ψl〉 = |l〉+ V̂

εl − Ĥ0 + iη
|ψl〉. (45)

The scattering matrix can be written as a Born series in powers of disorder strength. At weak
disorder one can approximate the scattering state |ψ〉 by a truncated series in powers of 〈l′|V̂ |l〉:

|ψl〉 ≈ |l〉+
∑
l′

Vl′l
εl − εl′ + iη

|l′〉, (46)

which leads to the following expression for the T matrix up to the second order in V :

Tll′ ≈ Vll′ +
∑
l′′

Vl′l′′Vl′′l
εl − εl′′ + iη

. (47)

In general, the semiclassical description which relies on the golden rule only will not be com-
plete. This becomes clear after noticing that the scattering rates ωll′ pick up only the real-part
information encoded in the scattering matrix elements Tll′ . This is the reason why in general
Eq. (42) fails to describe the AHE properly. While the skew scattering can be described within
the framework of Eq. (42) completely by going to the second order in expansion of the T -matrix
with respect to the impurity strength given by (47), it does not contain the information about the
side jump at a scattering event, thus, it has to be taken into account when constructing a kinetic
equation for the semiclassical distribution function which describes the AHE.
The side jump is the coordinate shift δrll′ acquired by a particle during the scattering event.
Recently, Sinitsyn et al. [48, 49] showed that the equations for the wavepacket dynamics can be
used to derive a gauge invariant expression for the side jump scattering on an impurity with the
potential which can be treated within the Born approximation. Lets assume for the moment that
l ≡ k. Consider a wavefunction ψk(r, t) which moves under an influence of a weak impurity.
The solution of the Schrödinger equation in this case can be written in terms of an unperturbed
Hamiltonian:

ψoutk (r, t) =

∫
C(k′, t)ψk′(r, t) dk′ (48)

To the lowest order in the strength of the potential perturbation theory leads to the following
expression for time-dependent coefficients [51]:

C(k′, t) = −i Vk′k

∫ t

−∞
e(ε(k

′)−ε(k))t′ dt′ + δ(k′ − k), (49)
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Fig. 6: Scattering of a wavepacket with the reciprocal vector k on an impurity, during which
the incoming wavepacket acquires a coordinate shift δrk′k.

where Vk′k = 〈ψk′(r)|V̂ |ψk(r)〉 is the matrix element of the disorder potential between two
eigenstates of the unperturbed Hamiltonian. Higher order terms can be incorporated into the
above formula by substituting the T -matrix instead of the disorder potential [51]:

C(k′, t) = −i Tk′k

∫ t

−∞
e(ε(k

′)−ε(k))t′ dt′ + δ(k′ − k). (50)

The time integral in Eq. (50) is divergent, but after performing a regularizing procedure at large
positive time we find [51]:

C(k′,+∞) = c(k′,k) + δ(k′ − k), (51)

where

c(k′,k) = −2πi Tk′k δ(ε(k
′)− ε(k)). (52)

For k′ �= k the square of the amplitude |c(k′,k)|2 is the scattering probability from the state
with momentum k into the state with momentum k′, from which the golden rule follows.
Consider now a wavepacket centered around k0 in reciprocal space, which approaches the im-
purity from infinity:

Ψk0(r, t) =

∫
a(k− k0)ψk(r, t) dk. (53)

As usual for a wavepacket (see also section 3), when multiplied with a smooth function of
momentum the envelope function a(k − k0) can be treated as a δ-function, however, when
multiplied with a true δ-function, it is considered smooth, reflecting the finite width of the
wavepacket in reciprocal space. In real space, the spread of the wavepacket is much larger than
the lattice constant, but much smaller than any other length scales. Using these properties of the
envelope function and Eq. (21) it is possible to write down the law for the center of mass of the
wavepacket on infinity [49]:

rc(k0, t)t→−∞ = vk0t+ δr−∞ =
∂ε(k0)

∂k0
t+

〈
uk0

∣∣∣∣ i ∂∂k0
uk0

〉
. (54)

On the other hand, after interaction with an impurity potential, we can formally construct an
outgoing wavepacket:
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Ψout(r, t) =

∫
a(k− k0)ψ

out
k (r, t) dk, (55)

where ψoutk (r, t) is given by (48). Using the perturbation expansion (47) for the T -matrix:

Tk′k = Vk′k +
∑
k′′

Vk′k′′ Vk′′k

ε(k′′)− ε(k) + iη
+ ..., (56)

and the representation for the potential matrix Vk′k = |Vk′k| · exp(i arg(Vk′k)) the following
expression for the motion of the center of mass of the outgoing wavepacket on infinity (which
contributes to the Hall current) in the second order in Vk′k can be derived making use of (50),
(51) and (52) ([49]):

rc(t)t→+∞ =

∫
|C(k′,+∞)|2

(
vk′t+

〈
uk′

∣∣∣∣ i ∂∂k′uk′

〉
− D̂k′k0 arg(Vk′k0)

)
dk′, (57)

where

D̂k′k0 =
∂

∂k′ +
∂

∂k0

. (58)

The coefficient |C(k′,+∞)|2 can be interpreted as the scattering probability into state k′ from
initial state k0 (see Fig. 6). Equation (57) has a semiclassical meaning that the average final
coordinate is the sum over probabilities of final states multiplied with corresponding coordinate
shifts. Now presenting the center of mass motion of the k-wavepacket at t → −∞ scattering
into k′-wavepacket at t→ +∞ as rc(k, t)t→−∞ = vkt+δr−∞ and rc(k

′, t)t→+∞ = vk′t+δr+∞
we define the scattering-induced side jump as

δrk′k = δr+∞ − δr−∞. (59)

Making use of equations (54) and (57) in the multiband case we can formulate a gauge-invariant
expression for side jump:

δrl′l =

〈
ul′

∣∣∣∣ i ∂∂k′ul′
〉
−
〈
ul

∣∣∣∣ i ∂∂kul
〉
− D̂k′k arg(Vl′l). (60)

Such type of expression was found already in 1982, when Belinicher et al. [52] applied it
to the studies of the photovoltaic effect. They showed that when electrons absorb polarized
light they shift according to Eq. (60) with V corresponding to the electron-photon interaction.
Unlike the golden rule which in the lowest Born approximation depends on the absolute value
of the scattering potential, the coordinate shift expression (60) depends on its phase but does
not depend on its absolute value, so, in some sense, it can be considered as complimentary to
the golden rule.
In case when the radial impurity potential is spin-independent, interestingly, the side jump does
not depend on the impurity potential at all:

δrl′l =

〈
ul′

∣∣∣∣ i ∂∂k′ul′
〉
−
〈
ul

∣∣∣∣ i ∂∂kul
〉
− D̂k′k arg(〈ul|ul′〉), (61)
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moreover, in the case of a very small scattering angle |k′ − k| � |k| for non-degenerate bands
one can disregard interband scattering and make a couple of approximations [49] which, to the
first order in |k′ − k|, allow to write down the side jump as:

δrk′k ≈ Ω(k)× (k′ − k), (62)

where Ω(k) is the Berry curvature of the Bloch band.
There are two distinctive effects due to side jump. The first one is the side jump accumulation.
After averaging over many scatterings the side jumps do not cancel and lead to the velocity
renormalization by a correction:

vsjl =
∑
l′
ωl′l δrl′l. (63)

The second effect can be attributed to the fact that when the scattering takes place in an electric
field, there is a change in the potential energy after scattering given by

ΔUl′l = eE · δrl′l. (64)

This change of energy ultimately influences the Hall conductivity and has to be accounted for
in the Boltzmann equation. We will discuss this further in the next section.
In a simple model case, it can be shown that the side jump contribution to the conductivity
depends only on the properties in the vicinity of the Fermi surface [50]. This is in contrast to
the intrinsic contribution which depends on the integrated over the occupied bands in the whole
Brillouin zone quantities. This is probably why in many cases the side jump contribution to the
AHC, which does not depend on the impurity concentration as well as the intrinsic contribution
which disregards the impurities all together, is much smaller than the intrinsic one − in order
for side jump to dominate certain resonances have to occur around the Fermi surface, while the
integrated over the BZ quantities must be small. An example when the side jump contribution
is exactly zero presents the so-called quantum spin Hall effect. In 2D Dirac bands, e.g., in
graphene, the Fermi level is placed inside the bulk spectrum gap. In this case the gapless
excitations are forbidden (except near the sample edges), so the side jump and skew scattering
do not contribute to the conductivity, but if the band has a non-zero Berry curvature, then there
is a non-zero quantized intrinsic contribution [53, 54] (see also discussion at the end of next
section).

7 AHE within the semiclassical Boltzmann equation

The semiclassical Boltzmann equation for the distribution function fl which takes into account
both the change of the momentum and the coordinate shift during scattering in a homogeneous
crystal in the presence of an external electric field E can be written down in the following way
up to the linear order in the field [49, 50]:

∂fl
∂t

+ eE · v0
l ·
∂f0(εl)

∂εl
= −

∑
l′
ωll′

(
fl − fl′ − eE · δrll′ · ∂f0(εl)

∂εl

)
, (65)

where v0
l = ∂εl

∂k
is the normal electron velocity. The total distribution function in the steady

state ∂fl

∂t
= 0 can be decomposed into the sum of equilibrium f0 and two non-equilibrium

distributions:
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fl = f0(εl) + gl + gadl . (66)

The gl and gadl independently solve self-consistent time-independent equations (compare to
(42)):

eE · v0
l ·
∂f0(εl)

∂εl
= −

∑
l′
ωll′(gl − gl′), (67)

and

∑
l′
ωll′

(
gadl − gadl′ −

∂f0(εl′)

∂εl′
eE · δrll′

)
= 0. (68)

The appearance of equation (68) in addition to standard equation (67) and an anomalous dis-
tribution function gadl happens due to following reasons. In the presence of an external field
the particle upon side jump changes its potential energy ΔUl′l (64). Since the total energy is
conserved, the scattered particle acquires additional kinetic energy Δεl′l = εl′ − εl = ΔUl′l
in order to compensate the change in the potential energy. The equilibrium distribution would
then become unstable:

∂fl
∂t

= −
∑
l′
ωll′(f0(εl)− f0(εl′)) =

∑
l′
ωll′

∂f0(εl′)

∂εl′
Δεl′l �= 0, (69)

unless compensated by an additional anomalous correction gadl to the distribution function. The
analog of this equation can be found also in Luttinger’s paper [23] and its validity was also
confirmed by numerical simulations [48].
To find the current induced by an electric field and the conductivity we need an appropriate
expression for the velocity of semiclassical particles in addition to solving the Boltzmann equa-
tion for the distribution function. In the anomalous Hall effect, one has to take into account
the renormalizations of the conventional band group velocity v0

l due to accumulations of the
coordinate shifts after many scatterings (side jump) and impurity-independent band mixing due
to electric field (the anomalous velocity):

vl = v0
l + val + vsjl =

∂εl
∂k

+ Ωl × eE +
∑
l′
ωll′δrll′. (70)

While the second term in this equation is the previously discussed here in detail Berry curvature
induced contribution, the last term is due to discussed in the previous section accumulations of
the side jumps on impurities. The total current in the system is given by:

J = e
∑
l

fl · vl = e
∑
l

(f0(εl) + gl + gadl ) · (v0
l + val + vsjl ), (71)

of which we will consider only contributions proportional to electric field. The first term in this
product gives the expression for the intrinsic conductivity

σintxy = −e2
∑
l

f0(εl) · Ωl,z (72)

discussed in detail in section 4. Below we will discuss other contributions to the total conduc-
tivity which come out of equation (71).
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Substituting expansion for the scattering matrix (56) into the golden rule (43) we can make use
of the decomposition of the scattering rates in the following way:

ωll′ = ω
(2)
ll′ + ω

(3)
ll′ + ω

(4)
ll′ + ..., (73)

where

ω
(2)
ll′ = 2π〈|Vll′|2〉dis δ(εl − εl′), (74)

and

ω
(3)
ll′ = 2π

(∑
l′′

〈Vll′Vl′l′′Vl′′l〉dis
εl − εl′′ − iη + c.c.

)
δ(εl − εl′) (75)

and so on. The superscript of the scattering rate means the order of the impurity potential it
corresponds to: ω(2)

ll′ ∼ V 2, ω(3)
ll′ ∼ V 3 and ω(4)

ll′ ∼ V 4. The skew scattering comes from the
antisymmetric part of the scattering rate [18]:

ω
(a)
ll′ =

ωll′ − ωl′l
2

. (76)

While ω(2)
ll′ is symmetric, ω(3)

ll′ and ω(4)
ll′ have antisymmetric as well as symmetric parts. Their

symmetric parts are not essential for the further discussion and they only renormalize the ω(2)
ll′

contribution. At order V 3, for example, the antisymmetric part of the scattering rate ω(3)
ll′ can be

deduced [23, 50, 56]:

ω
(3a)
ll′ = −(2π)2

∑
l′′
δ(εl − εl′′) 〈Vll′Vl′l′′Vl′′l〉dis δ(εl − εl′). (77)

Usually the properties of the skew scattering were inferred only from the lowest, third, order of
antisymmetric part of ωll′ , thus it was normally assumed that ω(a)

ll′ is proportional to the impurity
concentration n. In the next, fourth order, the antisymmetric scattering is proportional to the
product of four disorder vertexes. For a Gaussian correlated potential 〈V · V · V · V 〉dis ∼ 〈V ·
V 〉dis · 〈V · V 〉dis ∼ n2, with n as impurity concentration. Thus the higher order antisymmetric
contribution behaves as ω(4a)

ll′ ∼ n2. This fourth order term is different parametrically from
the third order term and has a distinct microscopic origin, therefore, should not be neglected.
Interestingly, as we will see, the contribution to the conductivity coming from ω

(4a)
ll′ is similar to

the side jump related contribution. Overall, for an appropriate analysis of the AHE the scattering
rate has to be decomposed in the following way:

ωll′ = ω
(2)
ll′ + ω

(3a)
ll′ + ω

(4a)
ll′ . (78)

Correspondingly, the gl distribution correction from (66) should be decomposed into the sum of
symmetric and antisymmetric in the transverse direction contributions (gad is antisymmetric):

gl = g
(s)
l + g

(3a)
l + g

(4a)
l , (79)

which solve a set of self-consistent time-independent equations corresponding to equation (67)
[10, 49, 50]:
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eE · v0
l ·
∂f0(εl)

∂εl
= −

∑
l′
ω

(2)
ll′ (g

(s)
l − g(s)

l′ ), (80)

∑
l′
ω

(3a)
ll′ (g

(s)
l − g(s)

l′ ) +
∑
l′
ω

(2)
ll′ (g

(3a)
l − g(3a)

l′ ) = 0, (81)

∑
l′
ω

(4a)
ll′ (g

(s)
l − g(s)

l′ ) +
∑
l′
ω

(2)
ll′ (g

(4a)
l − g(4a)

l′ ) = 0. (82)

Because ω(2)
ll′ ∼ n, we conclude that g(s)

l ∼ n−1 from (80). In turn ω(3a)
ll′ ∼ n and from (81) we

see that g(3a)
l ∼ n−1, while from the fact that ω(4a)

ll′ ∼ n2 we conclude that g(4a)
l ∼ n0 based on

(82). The anomalous distribution gadl ∼ n0 from (68).
Besides an intrinsic conductivity (72) (which depends as n0 on impurity concentration), there
are four other terms coming out of equation (71) which contribute to transverse current and
transverse conductivity. The anomalous distribution conductivity comes from the gadl correction
to the distribution function:

σadxy = −e
∑
l

gadl
Ex
· (v0

l )y ∼ n0, (83)

while the direct side jump conductivity corresponding to the side jump part of the transverse
velocity comes from the product with the symmetric part g(s)

l :

σsjxy = −e
∑
l

g
(s)
l

Ex
· (vsjl )y ∼ n0. (84)

The skew scattering conductivity has two terms, which correspond to g(3a)
l and g(4a)

l parts of gl:

σsk1xy = −e
∑
l

g
(3a)
l

Ex
· (v0

l )y ∼
1

n
, (85)

and

σsk2xy = −e
∑
l

g
(4a)
l

Ex
· (v0

l )y ∼ n0. (86)

The first skew scattering conductivity (85) is the conventional skew scattering conductivity,
which was intensively discussed in the past (see section 2 and e.g. [23, 56]). The second one (86)
is generally disregarded intrinsic skew scattering conductivity which is parametrically the same
as the side jump and intrinsic conductivity [50]. Overall, there are five separate gauge invariant
contributions, summarized in Table 1, each having distinct origins:

σxy = σintxy + σadxy + σintsj + σsk1xy + σsk2xy . (87)

It is possible to regroup them into three: besides intrinsic, the side jump and anomalous con-
tributions both originate from coordinate shifts at scattering events. Similarly, the conventional
and the intrinsic skew scattering both appear from the asymmetry in the collision term kernel
in the semiclassical Boltzmann equation. However, it is very insightful to remember the differ-
ences between all five. The intrinsic skew scattering conductivity is independent of the impurity
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Intrinsic Side jump Anomalous Conventional Intrinsic
distribution skew scattering skew scattering

O(n0) O(n0) O(n0) O(n−1) O(n0)

−eTr(f0 · va) −eTr(g(s) · vsj) −eTr(gad · v0) −eTr(g(3a) · v0) −eTr(g(4a) · v0)

ω
(3a)
ll′ ∼ n ω

(4a)
ll′ ∼ n2

Table 1: Mechanisms of the anomalous Hall effect within the semiclassical Boltzmann equa-
tion [10].

concentration and is parametrically very similar to the side jump related contributions, in con-
trast to a common belief that the skew scattering conductivity is inversely proportional to the
impurity concentration n. On the other hand, the side jump contribution is a direct consequence
of coordinate shifts, while the anomalous distribution contribution requires more complicated
derivation within the semiclassical theory.
Finally, it has to be noted, that sometimes such a decomposition of the AHC into five terms
the way described above may not be very transparent. For example, for a particular case of a
two-dimensional electron gas ferromagnet a new extrinsic regime of the AHE was predicted
− the so-called hybrid skew scattering is inversely proportional to the impurity concentration
(like conventional skew scattering), but does not depend on the impurity strength (like side-
jump). Moreover, in the discussion above we did not consider a contribution to the AHC which
involves the product of gad with vsj, which disappears in case of an isotropic scattering but can
give rise to a nonzero contribution given an appropriate anisotropic scattering and anisotropic
Fermi distribution.
Let us now consider a concrete example of a massive two-dimensional Dirac model Hamiltonian
with randomly placed weak δ-function-like spin-independent impurities [50, 53]. The impurity-
free 2D Dirac Hamiltonian which breaks the time-reversal symmetry can be written down as:

Ĥ0 = v(kxσx + kyσy) + Δσz, (88)

where σi are Pauli matrices and Δ characterizes the strength of the spin-orbit coupling. The
non-zero mass Δ opens a gap in the spectrum and splits the Dirac band into subbands above
and below the gap with dispersions ε±k = ±√Δ2 + (vk)2, where k = |k|, while + and −
distinguish bands with positive and negative energies. In the following we will assume that the
Fermi energy εF is positive and lies above the gap (see Fig. 7). We denote as V 2

0 and V 3
1 the

terms 〈V 2〉dis and 〈V 3〉dis, respectively. In case of this model Hamiltonian, the Berry curvature
can be easily found for both + and − bands:

Ω±
z (k) = ∓ Δv2

2(Δ2 + (vk)2)3/2
, (89)

and the corresponding intrinsic conductivity looks like:

σintxy = − e2

(2π)2

∫ ∞

0

Ω−
z (k) dk− e2

(2π)2

∫ ∞

kF

Ω+
z (k) dk = − e2Δ

4π
√

Δ2 + (vkF )2
. (90)

Concerning the side jump, for 2D Dirac Hamiltonian it can be shown that σadxy = σsjxy, thus the
total side jump conductivity is just twice the one of the two contributions, and reads:
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Fig. 7: Schematic energy dispersion for the massive 2D Dirac Hamiltonian. The Fermi level is
assumed to be above the gap.

σadxy + σsjxy = − e2Δ

π
√

Δ2 + (vkF )2

(vkF )2

(vkF )2 + 4Δ2
. (91)

In turn, the skew scattering contribution to the Hall conductivity is:

σskxy = − e2V 3
1

2πnV 4
0

Δ(vkF )4

(4Δ2 + (vkF )2)2
− 3e2

4π
√

Δ2 + (vkF )2

Δ(vkF )4

(4Δ2 + (vkF )2)2
, (92)

where the first term is the conventional skew scattering conductivity σsk1xy , inversely proportional
to the impurity concentration. The second term, independent on the impurity concentration, is
the σsk2xy conductivity, subdominant in case of weak disorder. Interestingly, when the chemical
potential lies in the gap (Fermi vector kF = 0), all contributions to the conductivity except for
the intrinsic one vanish. In this case the conductivity equals

σxy = − e2

(2π)2

∫ ∞

0

Ω−
z (k) dk = − e

2

4π
. (93)

This quantization of the Hall conductivity in closely related to the quantum spin Hall effect [54,
57, 58] . In two dimensions, there exist expressions for the correction to the distribution function
gl [49, 50, 55]:

gl = −∂f0(εl)

∂εl
· eEx · (Al|v0

l | cosϕl +Bl|v0
l | sinϕl), (94)

where ϕl is the angle of v0
l with the x-axis, and Al = τ

‖
l and Bl = (τ

‖
l /τ

⊥
l )2 in the assumption

that the transverse conductivity is much smaller than the longitudinal one, while the relaxation
times are:

1

τ
‖
l

=
∑
l′

∫
ωll′

(
1− |v

0
l′|
|v0
l |

cos(ϕ− ϕ′)
)
dk′

2π
, (95)

1

τ⊥l
=

∑
l′

∫
ωll′
|v0
l′|
|v0
l |

sin(ϕ− ϕ′)
dk′

2π
. (96)
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From (94) we see that gl is a Fermi surface property. From the arguments around equation
(69) which serve as a derivation of the anomalous distribution contribution to the distribution
function it is rather clear that gadl constitutes a Fermi surface property as well. This means that
of all parts listed in Table 1 the only conductivity to which the whole Fermi sea contributes is
the intrinsic conductivity σintxy . This is probably why in many cases the calculated from first
principles intrinsic conductivity corresponds to experimental values so well, while the only
other conductivity which can compete with σintxy is the conventional skew scattering due to its
1/n dependence on the impurity concentration, which can be quite large in the clean limit of
small n. In the next section we consider two examples of how these two conductivities can be
separated from each other.
Research on diluted magnetic semiconductors stimulated investigations of the AHE using dif-
ferent from semiclassical approaches. Due to relative simplicity of several important models,
such as, e.g., 2D Rashba model, it was possible to perform rigorous quantum mechanical calcu-
lations using Kubo and Kubo-Streda formulas [50, 53, 59, 60, 61, 62] and via quantum Boltz-
mann and Keldysh techniques [63, 64, 65, 66]. Sinitsyn et al. [10, 50] demonstrated the one
to one correspondence between semiclassical contributions to the AHE and the summation of
relevant subseries of Feynman diagrams in the Kubo-Streda formulas and similar agreement
was established with Luttinger’s theory.

8 Separating different contributions to the AHE

It is useful to write down the current flowing in a 2D system under applied external electric field
along the x axis (supposing that the sample is spatially uniform):

(
Jx
Jy

)
=

(
σxx
σxy

−σxy
σxx

)
·
(
Ex
0

)
=

(
σxxEx
σxyEx

)
, (97)

where σ̂ is the conductivity tensor and σxy component contains the anomalous contribution to
the Hall conductivity. Normally, Jy � Jx, and hence σxy � σxx. The resistivity tensor ρ̂ is
inverse to the conductivity tensor ρ̂ = σ̂−1, and its elements can be expressed in the following
way:

ρxx =
σxx

σ2
xx + σ2

xy

≈ 1

σxx
(98)

ρxy =
σxy

σ2
xx + σ2

xy

≈ σxy
σ2
xx

≈ σxy · ρ2
xx (99)

The anomalous part of the transverse conductivity σxy can be written down in the following
way:

σxy =

(
b+

a

ρxx

)
= σIAH + σsk, (100)

where we dropped the xy-subscript and denoted by σsk the conventional skew scattering part of
the conductivity, while σIAH encodes intrinsic, side jump, intrinsic skew scattering and anoma-
lous distribution part of the transverse conductivity. Finally, the anomalous Hall part of the
transverse resistivity reads:
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Fig. 8: Left: Temperature dependence of the anomalous and ordinary (at H = Ms, inset)
Hall resistivities; the solid lines are guides to the eye. Right: Analysis of the anomalous Hall
resistivity in terms of the longitudinal resistivity ρ(T ). The straight lines are fits to Eq. (102)
which allow to separate contributions to ρAH which are linear and quadratic in ρ(T ). In this
graph ρ ≡ ρxx. Taken from [5].

ρxy = ρAH = aρxx + bρ2
xx = aρxx + σIAHρ2

xx (101)

This relation serves as a main playground for analyzing experimental data. Experimentally,
it is a real challenge to separate the intrinsic contribution σIAH to the AHE from the skew
scattering contribution, while distinguishing various parts of σIAH among each other for a given
material is close to impossible at the current stage of development in the field. Moreover, on the
experimental side data on the AHE were frequently fitted in terms of a single power law ρnxx,
were n was ranging from 1 up to 4 [18, 19, 68, 69]. In this section we would like to discuss
two examples where a clear separation between the two contributions to the AHC could be
successfully performed.
Kötzler and Gil [5] report on a systematic study of AHE in hcp cobalt. They performed mea-
surements of the ρOH , ρAH and ρxx resistivities for 10−200 nm thin polycrystalline Co films in
the temperature range of 78−350 K and found that the anomalous resistance of all films is dom-
inated by a common, intrinsic term, while the extrinsic contribution due to skew scattering turns
out to be small and related with the structural disorder in the films. For two films, the field de-
pendence of several isothermal Hall resistivities is shown in Fig. 1. The anomalous and ordinary
Hall resistivities ρAH(T ) and ρOH(T ) were determined as the saturation value of the anoma-
lous Hall resistivity and the ordinary Hall resistivity at the saturation field ρOH(H = Ms, T ),
respectively, as illustrated in this figure.
Investigating the temperature dependence of the AHE in this system, Kötzler and Gil found that
both ρAH and ρxx increase with increasing temperature and the ρAH resistivity also decreases
with increasing thickness of the films (see Fig. 8). In order to see how relevant decomposi-
tion (101) is, they plotted the ratio ρAH(T )/ρxx(T ) as a function of ρxx(T ):

ρAH
ρxx

= a+ σIAHρxx (102)
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Fig. 9: Left: Temperature-dependent spontaneous magnetization M for Mn5Ge3. Upper inset
shows the RHEED pattern of a Mn5Ge3 thin film grown on Ge/GaAs(111). The lower inset
shows the temperature dependence of the inverse magnetic susceptibility, measured at T =
0.7 T. The green line is a linear fit which extrapolates the Tc of 298 K. Right: Experimental AHC
as a function ofM before and after subtracting the skew scattering (S.S.) contribution. The solid
line across the solid dots is a linear fit. Calculated σIAH values versus the z component of the
magnetization Mz (Mz = M = M0 cos θ, see text) are also shown. Taken from [46].

As can be seen from Fig. 8, relation (102) holds quite nicely for a given film thickness and tem-
perature range, which allows for a determination of constants a and σIAH . In principle, param-
eters a and σIAH via different mechanisms could depend explicitly on temperature T or mag-
netization of the sampleM , which would destroy perfect linear dependence of ρAH(T )/ρxx(T )
on ρxx(T ). This is not the case for Co films, however: the estimated value of σIAH constitutes
205 (Ω ·cm)−1 and does not depend on the film thickness, temperature or details of the impurity
scattering present in the system. This leads to the conclusion that in polycrystalline films of hcp
Co the part of the AHC, proportional to the n0, is mainly determined by the band structure Berry
curvature related part σintxy . The non-zero σsk1xy part of the AHC can be calculated via extracting
the non-zero offset a from Fig. 8.
A more complicated situation was reported and analyzed in Ref. [46] for ferromagnetic (0001)
thin films of Mn5Ge3 grown on Ge(111). For this material, the magnetization M varies signifi-
cantly in the range of considered temperatures up to 300 K (the spontaneous magnetization M
as a function of temperature is presented in Fig. 9 (left)), so that it makes sense to assume that
the coefficients a and σIAH of Eq. (102) depend on magnetization explicitly:

ρAH
ρxx

= a(M) + σIAH(M)ρxx. (103)

Without making further assumptions on the functional dependence of the quantities in Eq. (103)
on the magnetization M it would be impossible to separate the intrinsic and skew scattering
contributions from temperature or field-dependent measurements on a single sample because
temperature changes M , a(M), σIAH(M) and ρxx simultaneously. Zeng et al. employed the
result of Noziéres and Lewiner [28] that the conventional skew scattering coefficient a is nor-
mally linear in M , a = γM , while coefficient γ can be obtained by plotting ρAH/Mρxx versus
ρxx, as shown in Fig. 10 (right):
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Fig. 10: Left: ρAH as a function of temperature before (black squares) and after (red circles)
subtracting the skew scattering contribution. ρxx is also shown with a blue line. Right: ratio
ρAH/Mρxx as a function of ρxx before (black squares) and after (red circles) subtracting the
skew scattering term. The solid red line is a fit crossing the origin. Taken from [46].

ρAH
Mρxx

= γ +
σIAH(M)

M
ρxx. (104)

This plot is linear below ρxx ≈ 110 μΩ·cm, or, equivalently, T ≈ 220 K, which suggests that
the intrinsic anomalous Hall conductivity in this material is linear in magnetizationM in a wide
range of temperatures:

σIAH(M) ∼M. (105)

The parameter γ can be found as an offset by extrapolating to ρxx = 0, which, in turn, knowing
the dependence of M(T ), ρAH(T ) and ρxx(T ) (Figs. 9 (left) and 10 (left), respectively) allows
to reconstruct the dependence of σxy on M , presented in Fig. 9 (right, black squares):

σxy(M) =
ρAH
ρ2
xx

=
γM

ρxx
+ σIAH(M), (106)

from which, in turn, by subtracting the γM
ρxx

term the intrinsic conductivity σIAH(M) can be
obtained (Fig. 9, right, red circles). We can see that indeed, while the total conductivity σxy
is highly nonlinear in M , the intrinsic conductivity σIAH is linear in M in a wide interval of
the magnetization and extrapolates to 860 (Ω · cm)−1 at zero temperature. These experimental
findings are in a very good agreement with first principles calculations for the Berry curvature
part of σIAH which give a value of 964 (Ω · cm)−1 at 0 K.
The linear dependence on the magnetization of σIAH(M) can be qualitatively accounted for
by the long-wavelength, low-frequency fluctuations of the spin orientation at low temperatures.
According to experimental data the linear dependence is observed as far as the magnetization
falls off quadratically with T (up to 240 K) [46]. In this range the magnitude of the magneti-
zation M0 stays roughly constant, but the local magnetization is deviating from the easy axis.
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Making an assumption that the local conductivity is determined by the angle θ of the local mag-
netization M0 with the easy axis one can determine the local intrinsic conductivity σIAH(θ, ϕ)
by performing a calculation for an infinite ferromagnetic crystal with the magnetization at po-
lar (θ, ϕ) angles with the easy axis. By averaging over the in-plane ϕ angle one can obtain a
value for σIAH(θ) = σIAH(M = M0 cos θ), which is presented in Fig. 9 (right, blue circles)
and can be directly compared to experimental values (Fig. 9, right, red circles). This compar-
ison appears to be surprisingly good until the vicinity of the TC , where the interacting spin
waves are responsible for a different fall off of the magnetization. In general, however, looking
beyond Mn5Ge3, such ”local approximation” which employs the rigid picture of the magneti-
zation fluctuations [70, 71] serves as only one of the possible scenarios of the temperature or
magnetization dependence of the anomalous Hall conductivity.
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1 Introduction

Spin polarization, manipulation and detection are currently the most challenging tasks in semi-
conductor science. Spin injection in metals already revolutionized the data storage on hard disk
drives [1, 2]. However, spin injection into semiconductors has turned out to be much more
difficult. This is basically due to the facts that on the one hand injection of spin polarized elec-
tron from a ferro-magnetic metal into a semiconductor is very inefficient due to the enormous
mismatch of the density of states and on the other hand that only few ferro-magnetic semicon-
ductor materials exist which exhibit Currie temperatures below 100 K. Thus, the search for spin
polarizing effects in semiconducting materials guides a lot of research activities.
So far, spin injection and spin valve behaviour have been realized in magnetic semiconduc-
tors and ferro-magnetic semiconductor tunnel devices [3]. Another effect, which has recently
been discusses as a candidate for spin polarization in semiconductors, is the spin-orbit (SO)
interaction. In crystal structures the lack of inversion symmetry can lift the spin degeneracy.
Two prominent effects are the bulk inversion asymmety (BIA) or Dresselhaus-effect and the
structural inversion asymmetry (SIA). The latter is a dominant effect in quantum well (QW)
structures and know as Rashba-effect [4]. The symmetry of the QW potential is controllable to
a large extend via external gate-voltages which makes this effect one possible candidate to spin-
controlled transport in semiconductors. The most famous device concept in this context is the
spin field effect transistors or Datta-Das transistor [5]. But again for a realization a controlled
spin polarization injection and detection in semiconductor systems is required. Concepts like
the spin Hall effect (SHE) [6, 7, 8, 9] and birefringent electron optics [10] are explored with
promising results.
Another effect, which is known for quite a long time now and which is related to spin polar-
ized charge transport, is the quantum Hall effect (QHE) [11]. For odd filling factors (ν), and
especially for ν = 1, the current is highly spin polarized. The only drawback is the fact that
in order to create QHE states the device has to be subjected to a high external magnetic field
which disqualifies this effect from possible application purposes. More desirable would be an
effect which provides well defined stable transport channels for spin polarized carriers similar
to the QHE states.
In this presentation I will discuss the so-called quantum spin-Hall effect (QSHE) which is ob-
served in the bulk insulating regime in materials with a very high SO coupling. Due to band
structure effects counter propagating edge channels are formed which are oppositely spin polar-
ized [12]. This effect has been proposed to be observable in narrow graphene structure [13] and
which has been demonstrated experimentally in HgTe QW structures. For an understanding of
the fundamental details of the QSHE I will first introduce the concept of the QSHE on the basis
of the QHE and discuss the special properties of HgTe QW structures. Then I will present the
experimental signatures of the QSHE and discuss limits of stability and possible appliplications.

2 Quantum Spin Hall Effect

The most successful picture for the explanation of the experimental observation in the quan-
tum Hall (QH) regime is the formation of one dimensional edge channels. Figure 1 sketches
the situation of an electron moving in a magnetic field perpendicular to the plane of motion.
Classically, the orbits are closed and localized in the center of the sample while at the edge of
the sample skipping orbits contribute to an effective charge transport. Quantum mechanically
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Fig. 1: Schematic view of the electron motion in a magnetic field. Classically, closed cyclotron
and skipping orbit explain the transport phenomena. Quantum mechanically, the skipping orbits
are represented by an one-dimensional (chiral) edge channel (red line).

the skipping orbits are represented by one-dimensional edge channels. In the QH regime the
number of such edge channels is given by the number of occupied Landau levels (LL). The
quantized Hall conductance as well as the vanishing longitudinal resistance can be explained
within the Landauer-Büttiker formalism [14].
In this picture the QHE can be view as a first example for a non-trivial insulator. The stability
of the quantization effect is given by the fact that left and right moving channel are confined
to opposite sample edges and backscattering is prohibited as long as the edge channel wave
function do not overlap. Even the presence of scattering potentials located at the sample edges
do not influence the current transport. The edge channel will move around this scatterer on an
equipotential line (cf. Fig. 2).
Using this model picture he QSH state can now be thought as two copies of the QH state, one
for each spin component i.e., the appropriate magnetic field direction has to be opposite for
each copy. The situation of two separate copies is shown in Fig. 3 a). A combination of both
states in a single sample will result in two counter propagating edge channels with opposite spin
[cf. Fig. 3 b)]. This new state does not break time reversal symmetry and exists even without
magnetic field [12]. It should be noted that even though counter propagating channels are now

Fig. 2: Schematic view of the electron transport experiment in the QHE regime. Current trans-
port takes place only in the upper channel. Small imposed potentials do not result in backscat-
tering.
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a)

b)

Fig. 3: a) Two copies of a ν = 1 chiral QHE edges state for inverted magnetic field. Black
arrow indicates the direction of the magnetic field and blue and red arrows the spin polarization
directions. b) A combination of two ν = 1 QHE states leads to a quantum spin Hall state without
magnetic field.

present at each edge, backscattering is not possible because these states are so-called Kramer’s
doublets, Ψk,s+,Ψ−k,s−, protect by time reversal symmetry. In order to introduce backscattering
more than two Kramer’s pairs have to be present at the same edge [12], as for example in the
metallic conducting regimes.
The question which rises is now: In what kind of materials does the quantum spin Hall insulator
state exist? The first candidate which was discussed in literature was graphene [13]. For certain
edge configurations the existence of helical edge states has been predicted for narrow channels.
But due to the very small SO energy in graphene, the resulting insulating state is far too small
for QSH edge channel transport to be observable with current experimental techniques. In De-
cember 2005 Bernevig et al. [15] presented calculations which showed that the QSH insulator
state should be observable in HgTe QWs with an inverted subband structure ordering.

3 HgTe Quantum Wells

Bulk HgTe is a semimetal with a degenerate heavy hole (HH) and light hole state (LH) of the
Γ8 symmetry band at the Γ point (cf. Fig. 4). Due to the strong SO interaction in this material
the p-orbital like Γ8 band is energetically shifted above the s-orbital like Γ6 band. The related
energy difference is of about 300 meV. From this, HgTe can also be viewed as a semiconductor
with a negative band gap (Eg := EΓ6−EΓ8 = −300 meV). If a thin layer of HgTe is embedded
between Hg1−xCdxTe (with x > 10%) the degeneracy between LH and HH state is lifted due
to the quantum confinement and a gaped semiconductor is formed.
Hg0.32Cd0.68Te is a normal gap semiconductor as shown in Fig. 4. The formed HgTe/HgCdTe-
quantum well (QW) is a so-called type-III structure where the barrier conduction band edge is
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Fig. 4: Energy dispersion for conduction and valence band of HgTe and HgCdTe near the Γ
point. Indicated by arrows is the valence band offset (VBO ≈ 570meV ).

HgCdTeHgTeHgCdTe

HH1
E1

d

Fig. 5: Type-III HgTe QW structure with inverted subband structure ordering: HH1 conduction
and E1 valence band.

below the valence band edge within the QW (cf. Fig. 5). For wide wells the confined Γ8-like
levels are above the Γ6-like. Such a situation is schematically shown in Fig. 5, which depicts a
type-III QW with an inverted subband structure ordering. For a larger confinement the subband
structure ordering becomes again normal i.e.,EE1 > EHH1. However, for the observation of the
quantum spin Hall-effect the inverted subband structure ordering is essential which is the case
for QW widths, d, larger than 6.3 nm [16]. In this case, the QW exhibits a HH1-like conduction
band and an E1-like valance band with a finite gap. As band structure calculations in a tight
binding nearest neighbor hoping model showed two bands of two counter propagation anti-
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parallel spin-polarized electronic one-dimensional states exist at the the sample edges within the
bulk energy gap. These states exhibit the expected properties for the formation of the quantum
spin Hall (QSH) effect [15].

4 Measurement of the QSH effect

The existence of the QSHE edge states can be demonstrated when the Fermi energy of the
QW structure is located within the bulk energy gap. Then, electronic transport is expected to
be carried by two edge channels, which are oppositely polarized and propagating at opposite
sample edges. For a sample in Hall-bar geometry the situation is visualized schematically in
Fig. 6. Each color symbolizes one spin polarized state. A current that enters from the left into
the sample will propagate with one spin polarization along the top (blue) edge channel and with
the opposite spin state along the bottom edge (red channel). The conductance of a ballistic
one-dimensional channel is quantized and corresponds to e2/h.
For the measurement we used 7 nm wide HgTe-QW structures with and n-type doping. The
carrier concentration was ns ≈ 3 × 1011 cm−2 and the carrier mobility was determined to be
of the order of 150000 cm2/(V s) which yields an elastic mean free path of 1 − 2 μm. In
order to assure that elastic scattering does not influence the carrier transport samples have to be
fabricated with dimensions of approximately the same order.
Within the ballistic limit, edge channel transport is independent of the sample length, L, and
width, W . Thus, various samples were fabricated of various dimensions. Note, that all samples
were equipped with a top gate electrode which allows for a continuous variation of the carrier
density. The gate electrodes are only slightly larger than the devices. Thus, the contact regions
remain n-type conducting which assures the possibility of transport measurements. Starting
from an n-type conductance at zero gate-voltage the Fermi energy passes the bulk insulating
regime for increasing negative gate-voltages and finally reaches a p-type conducting regime for
voltages smaller than−2 to −4 V. The latter is a due to a rather narrow band gap of about 30 to

L

W

2 3

4

56

1

Fig. 6: Multi-terminal device sturcture of width W and length L. Indicated are the spin polar-
ized edge channels in the QSH regime by colors (red and blue) as well as the ohmic contact by
number (1 . . . 6).
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50 meV for the current device structures.
In Fig. 7 the results are shown for four-terminal measurements on different devices. For all
inverted QW devices the resistance R14,23 reaches a value of h/2e2 (≈ 12.9 kΩ) in the bulk
insulating regime while normal QW structures (d < 6 nm), which have been measuresed for
comparison, display a real insulating behaviour. The measured resistance value suggests indeed
a quantized conductance exists which does not depend on the device dimensions.
A value of R = h/2e2 would have been expected for a two-terminal device in the QSH regime.
In order to estimate the resistance value of a multi-terminal device in four-probe geometry
the Landauer-Büttiker formalism for one-dimensional ballistic conductors has to be employed
[14]. Considering the two counter propagating edge channels and the fact that within the ohmic
contacts an equilibration of the two spin channels is possible, the resistance can be calculated
by using the following transmission matrix:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 0 1

1 −2 1 0 0 0

0 1 −2 1 0 0

0 0 1 −2 1 0

0 0 0 1 −2 1

1 0 0 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

Solving the equation
Ii = e/h

∑
j �=i

Tij (μi − μj) (2)

yields R14,23 = h/2e2, a value which has been observed for all measurement using this contact
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configuration.

5 Non-locality of the QSH effect

Following the Landauer-Büttiker formalism it is possible to verify the ballistic edge channel
transport concept of the QSH state by investigating different contact configurations. From Eqs.
(1) and (2) one infers that, for example, the two-terminal resistance R14,14 should be 3h/2e2 ≈
38.7 kΩ. The agreement between model and experiment is shown in Fig. 8. More different
contact configurations which confirm the non-locality of the QSH effect can be found in Ref.
[17].

It should be noted that despite the similarity between quantum Hall effect and QSH effect the
conductance quantization in the latter case will strongly depend on the quality of the samples.
While in the QH regime edge channel transport will not be influenced by potentials fluctuations
(cf. Fig. 2) such fluctuation destroy the insulating state in the QSH regime by introducing locally
n- or p-conducting metallic regions. Such metallic regions at the edge of the sample act as
additional metallic contacts and equilibrate the chemical potentials of left and right moving
states i.e., introducing backscattering [17]. The probability of finding such metallic region at
the sample edge increases with increasing device size and with decreasing sample quality. Thus,
the device sizes for a quantized conductance in the QSH regime is limited mainly by the elastic
mean free path, in contrast to the QHE.
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Fig. 8: Quantized resistance for a two- (R14,14) and four-terminal (R14,23) measurement config-
uration in the QSH regime.
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Fig. 9: Schematic energy dispersion for QSH edge channels without (a) and with (b) external
magnetic field.

6 Stability of the QSH effect

The influence of potential fluctuations on the quantized conductance in the QSH regime will
mainly depend on the actual energy gap and especially on the position of the Fermi energy with
respect to the conduction and valence band edge. Fig. 9 (a) gives a simple schematic illustration
of the energy dispersion at the sample edge. If the Fermi energy is located at mid-gap position
the stability is largest. In case of HgTe QWs the energy gap is of the order of 30 to 50 meV
which is quite large and assures that the QSH effect is observable for temperatures up to at least
4 K [18].
Edge channel transport is also limited by the extension of the edge channel wave function into
the bulk. If the sample width decreases below a certain limit the wave functions of opposite
edges overlap and backscattering can take place [19]. An estimation shows that this might
happen for device sizes lower than 200 . . . 250 nm, which has been confirmed by measurements
on narrow device structures [9].
Another effect which influences the stability of the QSH state will be introduced by an external
magnetic field. The magnetic field destroys the time reversal symmetry and opens a gap in the
linear edge channel dispersion [schematically shown in Fig. 9 (b)]. The strength of the gap
depends on the direction of the magnetic field relativ to the plane of the QW [16, 20]. Fig.
10 shows the experimental dependence of the QSH effect on the direction of magnetic field.
The influence is strongest if the magnetic field is applied perpendicular to the QW plane. The
quantized conductance is destroy at a field strength of about 25 mT. In parallel configuration
the critical magnetic field has to be at least ten times higher to result in the same effect [20].

7 Applications

The remaining question is whether or not it is possible to use the QSH effect for spin injection,
detection, and control purposes. In order to explore this possibility systems or regions that
exhibits an QSH state have to be connected to systems with different defined spin transport
properties.
A QSH system can be used to separate spin states in multi terminal devices (cf. 6). Thus, it
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can easily be used to transport and detect spin polarized currents or to inject spin polarized
currents into a metallic regime. However, it will not be an easy task to fabricate planar devices
of different semiconductor materials. Thus, for first application the spin properties of metallic
HgTe QW have to be used. Due to the narrow gap usual optical spin detection and injection
techniques cannot be employed. Hence, electronic spin dependent transport mechanisms have
to be employed.
HgTe QWs exhibit one of the larges Rashba SO splitting for semiconductors. Rashba energies
of up to 30 meV have been observed [21]. In systems with a strong Rashba SO splitting the
spin Hall effect (SHE) can be used to create spin polarizations at the sample edges [7, 8, 22].
Indeed, an intrinsic SHE signal has been observable for metallic HgTe QW structures in an all-
electric measurements [9]. However, it turned out that only for the p-type conducting regime
the spin related voltage signal was detectable. For the n-type conducting regime the spin signal
remained unresolved.
The idea is now to combine a QSH system with a SHE system using split-gate technologies.
Thus, these two regimes, which exist in HgTe QW for different gate-voltages, can be realized in
close vicinity. Schematic device structures are shown in Fig. 11. Both regions are connected by
a single contact. This device can now be used in two configurations: First, spin polarization is
created using the SHE. The spin accumulation at the sample edge is then detected by the QSH
edge channels [Fig. 11 a)]. Second, a spin polarized current is injected from the QSH regime
into the metallic n- or p-type system. The inverse SHE [6, 9] creates a voltage signal due to the
injected spin current [Fig. 11 b)]. Measurements of all configurations confirm these application
concept and moreover, reveal a very high spin sensitivity because even a SHE signal in the
n-type conducting regime became detectable [23], which has been unresolved in an all-electric
SHE measurement configuration [9].

8 Conclusion

The quantum spin Hall effect (QSHE) is a new non-trivial insulator state which exhibits ex-
traordinary spin transport properties with a high potential for spintronics applications. The big
advantages of this state are that neither external magnetic field or magnetic materials nor polar-
ized light sources are required for the creation or detection of spin polarized carriers, and that
spin states are transported dissipationless in ballistic one-dimensional edge channels.
Up to now, experimentally, this effect has only been demonstrated in HgTe quantum well sys-
tems, but the search for further materials with these extraordinary properties is on and its real-
izations are awaited.
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1 Introduction

Carbon is one of the most abundant elements of the universe (3.5 %) mainly existing as 12C (98.9
% 12C, 1.1% 13C). The electronic configuration of carbon is similar to silicon being 1s22s22p2,
i.e., carbon exhibits a half-filled sp-shell like Si and Ge. While Si has been overwhelmingly
used for electronics taking over after an initial success of Ge, carbon has only recently been
discussed as an important alternative.
The neglect of carbon so far1 is due to the fact that the two bulk phases of carbon are either
semimetallic (graphite), i.e., they lack a band gap, or it has been rather difficult to obtain n-type
doping (diamond). Only recently, n-type doping using either P, N [2] or a so-called surface
transfer doping [3] has been achieved for diamond. Consequently, first diamond field-effect
transistors with gate length of 1.5 μm have been built [4], which are extremely attractive for
high-temperature applications.
The recent interest into carbon by the transistor community is due to the fact that further
nanoscopic allotropes have been found, most notably carbon nanotubes [5] and graphene [6].
These materials exhibit extremely high mobilities even at room temperature. Thus, both nano-
scopic structures have already been used within efficient field-effect transistors [7, 8] and carbon
nanotubes are meanwhile part of the alternatives considered within the International Technology
Roadmap for Semiconductors [9].
Major challenges in that respect are the efficient separation of metallic and semiconducting
nanotubes [10] preferable by a selective growth process and, for graphene, the cost-efficient
production of graphene templates, respectively graphene wafer materials [11].
Besides their perspectives with respect to charge-based electronics, carbon materials are also
extremely attractive for spin-based electronics. In addition to the high mobility of graphene
and carbon nanotubes, two specific reasons favor these materials for spin applications. Firstly,
carbon is lighter than any other element with a half-filled sp-shell and, thus, exhibits a small
spin-orbit coupling, which to first order scales with the charge of the nucleus Z. On the other
hand, it is well known that spin-orbit coupling is the main source for spin-relaxation in solids.
Thus, one expects an extremely stable spin degree of freedom in carbon materials. Indeed, a
spin relaxation length of 50 μm (2 μm) has already been deduced from spin-dependent transport
experiments for carbon nanotubes (graphene) as a lower bound still restricted by preparational
conditions [12, 13]. Secondly, the nucleus of 12C has no nuclear spin and, using laser purifi-
cation, an isotope purity of, at least, 99.983 % 12C is possible [14]. Since it is known that
spin coherence is limited by the hyperfine interaction between electron and nuclear spins in
III-V materials [15], the absence of nuclear spin is extremely favorable for applications in spin-
based quantum information. Indeed, using negatively charged nitrogen-vacancy complexes in
diamond as spin centers, a coherence time of 350 μs has been reported at room temperature
[16, 17]. This is significantly larger than the coherence time of 1 μs in GaAs quantum dots at
135 mK [15]. Even without spin-echo techniques, the room-temperature dephasing time of the
diamond centers is about 2 μs compared with a dephasing time of 10 ns in GaAs quantum dots
at 135 mK. The spare distribution of nuclear spins in diamond, moreover, allows to transfer the
coherent information to the nuclei providing a coherence time of more than 20 ms [18].
These properties make carbon materials a very promising option for spintronics. The current

1This article does not deal with organic materials which, of course, also contain carbon as an ingredient and
which are important, in particular, with respect to low-cost electronic applications. However, the spin transport
properties of organic materials, although prospective, have only partly been studied so far [1], which leads to a
currently incomplete framework.
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article summarizes the recent results and is organized as follows. Chapter 2 describes general
properties of graphite, diamond, graphene and carbon nanotubes. Chapter 3 and 4 deal with the
spin transport properties of carbon nanotubes and graphene. Chapter 5 will describe the results
of coherent manipulation of spins using nitrogen-vacancy centers in diamond and chapter 5 will
discuss the success and the perspectives for using spin centers in graphene or carbon nanotubes.

a
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if g h

d

e

Fig. 1: (a) Schematic phase diagram of carbon; (b) crystal structure of graphite; (c) crystal
structure of diamond; (d) idealized structure of graphene; (e) corrugated structure of graphene;
(f) structure of multiwall carbon nanotube; (g) structure of carbon nanotubes with different
chirality: left: armchair, middle: zigzag; (h) structure of C60 fullerene and two zigzag carbon
nanotubes; (i) structure of C60 containing a dopant atom in the center.

2 General properties of carbon materials

Figure 1 (a) shows the phase diagram of carbon bulk materials. The most common phase
energetically favored at atmospheric pressure is graphite with a crystal structure shown in Fig.
1 (b). It consists of planes of graphene (Fig. 1 (d)), where the carbon atoms exhibit a sp2+pz
configuration leading to strong binding via the sp2 hybrid orbitals and a weaker π-bonding via
the pz orbitals. The latter orbitals are responsible for the electrically metallic properties of
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graphite. The graphene sheets are stacked, i.e., they are only weakly bound by van der Waals
forces between the π orbitals. Consequently, it is rather easy to separate stacks of graphene
sheets from each other, e.g., by ripping it using scotch tape.
The high pressure phase of carbon is diamond being metastable at atmospheric pressure with
the crystal structure shown in Fig. 1 (c). Here the carbon atoms exhibit a sp3 configuration of
the atomic orbitals. This results in the so-called diamond structure shown in Fig. 1 (c) which
consists of two fcc lattices shifted by (1/4, 1/4, 1/4) along the diagonal of the cube. The sp3

bonds of diamond are much stronger than the van der Waals forces of graphite making diamond
an extremely hard material. Since the π-bond is missing, diamond is not a metal, but a large
gap insulator.
The easy separation between planes in graphite can be exploited to make single layers of
graphene. Therefore, one multiply uses scotch tape in order to thin down the graphene stacks
until stacks of only a few layers exist on the scotch tape [6]. Pressing these layers to a Si
substrate with a 300 nm thick SiO2 allows to produce single layers and to distinguish these
monolayers from multilayers by their optical appearance due to an interference effect [19]. Ad-
ditionally, Raman spectroscopy can be used to identify single layers [20]. The graphene sheets
have the tendency to undulate, i.e., they look more like Fig. 1(e) than like Fig. 1(d) exhibiting
a wave length of about 10 nm and a wave amplitude of about 1 nm [21, 22]. Graphene exhibits
a very interesting electronic structure due to the two inequivalent atoms within the unit cell.
This leads to cones at the edges of the Brillouin zone crossing the Fermi level, i.e., to a linear
dispersion E(k) = � · vF · k similar to light with a Fermi velocity of vF � 106 m/s representing
the effective velocity of light of the quasiparticles in graphene. The two inequivalent atoms are
an additional degree of freedom which can be described by a pseudospin leading to a Dirac-like
HamiltonianH = �vF ·σ ·k where σ represents the 2D Pauli matrix [6]. The energetic similarity
between sp3- and sp2-orbitals favors the existence of additional allotropes and indeed nanostruc-
tures like nanotubes (Fig. 1 (f), (g), (h)) or fullerenes (Fig. 1 (h), (i)) can be produced, e.g.,
by simple discharge techniques using carbon electrodes and various catalysts [23]. Single-wall
nanotubes are basically rolled up graphene sheets classified by their circumference vector as
shown in Fig. 2 (a). If the circumference vector runs parallel (perpendicular) to a lattice vector,
the tube is called zigzag (armchair) nanotube. The electronic properties of nanotubes depend
on the circumference vector leading to the easy rule: If (a1, a2) is the circumference vector in
units of the lattice vectors of graphene, the nanotube is metallic for a1 − a2 = 3n (n ∈ Z)
and semiconducting otherwise. This can be easily understood looking at the band structure of
graphene in Fig. 2 (c). The bonding and antibonding π and π� bands of graphene cross the
Fermi level exactly at the corners of the Brillouin zone due to the two degenerate atoms within
the unit cell. Rolling-up the graphene sheet leads to an additional quantization condition for the
wave vector k, i.e., the wave vector along the circumference k‖ multiplied by the radius of the
nanotube r must be an integer (k‖ · r = n mit n ∈ Z). Consequently, only discrete k‖-values are
allowed leading to equidistant k-lines perpendicular to the circumference direction as depicted
in Fig. 2 (d) and (e) together with the Brillouin zone of graphene. Only if these lines cut the
corners of the Brillouin zone, the nanotube provides states at the Fermi level leading to metallic
conductivity. Figure 2 (f) and (g) show the resulting band structure along the tube. Only in the
case of metallic tubes, there are two branches with linear dispersion crossing the Fermi level
and leading to a constant density of states (DOS(E) ∝ const). All other branches in metallic
and semiconducting tubes show a nearly parabolic energy dispersion at the onset energy Ei
leading to DOS(E) ∝ 1/

√
E − Ei which results in the characteristic van-Hove singularities at

the onset energies. The width of the semiconducting gap is bassically inversely proportional to
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Fig. 2: (a) Graphene sheet with lattice vectors a1, a2 and circumference vector Ck indicated; the
vector T points along the tube axis and the dashed lines mark the circumference directions for
armchair and zigzag nanotubes; (b) atomic structure of graphene with marked circumference
vectors; small (blue) dots are semiconducting, larger (green encircled) dots metallic nanotubes;
(c) band structure of graphene; (d), (e): Brillouin zone of graphene (white hexagon) with mea-
sured Fermi surface as a color plot and marked allowed k values of two nanotubes with different
circumference vector; (f),(g) band structure and resulting density of states of a metallic (f) and
a semiconducting (g) nanotube; (h) primary band gap Egap of semiconducting tubes as a func-
tion of the tube diameter d as measured by scanning tunneling spectroscopy (STS) [25]; (i)
secondary band gap of metallic nanotubes as a function of radius r as measured by STS; inset
shows the measured secondary gap for a (9,0)-nanotube [26]; (j) calculated dispersion of a
carbon nanotube as a Luttinger liquid; dashed orange lines mark the one-particle dispersion
of the nanotube, while blue lines mark the dispersion of charge (steeper) and spin (less steep)
density wave modes [28].

the tube diameter being about 0.8 eV at a diameter of 1 nm as shown in Fig. 2 (h) [24, 25].
Of course, the chemical bonds in nanotubes are not perfect sp2-bonds and curvature leads indeed
to an opening of a band gap even for nominally metallic tubes. This is shown in the inset of
Fig. 2(i) for a tube with a circumference vector (9,0) [26]. This so-called secondary gap scales
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with EGap ∝ 1/r2 and is more than one order of magnitude smaller than the semiconducting
primary gap described above [24]. Only for armchair tubes the secondary gap is absent and,
thus, only armchair tubes are real metals even at low temperature.
It should be mentioned that metallic nanotubes are one-dimensional systems and, as such, ex-
hibit Luttinger properties [27, 28], i.e., the principal excitations are not single particle excita-
tions but collective ones. In particular, charge and spin density waves are the excitations close
to the Fermi level. They exhibit a different dispersion as shown in Fig. 2 (j). The different
velocities of spin density wave and charge density wave lead to spin-charge separation, i.e., the
charge moves faster than the spin, which might be additionally advantageous for spin transport
properties.
Finally, it should be kept in mind that the electronic properties of nanotubes can be modified
intentionally by either filling the nanotube with molecules as C60 (Fig. 3(a)) or by exploiting
natural defects within the nanotube (Fig. 3 (b)) and at their end (Fig. 3(c)). In addition,
multiwall nanotubes offer the possibility to provide electrical conductivity even, if some of the
tubes are semiconducting.
A very attractive property of graphene and nanotubes is the long mean free path which is caused
by the fact, that extended defects can not lead to backscattering. The formal reason is the
pseudospin related to the two inequivalent cones of the band structure of graphene (Fig. 2 (c))
which leads to a cancelation of backscattering by a Berry phase [33]. In simplified terms, the
Fourrier components of the extended disorder have a too low wave number to couple cones at
the opposite corners of the Brillouin zone as required for backscattering. Also low-energy and,
thus, low wave length phonons, which are present at low temperature, provide not enough k-
vector to couple the opposite edges of the Brillouin zone. A minor correction to this statement
comes from the fact that the band structure close to the Fermi level is not a perfect cone, but
exhibits an outwards warping. However, the major sources of backscattering remain atomically
sharp defect potentials and optical phonons. In graphene, the edges can be an additional source
of backscattering.
The transport properties of single wall carbon nanotubes are indeed exceptional [34], i.e., they
do not provide weak localization at low temperature. Instead, interference effects of the elec-
tronic waves due to backscattering at the contacts have been observed up to length of 1 μm
showing a long mean free path, at least, at 1.5 K [35]. For multiwall carbon nanotubes, the elas-
tic mean free path is also rather long (e.g. 250 nm), but diffusive transport [37] as well as weak
localization has been clearly observed [38], although quantized conductance values indicating
ballistic transport properties have also been found [39]. Interestingly Aharanov-Bohm mea-
surements performed with the setup shown in Fig. 3 (e) indicate that the current in multi-wall
nanotubes flows primarily through the outermost nanowire [36].
Graphene exhibits an exceptional mobility of 2 m2/Vs at room temperature if deposited on SiO2,
which translates to a mean free path of 0.3 μm [6]. Suspending the graphene and additionally
annealing it by an extremely high current density of J = 2× 1012 A/m2 increases the mobility
up to 23 m2/Vs at 5 K [40]. Weak localization has firstly not been observed [41], which was
ascribed to the phase-breaking influence of the rippling as visible in Fig. 3(h) [21, 22], but
later weak localization has been found in other samples and has been ascribed primarily to edge
scattering [42].
It is obvious that the very long transport length combined with the low mass of carbon leading to
low spin-orbit coupling and the nearly absent nuclear spin leading to low hyperfine interaction
make graphene and carbon nanotubes extremely attractive for spintronics.
Since fullerenes have barely been used for spin transport so far, they will be described only
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Fig. 3: (a) Carbon nanotube filled with fullerenes; the resulting conduction band DOS as mea-
sured by STS is shown in the background [32]; (b) defect structures (red) combining two nan-
otube areas which results in pentagons and heptagons of carbon; (c) end area of a nanotube;
note the similarity to fullerenes; (d) setup for magnetotransport measurements of C60 with ferro-
magnetic Ni contacts; the inset shows the contact region with C60 molecules present but barely
visible; (e) conductance curves of the setup in (d) as a function of source-drain voltage between
the Ni contacts at T = 1.5 K; the blue (green) curve is measured at 250 mT (15 mT) with Ni
contact magnetization oriented parallel (antiparallel) with respect to each other; (f) tempera-
ture dependence of the conductance curve of (e) with parallel magnetization of the contacts;
inset shows the logarithmic temperature dependence of the peak values [43]; (g) Multiwall car-
bon nanotube deposited on four gold electrodes for a four-point measurement [36]; (h) STM
image of graphene as deposited on SiO2; the color scale displays the atomic resolution while
the long range corrugation is displayed in 3D [22].

briefly. As shown in Fig. 1(i), they consist of hexagons and pentagons of carbon atoms. In
particular, the pentagons deviate strongly from the sp2 hybridization. C60 is the most stable
configuration and consists of 20 hexagons and 12 pentagons. Also all other fullerenes contain
12 pentagons, but a different number of hexagons. Similar configurations are found at the end
of nanotubes. The electronic structure of fullerenes is molecular-like exhibiting discrete levels.
Most importantly, they have a lowest unoccupied (LUMO) and a highest occupied (HOMO)
energy level, both derived from π- and π�-like elementary binding orbitals. Also fullerenes can
be filled and, thereby, doped leading to interesting properties as, e.g., superconductivity [29].
Ferromagnetic properties of polymerized C60 [30] as well as of other carbon materials after
specific treatment, e.g., ion bombardment with hydrogen, [31] have been reported, but these
results are still under debate. More interestingly, C60 molecules have been placed between
Ni contacts by electromigration (Fig. 3(d)) and exhibit an exchange-split Kondo resonance.
The exchange splitting of the Kondo peak can be turned on and off by aligning the contact
magnetization parallel or antiparallel to each other as shown in Fig. 3 (e). The logarithmic
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temperature dependence of the peaks shown in Fig. 3(f) identifies them clearly as Kondo peaks
[43].

��

a
b

Fig. 4: (a) Calculated band structure of diamond plotted in the high symmetry directions; (b)
photoemission measurement of the valence band of diamond (color plot) with superimposed
calculated band structure

Finally, Fig. 4 shows the band structure of diamond, which exhibits the typical sp3-appearance
consisting of three p-like valence bands and one s-like conduction band similar to Si, GaAs,
etc.. The low spin-orbit interaction is apparent by the fact that the valence bands do not exhibit
a spin-orbit gap. More detailed spectroscopic measurements of acceptors indicate a spin-orbit
gap of 6 meV [44], which is a factor of 60 lower than in GaAs. The band gap is large with 5.48
eV and the effective masses are 0.2 and 0.25 for electrons and holes, respectively.

3 Spin transport in carbon nanotubes

The first successful spin transport measurements in carbon based materials have been performed
using carbon nanotubes [45]. Therefore, a multiwall tube (MWNT) with a diameter of 10-40
nm has been placed below two electrodes made out of cobalt. An electron microscope image of
the device is shown in Fig. 5 (a). The Co electrodes are about 300 nm apart just connected by
the MWNT. The resistance of the device is dominated by the intrinsic resistance of the nanotube
with a value of about 250 kΩ.
Measuring this resistance differentially by using lock-in technique as a function of a magnetic
field applied within the surface plane (Fig. 5(b)), the resistance changes twice (back and forth)
by about 8 % and the switching fields depend on the sweep direction of the field. This is a
behaviour well known for many magnetoresistance effects, which is attributed to the different
coercive fields of the two electrodes. Within the black curve of Fig. 5(b), where the B-field
increases with time, the first electrode switches at about 5 mT leading to an antiparallel orienta-
tion of the magnetization of the two electrodes. In this configuration the resistance is high, since
the majority of electrons injected from one electrode, e.g., the spin-up electrons N1↑ find only
few empty states within the second electrode, where the spin-up electrons are minority states.
At higher field of about 30 mT also the second electrode switches. Thus, the two electrodes
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Fig. 5: (a) Electron microscopy image of a multiwall nanotube (MWNT) in between two Co
electrodes [45]; (b) magnetoresistance curve of the sample shown in (a); the arrows within the
image mark the field sweep direction, while the arrows above the image mark the relative orien-
tation of the two electrodes; (c) electron microscopy image of MWNT bridging two electrodes
of La0.7Sr0.3MnO3 (LSMO) [12]; (d) magnetoresistance curve of the sample shown in (c) with
arrows marking the relative orientation of the electrodes; (e) sketch of a four probe measure-
ment of magnetoresistance using four Co electrodes on top of a single-wall nanotube [49];(f)
measurement of the non-local resistance dV/dI of the sample sketched in (e) with arrows mark-
ing the direction of field sweep; (g) nanotube between two PdNi contacts [50]; (h) differential
conductivity of the sample shown in (g) as a function of Vsd and Vg; the color code is visible
at the scale bar on the right; (i) model of the assumed tunnel barriers between the electrodes
(green) and the tube level (black line); (j) lower curve: conductivity of the nanotube exhibiting
two Coulomb-peaks; upper curve: measured magnetoresistance (TMR); the line is the result of
a model calculation (see text)

exhibit parallel orientation of magnetization, which reduces the resistance. Going back in mag-
netic field, the first electrode switches at about - 15 mT and the second one at about - 60 mT.
The fact, that there are several additional switching effects of smaller magnitude, is attributed
to the presence of magnetic domains at the edges of the electrodes.

A simplified evaluation of the expected resistances is σ‖ ∝ N2
maj+N

2
Min for parallel orientation
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and σ↑↓ ∝ Nmaj · NMin + NMaj · NMin for the antiparrallel orientation of the electrodes.
Thereby, Nmaj/min is the density of states at the Fermi level of the cobalt for the two different
spin orientations. Bulk Co exhibits a spin polarization PF := (NMaj −NMin)/(NMin +NMaj)
of 34 % leading to an expected change in resistance by 21 %. This is significantly larger than
the measured value of 8 %.
There are three possible reasons:

1. Firstly, the spins might be switched within the carbon nanotube due to scattering leading
to a spin polarization of the injected electrons which decays with distance from the injec-
tion electrode. Assuming an exponential decay P (l) = PF · exp (−l/l0), one obtains a
decay length called spin relaxation length of l0 � 130 nm.

2. Secondly, scattering centers at the interface between Co and the MWNT might reduce the
spin polarization of the injected electrons.

3. Thirdly, the resistance mismatch between the electrodes and the MWNT leads to a re-
duced spin polarization in the MWNT, if the transport is diffusive [46]. This is due to the
fact that the electrochemical potentials basically drop within the MWNT independent of
the spin. This problem can be solved either by using ballistic conductors between the spin
polarized electrodes or by introducing a tunnel barrier between the ferromagnetic elec-
trodes and the MWNT [47]. Alternatively, the spin polarization PF could be increased
close to 100 %.

The later two solutions are combined in an experiment using MWNT and La0.7Sr0.3MnO3

(LSMO) as an electrode material [12]. LSMO is ferromagnetic with a Curie temperature of
365 K and exhibits, at least, theoretically a spin polarization PF � 100 %. Indeed, the exper-
iment, which uses a longer MWNT bridging a gap of about 2 μm (Fig. 5 (c)) shows a better
magnetoresistance of 60 % (Fig. 5 (d)) than it was found within the experiments using Co
electrodes. Note that the resistance of this device is three orders of magnitude larger than the
resistance of the device with Co electrodes indicating tunneling barriers between the LSMO and
the MWNT. A model description of the results based on density functional calculations deduces
a spin relaxation length of l0 � 5 μm.
Single-Wall nanotubes have also been probed using Co contacts initially finding a magnetore-
sistance of 2 % and estimating a spin relaxation length of 1.4 μm [48]. Here, also four-probe
measurements have been performed [49]. Therefore, the spin current is driven between two Co
contacts and the resulting voltage is measured across two other Co contacts as shown in Fig.
5 (e). The general idea is that spin polarized electrons are injected at contact F3. They drift
towards F4 due to the applied electric field, but they also diffuse towards contact F2. Thus,
F2 measures an electrochemical potential, which is proportional to the spin polarization di-
rectly below the contact, but within the nanotube. Since the spin density within the nanotube
decreases with distance from F3, the corresponding potential is less at F1 giving rise to a mea-
surable voltage between F1 and F2. If the injected spin polarization changes sign, the voltage
also has to change sign. This is indeed observed in the magnetoresistance curves of Fig. 5 (f),
where Rnon−local is the measured voltage between F1 and F2 divided by the current flowing be-
tween F3 and F4. The importance of this non-local method is that it is not affected by spurious
effects (change of B-field can influence the current within the tube, anisotropic magnetoresis-
tance within the electrodes, etc.), but only detects the injected spins. A detailed evaluation of
the non-local data indicates that the two-terminal resistance in this sample overestimates the
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spin injection efficiency by a factor of four, i.e., the magnetoresistance caused by spin injection
is not 6 % but only 1.5 %, the other 4.5 % originating from spurious effects.
The most intriguing experiment used a two-terminal measurement, but an additional gate volt-
age, which was able to tune the strength and even the sign of magnetoresistance [50]. Thus, the
first step towards a spin-based field effect transistor, tunability of spin transport by an electric
field, has been achieved. Currently, there is no gain of this transistor and it works only at 1.5 K,
i.e., there are remaining challenges.
Figure 5 (g) shows the setup using a PdNi alloy for the elctrodes. The different widths of the
two electrodes guarantees that they are switching at different B-field. The important difference
of this device with respect to previous ones is that it shows clear Coulomb blockade oscillations
and the corresponding Coulomb diamonds (Fig. 5(h)), i.e., the electrons are injected one by
one into the nanotube. The nanotubes are deposited on conducting, degenerately doped Si with
a 400 nm SiO2 layer on top. A gate voltage Vg applied to the Si couples capacitively to the
nanotube and, thus, changes the charge on the nanotube one by one. Each time a new electron
is added, the corresponding energy level is at EF and a current can flow through the nanotube,
even if the source-drain voltage Vsd between the PdNi electrodes is low. This leads to nearly
equidistant peaks in conductivity as a function of gate voltage as shown in the lower part of Fig.
5(j). If Vsd is increased , current can also flow, if the energy level within the nanotube is away
from EF , which leads to the characteristic diamond-shaped regions of suppressed conductance
in the Vg-Vsd-plane visible in Fig. 5 (h). If one now measures the magnetoresistance (TMR),
i.e., the difference in resistance between the parallel and the antiparallel orientation of the PdNi
electrode magnetization divided by the sum, one gets the upper curve in Fig. 5 (j). The TMR
oscillates each time, when a new electron enters the nanotube region. At the resonance, i.e.,
when an energy level is aligned with EF , TMR is negative, while it is positive elsewhere.
The authors propose the following explanation partly based on an earlier theoretical study [51].
As depicted in Fig. 5 (i), the nanotube is coupled asymmetrically to the two electrodes, i.e.,
the tunneling rate ΓL from the left electrode to the nanotube is much lower than ΓR. The
transmission T of electrons across the nanotube is described as a Breit-Wigner resonance, i.e.,

T (EF ) =
ΓL · ΓR

(EF − E0)2 + (ΓL + ΓR)2/4
(1)

with E0 being the energy of the level within the nanotube. Importantly the transmission rate
of each tunnel barrier depends additionally on the spin polarization PF of the electrode via
Γ↑ ∝ 1 + PF and Γ↓ ∝ 1− PF . If ΓR >> ΓL, one can approximate T ∝ ΓL/ΓR, if E0 � EF ,
i.e., at resonance, while one gets T ∝ ΓL · ΓR if |EF − E0| >> (ΓL + ΓR)/2, i.e., far away
from the resonance. Assuming that PF is the same for both electrodes, one can calculate the
magnetoresistance

TMR =
T↑↑ + T↓↓ − T↑↓ − T↓↑
T↑↑ + T↓↓ + T↑↓ + T↓↑

(2)

Inserting T ∝ ΓL/ΓR and Γ↑ ∝ 1+PF and Γ↓ ∝ 1−PF at resonance, one gets: TMR ∝ −P 2
F

Consequently, the TMR is negative at resonance as observed experimentally.
Doing the same calculation far away from the resonance (T ∝ ΓRΓL), on gets TMR ∝ +P 2

F .
Thus, the sign change of TMR requires different tunneling electrodes at both ends of the nano-
tube. Refining this model by additionally considering the spin splitting within the dot due to the
effective magnetic field of the electrodes, the TMR data points in Fig. 5 (j) can be reproduced
quantitatively by the solid line using a spin polarization of the electrodes of PF = 20 %, a
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spin splitting energy of 0.26 meV, if the electrodes are parallel, and a ratio of tunneling rates
ΓR/ΓL � 35 with ΓR � 1012/sec.
The experiment has also been performed with MWNTs and works as well, although less easy
to be interpreted. Finally an oscillation of magnetoresistance with gate voltage without sign
change and with an amplitude of about 4 % has been observed for nanotubes with lower resis-
tance, and is interpreted as due to standing electron waves between the electrodes which have an
alternating spin orientation as a function of energy for parallel electrodes [53]. Consequently,
carbon nanotubes can act as building blocks of spin transistors, although the spin-orbit coupling
is weak and the standard Datta-Das transistor [52] is not working.

4 Spin transport in graphene

a cb

Fig. 6: (a) Electron microscopy image of a monolayer graphene on Si/SiO2(300 nm) with four
Co electrodes separated by tunneling barriers from graphene for a nonlocal measurement of
magnetoresistance [13]; (b) non-local magnetoresistance curve of the sample in (a) with B-
field applied parallel to the graphene plane; arrows indicate the magnetization direction of the
four electrodes; (c) non-local resistance in the parallel configuration of electrode 2 and 3 as
a function of B-field applied perpendicular to the graphene plane as sketched in the inset; the
two curves are recorded at different gate voltages (red:-40 V, black: 20 V = Dirac point); the
lines are fits of the experimental data using diffusion constant D, spin dephasing time τ and
spin dephasing length λ as marked in the inset table.

Shortly after the discovery of graphene [6], it was realized that graphene has the same advan-
tages as carbon nanotubes (low spin-orbit coupling, low hyperfine coupling). The first report of
a spin-valve effect using NiFe electrodes was still ambigous [54], but shortly later convincing
experiments using a four-probe measurement (Fig. 6(a)) with Co electrodes separated by an
Al2O3 tunnel barrier from the graphene have been published [13]. Figure 6 (b) shows the non-
local resistance (V12/I34) as a function of magnetic field applied in the plane of the graphene.
The arrows mark the magnetization directions of the four electrodes. A sign change depending
on the relative orientation of the two inner electrodes is clearly observed. Using samples with
different distances between the inner two electrodes, the authors deduce a spin-flip length of
about λsf = 1.5 − 2 μm and a polarization of the injected electrons of PF = 10 %. Besides
flipping from spin-up to spin-down, the spins can also precess, i.e., they can change the phase
of the spinor. A magnetic field applied perpendicular to the direction of the injected spins leads
to a precessional motion around the magnetic field with a precession frequency ω = gμBB/�
(g � 2: g-factor of graphene, μB: Bohr magneton). Within a one-dimensional ballistic system,
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this would lead to a cosine-oscillation of the non-local resistance. However, the diffusive mo-
tion of the electrons within the 2D graphene from the injection electrode 3 towards the detection
electrode 2 leads to a mixture of different spin orientations at electrode 2, i.e., to a damped oscil-
lation, which is indeed visible in Fig. 6(c). The appearance of a mixture of spin orientations due
to different paths of the electrons is called spin dephasing and the corresponding length scale,
on which originally parallel spins decay exponentially, is called spin dephasing length λsd. It
can be deduced from the curves in Fig. 6(c), which are called Hanle-curves, and turns out to be
λsd = 1.3− 1.6 μm slightly depending on the electron density of the graphene, which is tuned
by a gate voltage. The fact that λsd � λsf indicates that spin relaxation might govern the ap-
parent mixture of spins below electrode 2. Further experiments revealed that the spin relaxation
is slightly anisotropic in graphene being 20 % lower if the spins are injected perpendicular to
the graphene plane [55] and that the injected spins can be drifted effectively by an electric field
[56].
The gate dependence of the magnetoresistance has been studied by four-probe measurements
using permalloy contacts without tunnel barriers and five sign changes have been observed
between gate voltages of 70 V and −70 V [57]. They are interpreted in terms of Fabry-Perot
resonances similar to the results found with SWNTs [53], but the still very irregular gate voltage
dependence calls for further studies. A sign change of magnetoresistance has also been observed
for multilayer graphene in two-probe measurements [58].
Although the spin relaxation length appears to be still lower than in carbon nanotubes, which
might be improved by optimizing the preparation process, graphene offers advantages with
respect to nanotubes, e.g.,

• Graphene is always conducting and the electron density is easily tunable by a gate voltage,
while carbon nanotubes are only conducting for armchair tubes.

• Graphene can be structured by oxidation using standard lithography, which allows to
make quantum dots, double quantum dots, etc. opening a large variety of possible exper-
iments.

Thus, graphene might be a future material for spintronics as well.

5 Coherent manipulation of spin centers in diamond

The favorable properties for spintronics are equally valid for diamond and most promising re-
sults concerning the realization of qubits have been achieved using so-called nitrogen-vacancy
(N-V) centers in diamond. These N-V centers can be induced either by electron bombardment
with energies in the MeV range using the natural nitrogen impurities within diamond [70] or
more directly by nitrogen bombardment and subsequent annealing [60]. Both methods provide
the general possibility to control the position of the defects either by focused ion beam or by
using an electron microscope [60]. The advantage of the ion beam technique is that ultrapure
diamond without nitrogen impurities can be used as a template, which is important since ni-
trogen impurities are the major source for decoherence of the spins in the N-V center [61, 62].
However, the success yield of N-V center production by N+ ion bombardment is only 5 % so
far. In order to probe the created N-V centers optically, nanocrystalline diamond is typically
used, since the nanoparticles exhibit a higher transmission at the interface to vacuum due to
near-field effects [65].
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Fig. 7: (a) Atomic arrangement of the Nitrogen(N)-Vacancy(V) center in diamond; (b) elec-
tronic states of the N-V center (not to scale); 3A2 is the ground state triplet spin split by dipolar
interactions, 1A1 is the excited singlet and 3E is the excited triplet spin split by dipolar and
spin-orbit interactions; a,b,c mark the dipole allowed optical transitions, the full (dashed) ar-
rows towards and from 1A1 mark spin-orbit driven strong (weak) internal spin conversions; (c)
fluorescence of an ensemble of N-V centers at excitation wavelength λ = 637 nm as a function
of the frequency of an additional microwave field [70]; (d) confocal optical microscope image
showing fluorescence of individual defects [62]; (e) time correlation function of single photon
detection from an individual spot of (d); (f) fluorescence line of a single defect [65]; (g),(h)
same as (c), but for single defects; (i) fluorescence intensity of a single defect measured after
the application of a microwave pulse with pulse lengths displayed on the x-axis; the two curves
are recorded with different microwave amplitudes and the resulting oscillation frequency as a
function of amplitude is shown in the inset [73] ; (j) optically detected spin-echo experiment
using the sequence displayed in the inset [73].

The structure of the N-V center consists of a substitutional nitrogen atom and a neighboring
vacancy and is shown in Fig. 7 (a). It is known that the N-V complex is mostly negatively
charged, i.e., it consists of six lone pair electrons, in particular, one excess electron from ni-
trogen, four lone-pair electrons from the broken bonds surrounding the vacancy and the extra
electron from charging. These six electrons occupy the four dangling bonds of the vacancy [66],
which exhibit a Td-like symmetry ignoring the difference between the neighboring nitrogen and
carbon atoms. The Td symmetry leads to two completely filled molecular states with the highest
A1 symmetry and six molecular bonds with the lower T2 symmetry being only 4-fold occupied.
Basically these are the pxy, pxz and pyz states. Correspondingly, two holes remain in the T2-shell
which can form either a singlet (total spin S = 0) or a triplet (S = 1). The fact, that one of the
dangling bonds of the vacancy is adjacent to nitrogen reduces the symmetry from Td towards
C3V , which results in a splitting of the sixfold degenerate T2 levels into two energetically lower
A1 levels and four energetically higher E levels. It turns out that the ground state of the system
leaving two empty states in the E shell is a triplet with A2 symmetry, while the singlet with two
empty states in the E shell is the excited state having A1 symmetry. Thus, the ground state of
the defect provides an intrinsic spin polarization, which is not limited by life-time effects. The
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energy difference between triplet and singlet is 1.92 eV. As shown in Fig. 7(b), only ΔE = 20
meV above the singlet state is the next triplet state consisting of one empty state in the E level
and one empty state in the A1 level. This pair exhibits the antisymmetric E symmetry.
The ground state triplet exhibits a dipolar spin-spin splitting between the (ms = 0)- and the
(ms = +1/− 1)-states of about 12 μeV (2.9 GHz) as displayed in Fig. 7 (b) and an additional
hyperfine splitting (interaction between the electron spins and the nuclear spin of 14N) of about
20 neV (5 MHz). The excited triplet also exhibits a ms-splitting due to spin-spin interaction
and spin-orbit interaction leading to three different level energies, but there is no consensus on
the exact arrangement and the corresponding energies [66, 62].
Since optical excitations do not couple strongly to the spin degree of freedom, the optically
preferred excited state is the triplet with E symmetry corresponding to a wave length of the
exciting light of λ = 637 nm. The excitation does not change the spin projection ms and
since the wave functions are barely changed by spin-spin and spin-orbit splitting, the optical
matrix elements are similar for the three possible transitions a, b and c in Fig. 7(b) leading
to decay rates of 8-12 ns [71] . The important point is that the spin-orbit coupling leads to a
mixing of the A1 singlet to the E and the A2 triplets, which results in a slow phonon-induced
internal conversion depending on ms. The preferred transitions for internal conversion are
3E(ms = ±1) → 1A1(ms = 0) → 3A2(ms = 0). The transition rates can even be tuned by an
external electric field [72].
The time constant of the first process is a few microseconds, while the second step lasts only
several 100 ns [67, 16]. Thus, optical excitation leads to a preferred occupation of the 3A2(ms =
0) ground state on the time scale of a few microseconds, even if the temperature is much higher
than the energy difference between 3A2(ms = 0) and 3A2(ms = ±1) of 12 μeV. The only
driving force to reestablish thermal equilibrium within the 3A2 state is the spin-lattice relaxation,
which has an activation barrier of 62 meV leading to a time constant of 1.2 ms at 300 K and
up to 380 s at low temperature [67]. This leads, e.g., to more than 90 % occupation of the
(ms = 0)-level during optical excitation at 300 K [68, 17].
The optically induced spin polarization of the 3A2 level can be probed using an additional
microwave, which is tuned to the (ms = 0)→ (ms = ±1) transition [69]. Since the excitation
to (ms = ±1) leads to an increased population of the long-living 1A1 state, the fluorescence
gets darker, if the 3A2 spin is flipped by the microwave. The resulting fluorescence intensity
as a function of microwave frequency is shown in Fig. 7 (c) exhibiting a 10 % reduction of
intensity at fMicrowave = 2.88 GHz (12 μeV) with an additional splitting of 14 MHz (58 neV)
close to the value of the known hyperfine splitting of the (ms = ±1)-states with the 14N [70].
Using a confocal microscope, i.e., two microscopes, one focussing the exciting light within
the (x, y)-plane and one collecting the fluorescence from a focus within the (x, z)-plane, also
single spins can be addressed. At low N-V defect density, where individual defects are sev-
eral μm apart, the fluorescence appears only at certain spots (Fig. 7(d)) and the result of a
time-correlation experiment of the collected photons from a single spot (Hanbury-Brown-Twiss
experiment) proves that the spots origin from individual defects [65, 62], since they never emit
two photons at the same time (Fig. 7 (e)) 2. The linewidth of the fluorescence is only 140 MHz
(Fig. 7 (f)) corresponding to a lifetime of 2 ns [65] and, thus, much smaller that thems splitting,
but larger than the hyperfine splitting. The linewidth can be further reduced by using diamond
samples with extremely low nitrogen concentration going down to Δf = 13 MHz and, thus,
exhibiting a quality factor of f/Δf � 107 [72]. Adding the microwave during the confocal ob-

2The N-V center can, thus, be used as a single photon source [63] and ”which path” interference experiments
on the single photon level have been realized [64].
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servation of a single defect reveals that the hyperfine splitting at 2,88 GHz is different for each
defect partly going down to zero (Fig. 7(g) and (h)) [70]. The reason is a different environment
of 13C and substitutional 14N nuclear spins for each defect leading to different hyperfine fields.
Since the spectral width of the fluorescence line is much smaller than the splitting of the differ-
ent (ms)-levels in the ground state 3A2 and the excited state E, individual spin configurations
of a single N-V-center can be addressed optically [65].
Consequently, coherent single spin manipulation as required for quantum algorithms can be
performed in the ground state of the defect. Moreover, the spin configuration is readable due
to the ms-dependent internal conversion to the singlet A1. The coherent manipulation is proven
by using a pulsed microwave field slightly detuned from the ms-transition of 2.88 GHZ. The
resulting beating between the exciting microwave frequency and the transition frequency leads
to oscillations in the occupancy of the excited and the ground state called Rabi oscillations,
which quantitatively also depend on the amplitude of the exciting field (inset of Fig. 7 (i)).
The main part of Fig. 7(i) shows the resulting oscillations in fluorescence for two different
detunings [73]. A damped oscillation is visible with a decay constant of 1.5 to 2.0 μs. The
decay is a measure of the spin dephasing and, it has been shown that it strongly depends on the
density of nitrogen impurities within the diamond lattice. The substitutional nitrogen impurities
without vacancy exhibit S = 1/2 and, thus, can exchange ms with the N-V center. At low
N concentration, dephasing times of T2 = 350 μs have been achieved [17]. Notice that the
read-out via fluorescence destroys the spin phase. Thus, the experiment has to prepare the
(ms = 0)-state by optical spin alignement using a pulsed red laser, afterwards to switch off the
light for the manipulation of the spin by a microwave pulse and, finally, to read-out the spin by
fluorescence with the red laser turned on again. This experiment is then repeated several times
for each pulse length of the microwave resulting in one of the curves in Fig. 7(i).
If the dephasing is caused by a slow process, which is not relevant on the time scale of a single
experiment, but relevant on the time scale of the repeating with different pulse length, spin-echo
experiments are used to suppress this type of dephasing. Therefore, the spin is first prepared
in a superposition of the ground state and the excited state by a so-called π/2-pulse, then it is
reversed by a so-called π-pulse after a certain time τ of the evolution and, finally, an additional
π/2-pulse is applied after the same time of evolution in order to return the spin to the ground
state. This effectively suppresses the influence of residual magnetic fields due to neighboring
spins, which might fluctuate in different measurement cycles of the repeating but not on the
time scale 2 · τ in a single experiment. The reason is that the precession of the reversed spin
superposition is decelerated by the additional field exactly as much as the precession of the
original spin superposition is accelerated by the same field. Fig. 7 (j) shows the fluorescence
as a function of delay time τ ′ after the π-pulse, if the delay time before the π-pulse is fixed
to τ = 0.3 μs. Indeed, the largest signal is observed, if the two delay times are equal. But
there are additional maxima within Fig. 7 (j), which are caused by the hyperfine splitting of
the excited state reflecting that ms = 1 and ms = −1 exhibit different frequencies due to the
nuclear field of the 14N nuclear spin. Changing τ = τ ′, i.e., repeating the spin echo experiment
for different time intervals τ , the remaining dephasing called decoherence can be measured
as shown, e.g., in Fig. 8 (e). In principle, the nuclear 14N spin can be entangled with the
electron spin in order to realize a coherent coupling of qubits. However, the small interaction
between the 14N nuclear spin and the electron spin mainly located at the vacancy makes this
difficult. A larger hyperfine splitting of 130 MHz (540 neV) is caused by the abundant 13C
nuclei neighboring the vacancy as shown in Fig. 8 (a). Typically, 3 % of the N-V centers have
one direct 13C neighbor which has a nuclear spin I = 1/2 and corresponding mI = 1/2,−1/2.
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Fig. 8: (a) atomic arrangement of the Nitrogen(N)-Vacancy(V) center in diamond with neigh-
boring 13C nuclear spins; (b) electronic states of the 3A2 level coupled to one neighboring 13C
nuclear spin (see text); (c) fluorescence modified by a microwave pulse of different length tuned
to transition A; (d) fluorescence modified by the pulse sequence displayed in the inset of two
π-pulses tuned to the transition A in (b) and an intermediate radio frequency pulse tuned to the
transition C of varying pulse length [73]; (e) spin-echo experiment of a single N-V center mea-
sured at B = 0.5 mT; each curve represents the τ ′-dependent fluorescence signal for a given
τ exhibiting a maximum at τ = τ ′; the envelope function is a fit of the maxima according to
p(τ) ∝ exp (−τ/τc)4 as expecetd for the interaction of the electron spin with a bath of nuclei
exhibiting different Lamor frequencies due to hyperfine interaction; (f) the inset shows the re-
vival of the spin echo signal after each period of the Lamor frequency of the bare 13C spins at
B = 4.2 mT; the main part shows the more complicated oscillating pattern present within the
first peak of the revival curve in the inset. It is caused by the modified Lamor frequencies of the
nuclei close to the N-V center, which are strongly influenced by the hyperfine interaction of the
13C spins with the electron spin [16].

This leads to an energy spectrum of the 3A2 triplet as shown in Fig. 8(b), where the states are
labeled according to ||mI ± 1/2||ms| >. States 1 and 2 are split by 130 MHz depending on the
relative orientation of nuclear and electronic spin. State 3 and 4 are also slightly split by 2-10
MHz depending on the position of the 13C due to the nuclear interaction between 14N and 13C
[68]. Microwave fields can induce transitions between the ms states (transition A, B), while
radio frequency fields induce transitions between the mI states (transition C, D). To initialize a
certain ground state (3 or 4), the microwave field is first tuned to the transition of the other state,
which leads to the population of the 1A singlet by an additional laser field, only if this state is
populated leading to a darkening of the fluorescence. If, e.g., state 3 is initialized, a microwave
signal tuned to transition A leads to Rabi oscillations between state 3 and 1 as shown in Fig.
8 (c), while a microwave tuned to transition B does not. An additional radio frequency pulse
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tuned to transition C and applied after a π pulse tuned to transition A now leads to an oscillating
occupation of the nuclear spin levels, in turn leading to an oscillating detuning of the microwave
π-pulse applied afterwards with the relevant electron spin transition. This leads to oscillating
fluorescence as visible in Fig. 8 (d), which indicates the coherent rotation of the nuclear spin
[68]. The dephasing time of the nuclear spin, as determined by spin-echo experiments of the
nuclear spin is, at least, 20 ms.
Importantly, this scheme realizes a conditional rotation of the nuclear spin. The nuclear spin
can only be rotated by a 130 Mhz π-pulse, if the electron spin is excited. Such a conditional
coherent rotation (CROT) is very close to a conditional not gate (CNOT), which is a central
building block of a quantum computer. The fidelity of the CROT-operation has been determined
to be about 90 % using complex pulse sequences in order to determine the density matrix of the
combined state [68]. Since the time scale of a single rotation is only about 0.1 μs, several 1000
coherent operations appear possible even at 300 K.
A more reliable production scheme of coupled spins with a success rate of 10 % is achieved
by using N+

2 bombardment of nanocrystalline diamond which leads to a S = 1/2 electron at
a substitutional N-atom close to a N-V center [17]. The electron spin of the nitrogen can be
polarized by resonance with the (ms = −1)-state of the N-V center, which has to be induced
by an appropriate external magnetic field. Coherent coupling has been proven by a beating
pattern of the spin echo signal of the NV-center similar to the experiment in Fig. 7 (j) showing
a coupling strength of 14 MHz and a dephasing rate of the S = 1/2 level of 3 ms. The spin
echo beating revealed an additional coherent coupling of the electron spin ensemble to the two
nuclear 14N spins. The nuclear spin of the bare N-atom could even be polarized by flip-flop
with its electron spin which is also probed at resonance between the two electron spins via
fluorescence of the N-V center [74]. This provides, at least, an optically controllable three-
qubit system, which is, however, limited by the relatively short coherence time of the electron
spins.
A more promising approach with a much longer coherence time would be the addressing of
individual 13C nuclear spins. This approach uses the Lamor frequency of individual nuclear
spins in magnetic field, which is significantly modified by the interaction with the electron spin
[16, 18]. The inset in Fig. 8(f) shows that the decoherence of the electron spins in magnetic
field is driven by the Lamor precessions of several nuclear spins which periodically change the
effective magnetic field of the electron spin. If the spin echo time equals the time period of the
Lamor precession of the nuclear spins, the reversed electron spin experiences exactly the same
changing effective field as the original one and, thus, does not dephase effectively. Indeed the
spin echo signal revives after each cycle of the bare Lamor precession of the nuclear spins. This
revival is superimposed by a decay with τc = 240 μs probably due to spin flip-flop within the
nuclear bath. However, the nuclear spins close to the electron spin exhibit a different Lamor
precession due to hyperfine interaction with the electron spin, which leads to the complex spin
echo signal at short time scales τ shown in the main part of Fig. 8 (f). This pattern consists
of a fast oscillation which depends on the individual defect, but not on the external magnetic
field and a slow envelope oscillation, which depends linearly on magnetic field with a slope
being different for each defect. The pattern indicates coherent coupling of the electron spin
and a single nearby nuclear spin. The fast oscillation is caused by the dipolar interaction of
the nuclear spin with the (ms = 1)-component of the electron spin superposition3 leading to
an enhanced precession frequency of the nuclear spin independent of magnetic field. The slow

3The π-pulse in this experiment is tuned to the transition ((ms = 0) → (ms = 1)), which is distinct from the
((ms = 0)→ (ms = −1))-transition due to the applied field.
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oscillation is caused by the terms of the interaction matrix between electron spin and nuclear
spin not coupling to the z-component of the electron spin. These elements arise primarily due
to a misalignement between the preferred zero-field ms-axis and the external magnetic field,
which mixes the (ms)-states. Hence, the strength of this term depends on the B-field value and
direction. The misalignment can be described as a modified effective g-factor of the nuclear
spins, which, of course, is anisotropic as found experimentally [16]. Other defects, which
are coupled to several nuclear spins, show more complex behaviour, which can be explained
quantitatively by their different Lamor precessing caused by the electron spin.
Note that the additional effective magnetic field provided by the electron spin decouples the
particular nuclear spin close to the electron spin effectively from all other nuclear spins pro-
hibiting spin flip-flop. Moreover, it makes it addressable by radio frequency pulses due to its
characteristic coupling strength to the electron spin [18]. Fig. 9 (a) shows the energy lev-
els of an electron spin coupled to a nuclear spin in magnetic field. The hyperfine coupling
allows to address a conditional transition, e.g., the transition (ms = 0 → ms = 1) only if
the nuclear spin is ↓. This process allows to map a superposition of a nuclear spin onto a su-
perposition of an electronic spin, which is readable by fluorescence. Therefore, one excites
a specific transition by a π-pulse, which leads to the excited state, only if the nuclear spin is
down and fastly stops the Lamor precession of the nuclear spin due to the strong hyperfine
field. If the electron spin was not excited, i.e., the nuclear spin is ↑, one simply waits for half a
Lamor period, which transfers the nuclear spin to ↓. This corresponds to the following mapping
|0 >

⊗
(α| ↑> +β| ↓>) → | ↓> ⊗

(α|0 > +β|1 >). The reverse process can be done by
starting with the finite position of the previous process, then waiting for half a period of the
nuclear Lamor frequency and finally applying a π-pulse, which conditionally excites the |0 >-
state into the | ↓> |1 > state. This protocol has been used to map a prepared electron spin on
the nuclear spin, let evolve the nuclear spin for a certain time and finally remap the nuclear spin
back to the electron spin. The coherence of the evolution has then be probed by the remaining
amplitude of the Rabi oscillations of the electron spin for different initial electron spin superpo-
sitions [18]. The long term precession of the nuclear spin measured by this protocol is shown in
Fig. 9 (b) showing oscillations longer than 500 μs. The additional beating is caused by interac-
tions with neighboring 13C nuclear spins. This dephasing can again be controlled by spin echo,
where π-pulses for the nuclear spin are created via excitation of (ms = 1) for a controlled time.
This leads to a nuclear spin decoherence time of, at least, 20 ms. Importantly, the decay rate
of the nuclear spin is barely influenced by the fluorescence light used to prepare the electron
spin. At B = 2 mT only one out of 1000 photons destroys coherence of the nuclear spin, which
is traced back to a changed contact interaction in the excited state, which itself should become
irrelevant at lower B-field.
The approach using nuclear spins can be extended to two nuclear spins around a N-V defect.
Fig. 9 (c) shows the optically detected electron spin resonance of a single defect which shows
four lines due to hyperfine splitting with two neighboring nuclear spins [75]. Fig. 9 (d) shows
the corresponding energy level diagram. The different levels of the (ms = −1)-state can be
entangled by firstly preparing the (ms = 0)-state optically, secondly applying a microwave
π-pulse tuned to the |00 > transition in order to initialize the |00 >-state, thirdly applying a
π/2 radio frequency pulse tuned to the |00 >→ |01 > transition in order to get 1/

√
2 · (|00 >

+|01 >) and finally applying a π-pulse tuned to the |01 >→ |11 > transition resulting in the
Bell state Φ± = 1/

√
2 · (|00 > ±|11 >). The adequate preparation can be probed by so-called

tomography, which uses certain pulse sequences for the read-out of different superpositions.
The presence of off-diagonal elements in Fig. 9 (e) clearly proves the entanglement of the
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Fig. 9: (a) Energy levels of the electron spin of the N-V center in magnetic field including the
hyperfine splitting of the ms = 1 states in the 3A2 level; (b) Lamor precession of a nuclear
spin close to the electron spin measured by mapping the electron spin configuration to the
nuclear spin and remapping it to the electron spin for read-out [18]; (c) Optically detected
magnetic resonance of a single electron spin with fourfold hyperfine splitting indicating two
13C nuclei in the neighborhood of the electron spin (top: experiment, bottom: simulation) [75];
(d) level scheme corresponding to (c); (e) measured density matrix of the state entangling two
13C nuclear spins Φ− = 1/

√
2 · (|00 > −|11 >); (f) time dependence of the strength of the

off-diagonal elements of the density matrix for Φ± and the state Ψ± = 1/
√

2 · (|01 > ±|10 >)
in comparison with the spin relaxation time T1 of the electron spin in the N-V center; (g) density
matrix of the state W = 1/

√
3 · (|110 > +eiφ · |101 > +eiψ · |011 >) measured directly after

preparation (top) and τ = 4.4 μs later (bottom) [75].

Φ−- state. The coherent evolution of the state can be probed using the coherent evolution of the
density matrix probed by microwave pulses applied after a certain delay to the state preparation.
The result is shown in Fig. 9 (f) demonstrating that the entanglement decoheres on the time
scale of milliseconds probably limited by the spin relaxation of the electron, which changes the
hyperfine field of the nuclear spins dramatically. Using more complex pulse sequences, also
the electron spin can be entangled with the two nuclear spins leading, e.g., to a state W =
1/
√

3 · (|110 > +eiφ · |101 > +eiψ · |011 >), where the first entry of the ket marks the electron
spin using ms = 1 → |1 > and ms = 0 → |0 >. Thereby, ψ and φ are arbitrary phases
[75]. Fig. 9 (g) shows the resulting tomography pattern measured directly after preparation and
4.4 μs later. Interestingly, the off-diagonal elements describing superpositions with different
electron spins have disappeared due to the fast electron spin decoherence, while the off-diagonal
elements with the same electron spin survived due to the longer decoherence time of the nuclear
spins.

Although the approach of entangling nuclear spins via the electron spin of the N-V center ap-
pears to be restricted to only a few nuclei around one electron spin, distant coupling of electron
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spins by photons has been proposed to enhance this number using the spin dependent transition
frequencies of the electron spin according to transition a,b, and c in Fig. 7 (a) [71, 76].

6 Quantum dots and spin centers in graphene and carbon
nanotubes
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Fig. 10: (a) Atomic force microscope image of a quantum dot with nearby gates B1, PG, B2 and
a quantum point contact CD, all made out of graphene [81]; (b) color plot of the differential
conductance of the dot shown in (a) as a function of source-drain voltage Vb,qd and plunger gate
voltage Vpg; (c) conductance Gqd = dIqd/dV of the dot as a function of Vpg at Vb,qd = 0.5 mV;
(d) conductance of the quantum point contact obtained simultaneously with (c) at VCD = 0.5
mV; (e) sketch of two quantum dots for qubits using armchair edges of a graphene ribbon of
certain width in order to provide a gap; gates are used to confine electrons within this gap in
lateral direction [83]; (f) sketch of the band structure of three coupled quantum dots; tuning of
the valence band of the area between dot 1 and dot 3 close to the resonant states within these
two dots (red dashed line) leads to efficient coupling between the resonant states in dot 1 and
dot 3; (g) sketch of a circular quantum dot induced by a gate relying on the natural gap of
bilayer graphene under electric field provided by the dopant atoms [88].

The only disadvantage of the N-V centers in diamond is that they are addressed optically, which
might limit the scalability of the approach, although electrical control by the Stark effect has
been proposed [72]. Electrically addressable qubits have been implemented using either super-
conducting flux qubits [77] or quantum dots in GaAs [15, 78]. The later approach is limited by
the spin dephasing due to hyperfine interaction [79], which is strong, since both nuclei, Ga and
As, provide a nuclear spin. Thus, graphene quantum dots probably isotopically purified might
be a valuable alternative.
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Along the road for implementing qubits in graphene quantum dots, the first breakthroughs have
been realized, i.e., quantum dots have been formed by lateral confinement using oxygen etching
combined with standard lithography and signatures of Coulomb blockade and confinement en-
ergies have been found [80]. Moreover, the minimal-invasive detection of the charge within the
quantum dot by a close-by quantum point contact has been realized [81]. Figure 10 (a) shows
an atomic force microscope image of a quantum dot structure. The tunneling barriers from the
reservoirs to the dot can be tuned by the two finger gates B1 and B2, while the electrostatic po-
tential and, thus, the filling of the dot can be tuned by the plunger gate PG. Applying a voltage
between S and D leads to transport through the dot, if a level of the dot is close to the Fermi
level. Figure 10 (b) shows the Coulomb diamonds of the differential conductance of the dot as a
function of source-drain and gate voltage revealing a charging energy of about 4 meV. Clearly,
the number of charges on the dot can be controlled. Qubit proposals require a detection of the
charge, e.g., in quantum dot molecules [82], without using this charge itself. An elegant way is
a quantum -point contact, which has a conductance ofN ·e2/h withN being an integer and giv-
ing the number of subbands contributing to the transport. Importantly, the conductance changes
rapidly by e2/h, if an additional subband is shifted across the Fermi level by an electrostatic
field. Tuning the field to such a transition, the quantum point contact is an excellent detector
of additional fluctuations in electric field and can detect additional single charges in distances
up to several 100 nm. Thus, the quantum point contact can be used as a charge detector CD
and is implemented in the device shown in Fig. 10(a). The signal of the charge detector as a
function of plunger gate is shown in Fig. 10 (d) in comparison with the conductance through
the quantum dot in Fig. 10 (c). Each time an additional electron is brought to the dot, which
results in a peak in the quantum dot conductance, the quantum point contact exhibits a kink
in its conductance. Thus, changes in charge of the quantum dot can easily be detected quasi
non-invasively.
In order to use the graphene quantum dots as qubits, spin states have to be prepared selectively.
Besides the confinement of the electrons, it is necessary to break the so-called valley symmetry
of the quantum dots, i.e., the existence of inequivalent states at the opposite edges of the Bril-
louin zone. The following two proposals have been made. The first is displayed in Fig. 10 (e)
[83]. It uses a ribbon of graphene with armchair edges, which has similar quantization condi-
tions as a zigzag nanotube, i.e., if the number of rows in the ribbon is not a multiple of three,
the ribbon exhibits a gap and is semiconducting. For a width of the ribbonW = 30 nm, the gap
size is ΔE = h · vF /(3W ) = 60 meV with vF = 106 m/s being the Fermi velocity of graphene.
As usual, the gap can be used to confine electrons, if the gap of adjacent areas is tuned to, e.g.,
the conduction band area of the dot in between. This is correct for any semiconducting ribbon,
but not sufficient for qubit operation. The additional requirement is, that the valley degeneracy
of the confined states is broken. If the valley degeneracy persists, there will be no energy dif-
ference between a triplet and a singlet of an electron pair in the quantum dot, and, thus, there
will be no exchange coupling to a neighboring quantum dot, which requires an energy penalty
for triplet occupation with respect to singlet occupation. Consequently, only dots without valley
degeneracy can be used for conditional qubit operations as CNOT.
Using the armchair edges to induce the gap leads to an additional lifting of the valley degeneracy
due to the fact, that both atoms contribute to the edges, which requires a mixing of k states [84].
A favorable property of these type of quantum dots is, that the gap is relatively small, allowing a
long distance coupling of quantum dots as displayed in Fig. 10 (f). The states in quantum dot 1
and quantum dot 3 are tuned into resonance and the areas in between the dots are tuned such that
their valence bands are very close to the resonant state providing a minimum of a tunnel barrier
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and, thus, a very small exponential decay of the resonant states within the barrier. Consequently,
a significant density of the state of quantum 1 overlaps with quantum dot 3 leading to an efficient
coupling. Coupling energies of several meV have been found for distances between the dots of
300 nm. This long distance coupling appears favorable, e.g., for fault-tolerant qubit operations
[85].
Another possibility is to use natural gaps in graphene as they have been reported for bilayer
graphene on SiO2 [86] or for graphene on SiC [87]. These gaps can again be tuned by gate
electrodes as shown in Fig. 10 (g) leading to confined states. The degeneracy of the k-valleys
can be lifted using circular symmetry of the dots and a magnetic field applied perpendicular to
the graphene plane, which basically makes use of the chirality of the graphene band structure,
i.e., states with a positive angular momentum correspond to k, while states with negative an-
gular momentum correspond to −k [88]. Typical numbers for valley splitting are 3.5 meV for
a dot size of 50 nm and an applied field of 3.5 T. Thus, well-developed proposals for qubits
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Fig. 11: (a) Calculated spin density of a vacancy in graphene (color) superimposed on the
atomic structure [89]; (b) spin density of two coupled vacancies, each saturated with two hy-
drogen atoms [91]; (c) spin density of a carbon adatom on graphene (top) and corresponding
atomic structure with dangling bonds of the adatom (bottom) [93]; (d) spin density of zigzag
edges of graphene nanoribbons [94]; (e) sketch of a proposal for qubits in carbon nanotubes
filled with endofullerenes C59N .

in graphene are existing, but experiments have not detected single spins in graphene quantum
dots so far. Another opportunity would be the use of interinsic spins in graphene present in the
ground state of defects similar to the N-V center in diamond. Such ground state spins have been
found theoretically for vacancies [89, 90], for vacancies in combination with hydrogen atoms
[91, 92], for adatoms [93] as well as for the zigzag edges of nanoribbons [94, 95]. Fig. 11
(a)-(d) display the corresponding spin densities of the different defects partly having S � 1/2
as the adatom and partly having S � 1 as the vacancy. Neighboring defects are coupled ferro-
magnetically if located on the same sublattice and antiferromagnetically, if located on different
sublattices and the coupling strength might be tuned by gates in between the defects [96, 95].
The g-factor is most likely g � 2 [97]. Nothing is known about spin relaxation and spin coher-
ence of these defects, but they might have similar properties as the spins of the N-V centers in
diamond. If it is possible to address these spins electrically or if it is easier to use quantum dots
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as building blocks for qubits, is currently unknown and requires further research.
Finally, it should be mentioned that also carbon nanotubes can act as building blocks for qubits
having similar properties as the ribbons displayed in Fig. 10 (e) , i.e., a similar distant coupling
as shown in Fig. 10 (f) can also be achieved for nanotubes [98]. A more advanced concept could
even use the filling properties of carbon nanotubes in order to deposit spins into the tube, e.g., as
C59N-molecules exhibiting S = 1/2. This device, which is displayed in Fig. 11 (e), could store
the qubits within the molecules, which are initialized and read out by there interaction with
the nanotube current modified by spin carrying quantum dots and manipulated by side gates
providing microwave fields [99]. The major idea is to further decouple the qubit spins from the
environement as, e.g., from the interaction with nanotube phonons very similar as it happens
during the transfer of electron spin to nuclear spins in diamond. However, so far only first steps
towards quantum dot control in carbon nanotubes have been realized [100].

7 Summary

Within this review, I have summarized the current development concerning the use of spin
information within carbon materials. The big advantages of spins in carbon, which are the
small spin-orbit interaction and the small hyperfine interaction, makes this field of research
rapidly growing. Major achievements so far are the realization of a gate-tunable spin valve
using carbon nanotubes [50], the observation of the spin valve effect in graphene [13], and the
realization of entangled three-partite states using the N-V-center in diamond and two adjacent
13C nuclear spins [75]. But there are many more proposals, which will probably be realized
in the near future. Important breakthroughs like, e.g., the realization of tunable quantum dots
in graphene [80, 81], have already been achieved. Thus, spins in carbon materials promise to
remain an exciting area of research.

8 Acknowledgement

It is pleasure to acknowledge the careful reading of the manuscript by D. Subramaniam.



Electron spins in carbon based materials C5.25

References

[1] W. J. M. Naber, S. Faez, W. G. van der Wiel, J. Phys. D: Appl. Phys. 40, R205 (2007);
Z. H. Xiong, D. Wu, Z. Valy Vardeny, J. Shi, Nature 427, 821 (2004); J. R. Petta, S. K.
Slater, D. C. Ralph, Phys. Rev. Lett. 93, 136601 (2004); D. R. McCamey, H. A. Seipel, S.
Y. Paik, M. J. Walter, N. J. Borys, J. M. Lupton, C. Boehme, Nature Mat. 7, 723 (2008).

[2] S. Koizumi, M. Kamo, Y. Sato, H. Ozaki, T. Inuzuka, Appl. Phys. Lett. 71, 1065 (1997); H.
Kato, S. Yamasaki, H. Okushi, Appl. Phys. Lett. 86, 222111 (2005); S. Bhattacharyya, O.
Auciello, J. Birrel, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. N. Gruen, A. R. Krauss,
J. Schlueter, A. Sumant, P. Zapol, Appl. Phys. Lett. 79, 1441 (2001); S. Bhattacharyya,
Phys. Rev. B 70, 125412 (2004).

[3] P. Strobel, M. Riedel, J. Ristein, L. Ley, Nature 430, 439 (2004).

[4] K. Hirama, S. Myamoto, H. Matsudaira, K. Yamada, H. Kawarada, T. Chikyo, H.
Koinuma, K. Hasegawa, H. Umezawa, Appl. Phys. Lett. 88, 112117 (2006).

[5] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers,
Nature 363, 605 (1993).

[6] A. K. Geim, K. S. Novoselov, Nature Mat. 6, 183 (2007).

[7] S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature 393, 49 (1998); A. Bachtold, P.
Hadley, T. Nakanishi, C. Dekker, Science 294, 1317 (2001); A. Javey, J. Guo, Q. Wang,
M. Lundstron, H. Dai, Nature 424, 654 (2003); S. J. Wind, J. Appenzeller, P. Avouris,
Phys. Rev. Lett. 91, 058301 (2003).

[8] M. C. Lemme, T. J. Echtermeyer, M. Baus, H. Kurz, IEEE Electron Device Lett. 28, 282
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1 Introduction

Quantum dots are small devices in which few mobile electrons are confined and can be con-
nected to macroscopic electrodes. The properties of such systems are dominated by the quanti-
zation of electronic charge- and possibly other degrees of freedom (orbit, spin). This quantiza-
tion makes quantum dots very similar to atoms (coupled dots similar to molecules). Therefore
one might think that no fundamental new physics is involved. However, their tunability and the
possibility of wiring them up in an external electric circuit enables new regimes to be accessed.
In particular in transport, on can study in detail the interplay of strong interactions, quantized
motion and non-equilibrium boundary conditions imposed by the external electrodes. A fasci-
nating aspect is that in these solid state devices single electrons can experimentally be manipu-
lated to a high degree despite the coupling to huge numbers of other electrons and other degrees
of freedom around (phonons, nuclear spins, etc). It is the dominating role of the Coulomb inter-
action in these confined systems which allows for this degree of control: once a single electron
has jumped to some new position in such a device, other electrons are prevented from following
it since the change in Coulomb interacting energy is larger than thermal and quantum fluctua-
tions. This suppression of transport is called Coulomb blockade. Coulomb interaction is also
responsible for many other effects such as exchange interactions, spin blockade, the exchange-
field induced by ferromagnetic electrodes, and also the Kondo effect. The degree of control,
however, comes at a price: the understanding of the operation of such devices is complicated
due to the inherent many-body nature of the transport processes.
However, much progress has been made. Although single electron experiments date back to
Millikan’s determination of the electron charge [1] qe = −e where e ≈ 1.602 10−19C, only
much later solid-state experiments involving single electron effects were done. Important de-
velopments came from transport through metallic layers which break up into small islands due
to surface tension effects [2] and the progress in the field of superconducting tunnel-junctions.
This stimulated the development of basic theoretical models and approaches still in use to-
day [3]. After the advent of the first tunable single electron devices [4] the field of quantum dot
physics boomed, see the key reviews [5, 6, 7, 8, 9, 10, 11]. In the last two decades quantum dots
realized in nano-structured solid-state devices have reached a high level of sophistication, rang-
ing for “on-chip” fundamental physics experiments and hybrid devices to device applications.
Nowadays nano-gap fabrication combined with chemical functionalization even allows quan-
tum dot devices to be fabricated in single real molecules. Thus, in a way the field of quantum
dots has now come full circle: the techniques which have developed for controlling “artificial”
atoms and molecules can now be applied to the real thing: the complicated problem of transport
through single molecules greatly benefits from this wealth of experience and techniques, both in
experiment and theory. Clearly, quantum dot systems are encountered in many areas of physics,
electronics, chemistry and biology and will continue to be crucial in the full range from basic
physics to nano-scale device applications.
The importance of interactions in the transport processes of charge and spin makes understand-
ing and operating quantum dot devices a complicated task. It is the aim of this lecture to
introduce some of the basic notions of single quantum dot devices underlying current research
efforts. Basics of Coulomb blockade and orbital quantization effects will be introduced in Sec-
tions 2-3 based on the above cited key reviews where more details and references can be found.
In the last decade spin effects have been at the center of attention, including Hund’s-rule / shell-
filling effects, Zeeman splitting, exchange interaction in double dots, spin-polarized electrodes.
In the remaining Section 4) a specific quantum dot devices will be discussed where the elec-
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tron spin plays a crucial role in the transport. Specifics of different realizations of quantum dots
systems are avoided if possible to focus on common principles and models. Other interesting av-
enues where spin effects are important but which are not considered here are Pauli spin-blockade
in double quantum dots [11], higher-order tunneling effects (“cotunneling”, level renormaliza-
tion, broadening) [12, 13], Kondo effect [14, 15], time-dependent transport [7, 16, 17], metallic
dots (without orbital quantization effects) [8], many-electron quantum dots and their statistical
properties [7, 18], superconducting quantum dots and/or electrodes [19] and device application
aspects of single electron circuits [8]. Specifics on transport through quantum dots realized in
semiconductor hetero-structures [9], wires [20], carbon nano-tubes [21, 22] and nanometer-size
molecular quantum dots [23] can be found in the indicated references (reviews and some key
publications).

2 Single electron charging effects on tunneling

To understand how Coulomb interactions allow single electrons to be controlled, we consider
the simplest structure, a single tunnel junction [5, 7, 8, 9] between two electrodes at potentials
Vr, where the left and right electrode are denoted by r = L,R. We first fix some conventions.
The electrochemical potentials of the electrodes is μr = εF − eVr, where e > 0 denotes the
elementary charge magnitude (i.e. the electron charge is = −e). Therefore a chemical potential
or energy bias μL − μR = −e(VL − VR) > 0 will drive an electron particle-current in the
direction L→ R i.e. L acts as the source and R as the drain electrode. This requires a negative
bias voltage V = VL − VR < 0 to be applied, and the electric current by definition flows in the
opposite in the opposite direction, I < 0. We will always discuss the electron particle I/(−e)
current versus the applied energy bias −eV (or drain-source voltage) to avoid the inconvenient
minus signs, as is common practice. 1

(a) Quantum point contact (b) Tunnel junction (c) Circuit

One can think of a tunnel junction as a pinched-off ballistic conduction channel. For such
a system the two-terminal conductance is due to contact resistance and is quantized in units
of the fundamental quantum of conductance GQ = e2/h [24]. If the conduction channel is
gradually pinched off, the conductance is reduced in steps of magnitude 2GQ (factor 2 for spin)
until finally the current drops exponentially to zero and

dI/dV � e2/h. (1)

This is referred to as charge quantization, which is a semi-classical effect. The electrons are
classically confined to either electrode (i.e. with well-defined charge numbers). To see some
effect of this in transport one needs to have quantum mechanical tunneling through the in-
sulating barrier: the junction has to be considered as a “leaky” capacitor. When an electron

1Note that in the differential conductance, this sign cancels out when converted to energy units and particle
currents: dI/dV = ed(I/(−e))/d(μL − μR).
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tunnels across the junction the polarization charge changes abruptly by the elementary quantum
of charge e. As a result potential across the junctions jumps up or down by ΔV = e/C. The
associated change in the energy of the junction, eΔV = e2/C, is called the charging energy.
If the applied bias voltage energy eV or the thermal fluctuations kT are not able to overcome
this energy barrier, the transport is blocked. Thus the tunneling of a single electron can have a
dominating effect on the macroscopically measurable transport current. Since the capacitance
C scales linearly with the junction dimensions, single electron tunneling (SET) effects become
important for sufficiently small junctions and / or sufficiently small temperatures:

kT ≤ e2/C. (2)

Generally, the suppression of tunneling due to the charging energy is termed Coulomb block-
ade.2 A tunnel junction is very different from an ordinary resistor where an incompressible
electron liquid flows in a quasi-continuous way, responding instantaneously to electric fields.
In contrast, the leakage of junction charge is a slow process i.e. only once in a while an electron
tunnels, the duration of this quantum mechanical process being much shorter than the average
time between such events [6]. The time for the charge in the junction to rearrange itself after a
tunnel process is also very short (dielectric relaxation time related to plasmon dynamics [25, 6]).
Surprisingly, despite the clear arguments above single electron charging effects are not very
important in single tunnel junctions [26, 27] and were first observed in double tunnel junctions
where a quantum dot is formed to be discussed in Sect. 3. The point is that above we have
tacitly assumed that the polarization charge on the junction is a classically well-defined variable.
However, this depends strongly on the nature of the electromagnetic environment created by the
external circuit, which is can be described by a frequency dependent impedance Z(ω) in series
with the junction. Only for a high impedance environmentZ(0)� 1/GQ the junction charge is
classically well-defined. However, this is almost never the case unless exceptional precautions
are taken [28]. Therefore, quantum fluctuations of the junction charge and voltage are strong
and can nearly completely lift the Coulomb blockade of transport: during such a fluctuation
charge moves into the circuit leads and the Coulomb barrier is lowered, allowing the electron to
tunnel. One may say that an electron tunnels directly into the leads, rather than staying localized
onto the capacitor plate. See for a clear exposition and examples [25]. A precise understanding
of the electromagnetic environment requires a full quantum description of the circuit to calculate
the transport, see the reviews [26, 29, 27] and key papers [30, 31, 32] for further details.

3 Single quantum dots

Clearly, when introducing a second tunnel junction, thus creating an island or dot between two
electrodes, the above problem with the low impedance of the external circuit is solved: when
viewed from one junction, the other junction shunts the low environmental impedance [26].
Therefore charging effects are always important for two or more tunnel junctions in series under
the conditions of charge quantization (1) and of low temperature (2), even if the environmental

2Another way of seeing how the quantum conductance enters into the condition for observing charging effects at
low temperature is based on the time-energy uncertainty relation, which states that in the classical limit ΔEΔt�
�. The energy uncertainty is set by the charging ΔE ∼ e2/C and the time for discharging the capacitor is governed
by the smallest RC-time Δt ∼ RC where R is the largest resistance dominating the current. Plugging this in the
capacitance cancels out and one obtains the condition for classical charging effects to be R� h/e2 = 25.8kΩ i.e.
Eq. 1.
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(a) (b)

Fig. 1: (a) Quantum dot connected to electrodes and a gate terminal. (b) Double junction
electrostatic circuit. Tunneling through the “leaky capacitors” is not indicated.

impedance is low compared to 1/GQ. Such systems are considered from hereon and the issue
of the environment can be ignored.
A quantum dot denotes a confined electron system where both charge and orbital quantization
effects are important, see the key reviews [7, 8, 9, 11]. We first discuss charge quantization
by extending the above capacitance model to a double junction. The success of the capaci-
tance model derives from the smallness of screening length compared to the electron wave-
length [7].3 The small capacitances needed to see charging effects are limited from below by
self-capacitance which for a sphere equals 4πεL and for a disk 8εL (height� L), i.e. roughly
10εL where L denotes the radius. The condition e2/C = kT for room-temperature T = 300 K
is satisfied for C ∼ 2 aF, whereas for low temperature T = 1 K this becomes C ∼ 6 pF. In
vacuum, this translates into typical dimensions of L ∼ e2/(kT10ε0) = 70 nm and L ∼ 20 μm
for T = 300 K and T = 1 K, respectively. The effective capacitance is actually larger than
this estimate due to the fact that the tunnel-barrier consists of materials with ε > ε0, the mutual
capacitances to the nearby conducting electrodes [34, 36] and the quantum-capacitance due
to non-locality of charge [37]. Therefore one needs smaller dimensions that the above rough
estimates, see [7].
Now consider a dot (labeled by 1) coupled by two tunnel junctions to electrodes r = L,R,
as sketched in Fig. 1. A third, capacitively coupled, gate electrode g, allows the potential
on the dot to be varied in a continuous and linear way by changing the voltage Vg4. This
originates from a continuous shift of the incompressible conduction electron liquid relative to
the ionic cores in the material [25]. The dot is thus considered as a conducting body with a
small capacitance: when discrete charges are moved from the electrodes to the dot the potential
of the dot V1 strongly changes and may block the transfer if the corresponding energy change
is larger than kT . The calculation of the energy of a set of conductors is a textbook [38, 39]
problem. However, the issue is that we need the energy as function of the electrode potentials
and dot charge. We include these voltage sources in the network of conducting elements5 as

3In semiconductors this condition is less well satisfied than in metals and there is a weak voltage dependence
of the capacitances [33, 34]. In molecular quantum dots this dependence is even stronger [35, 36]. In such cases
one can often work with differential capacitances i.e. linearized with respect to voltage.

4The gate electrode can also model constant stable background charges, which are always present and give
rise to a constant gate voltage offset. Experimentally, one can simply compensate for offset charges by changing
Vg , so we leave them out here. However, for applications background charges present a major problem. We note
that instable background charges less trivial effect and can give rise to a dynamic “resetting” of the gate voltage
scale. These have to be incorporated into the transport model, resulting in a double dot model. This is especially
important in nanometer sized molecular quantum dots.

5There are in fact two equivalent ways of approaching this [40], both used in the literature. The approach taken
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conductors with large capacitance to ground and large charge i.e. their potential is insensitive
to their charge. The opposite is true for the dot: its potential is highly sensitive to changes in the
chargeQ1 due to the small total capacitanceC1 =

∑
r=L,R cr+cg. This is seen by expressing the

charge in the capacitances in Fig. 1 and the voltage differences across the 3 different junctions,
Q1 =

∑
r=L,R cr(V1 − Vr) + cg(V1 − Vg). Solving for the dot potential V1 we find:

V1 = (C1)
−1

(
Q1 +

∑
r

crVr + cgVg

)
. (3)

To find out if tunneling is possible, we need to calculate the change in the total energy of
the whole system due to a single electron tunneling event. Introducing the electron number
N1 = Q1/(−e) and inserting it into the electrostatic energy EN1 = (V1)

2/2C1 we obtain

EN1 = U1

(
N1 −

(∑
r

crVr + cgVg

)
/e

)2

(4)

where U1 is the charging energy:

U1 =
e2

2C1
. (5)

As function of the externally induced continuous charge
∑

r crVr + cgVg each charge state
defines a potential energy parabola with a minimum at eN1 = . . . ,−e, 0, e, . . .. Clearly, at zero
applied voltages VL,R,g = 0 the state with N1 = 0 electrons has the lowest energy. The energy
change associated with adding a single electron, the electrochemical potential of the dot, takes
on discrete values:6

μN1 = E(N1)−E(N1 − 1) = U1

(
N1 +

1

2

)
−
∑

i=L,R,g

αieVi (6)

Here we introduced the capacitance ratios αi = ci/C1 < 1 for i = L,R, g. We now use the
conservation of total energy of the dot and the reservoirs for a single electron tunnel process.
For weak tunnel coupling this is sufficient, see below Sect. 3.4.7. While in the electrodes with
a continuum of electron energies is are available, only those electrons with energy equal to one
of the discrete values μN can enter the dot.

3.1 Linear transport

The charge quantization becomes evident for small applied voltages and low temperature. As
one varies the gate electrode to more positive values, one attracts electrons to the dot by the

here is simpler to extend to multiple dot systems [10] and to quantum-mechanical systems, see [41] (Appendix).
Alternatively, one can consider the dot as an open system, treating the voltage sources as external. If one then
considers a tunnel event, one has to calculate the change in free energy plus the work done by the voltage sources.
In this picture, tunneling only occurs when the free energy decreases (“downhill” process), the energy difference
being dissipated in the external sources [40].

6One should be aware that often these values of the electrochemical potential are referred to as “levels” of the
dot, even though they are energy changes (related to electron affinity, ionization potential). Energy level diagrams
where electrons are drawn in as occupying such a level often lead to confusion at first.

7For strong tunnel coupling this breaks down, since higher order processes shift the dot energy levels.
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positive continuous induced charge. As a result, all μN shift down uniformly and one achieves
subsequent resonances μN = μr for N = 1, 2, . . .. At such a charge-degeneracy point an
electron can enter / leave the dot without changing its energy. The small bias μL − μR � kT
then results in a directed transport current and a finite linear conductance (dI/dV )V=0: for
μL > μN > μR an electron can be extracted from the left, inserted into the dot and finally
extracted on the right, while conserving the total energy, see Fig. 2. Clearly, the probability for
the opposite process is smaller. Plotting the conductance as function of Vg one obtains what are
called Coulomb blockade oscillations, see Fig. 2.

Fig. 2: Coulomb blockade oscillations of the linear conductance: at the dots on the gate energy
axis the resonance condition μN = μL ≈ μR is satisfied for some N = 0, 1, 2, . . .. The left
inset shows the electrochemical potentials at the degeneracy point marked by the arrow. The
energy width of the peak is set by the electron temperature of the electrodes, kT , which smears
the sharp Fermi levels. Between the conductance peaks the charge on the dot is fixed to the
indicated value due to Coulomb blockade.

The distance between subsequent degeneracy points μN1 − μN1−1 is called the N1th addition
energy:8

μN1 − μN1−1 = U1 =
e2

C1
. (7)

This is the extra energy required to add the N1th electron, given that one already has the energy
available to add the N1− 1th electron. The addition energy is thus an electrochemical potential
difference i.e. a second difference of the energy EN with respect to N (curvature of energy
versus N). In the electrostatic model considered here, the addition energy is the same for all
N and equal to the charging energy U1. The distance between the degeneracy points allows the
addition energy to be read off directly from experimental data, giving the capacitance C1.9 To
determine αg independently, one needs to measure the non-linear transport as well.

3.2 Non-linear transport

For finite bias−eV � kT each degeneracy point from the linear transport regime widens into a
finite region where single electron transport (SET) is possible. The resulting stability diagram is

8There is no chemical contribution here i.e. the Fermi-levels of the metallic islands are assumed to be identical.
Such differences would only cause an offset in the gate voltage, similar to background charged-impurities.

9The precise position of the degeneracy points μN1 are not very useful, since they depend on the Fermi-level
of the electrodes, the number of electronsN1 (not directly accessible from the transport measurement) and uncon-
trollable offsets due to charged impurities close to the device.
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sketched in Fig. 3, the light regions indicating SET, the dark regions Coulomb blockade where
the current is suppressed and the charge state on the dot is fixed despite the finite temperature
and voltage. By using bias and gate energies on the axis, the meaning of the boundary lines at
the SET region are easily remembered: the left (right) diagonal line through theN th degeneracy
point corresponds to resonance with the left (right) electrode, μL = μN (μR = μN ). These
basic rules of thumb are illustrated by the left two insets in Fig. 3. Clearly, the boundary
lines must cross at the charge degeneracy point where μL = μN = μR. The slopes of the

Fig. 3: Stability diagram in (αgeVg,−eV ) plane. The vertical and horizontal size of the dia-
mond shaped Coulomb blockade regions is in general a measure of the stability of the charge
state (indicated by the number), given here by the charging energy U1 = e2/C1. The boundary
lines correspond to the electrochemical potential diagrams indicated in the left two insets. Their
slopes are given for the experimentally most relevant case of asymmetric bias VL = V, VR = 0:
they follow by equating μL = −eV = μN and μR = 0 = μN and using Eq. (6). The right inset
makes clear that when subsequent electrochemical potentials of the dot are simultaneously at
resonance, that the energy bias μL − μR = −eV equals the addition energy, which equals the
charging energy.

resonance lines in the stability diagram actually depend on how the bias−(VL−VR) is applied.
In experiments one usually sets VR = 0 for practical reasons, which has the added advantage
that the charging energy can be read off directly as the height of the diamond shaped Coulomb
blockade region, see the upper right inset to Fig. 3. In theoretical works one favors a symmetric
bias −VL = VR = V/2 since then for symmetric coupling CL = CR (a common simplifying
assumption) the electrochemical potentials μN1 are independent of the bias voltage and are only
shifted by Vg, see Eq. (6).
More generally, a stability diagram indicates the boundaries between regimes where the current
has a different value. At the boundary dI/dV is nonzero since the current changes drastically
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due to a resonance condition being satisfied (energy conservation). Therefore color scale plots
of dI/dV as function of the applied gate and bias voltage are the standard starting point for
transport spectroscopic studies and provide a compact format for summarizing many theoretical
results in a single figure. From such a plot, an important characteristic transport signature
of quantum dots without quantized orbital states (usually metallic particles) is immediately
evident: the Coulomb diamonds have identical shape and size, see (7). See the review [42] for
experimental examples and theoretical modeling.

3.3 Discrete states and excitations

If one makes a quantum dot sufficiently small, size quantization effects will become important
due to the wave nature of electrons.10 For such systems the above electrostatic treatment ac-
counting only for charge quantization is clearly insufficient. However, it turns out that by a
simple extension one obtains a very successful model. One first neglects Coulomb electron-
electron interactions altogether and calculates the single-particle energies (“particle in a box
problem”). The total energy is now approximated by the sum of the electrostatic contribu-
tion (4) and the single-particle energies. This is the so-called constant-interaction model. There
is now both a chemical (orbital) and electrostatic contribution to the energy change upon charge
addition, starting in the N1 − 1 and ending in N1 electron ground state:

μN1 = εN1,free + E(N1)− E(N1 − 1) = εN1,free + U1

(
N1 +

1

2

)
−
∑

i=L,R,g

αieVi. (8)

Here εN1,free denotes the energy of the lowest free orbital to which the N1th electron is added.
Clearly, this term depends on the electron number N1 and on the details of the spectrum. This
implies that in general, the addition energy differs from the charging energy. For example, if
the energy spectrum is non-degenerate, starting from a dot where the highest orbital level is
half-filled, one only needs to pay the charging energy extra to add the next electron to the same
level, i.e. the addition energy equals the charging energy, μN1 − μN1−1 = U1, for N1 =even.
In contrast, when all levels are initially doubly occupied, the N1th electron is added to the
next empty orbital when N1 =odd. In this case the addition energy is U + δ, where δ is the
separation of the highest filled level to the empty level. If the level spacing and the charging
energy are approximately constant for several subsequent electron numbers (which is often the
case) , then the stability diagram shows an even-odd alternation of the sizes of the Coulomb
diamonds, as sketched in Fig. 4. This is common fingerprint of size quantization in quantum
dots which can be directly read off from the stability diagram.11 In contrast, small quantum dots
without special symmetries have no orbital shell structure i.e. irregular orbital energy spacings.
Irregular addition spectra occurring for low electron numbers are thus another fingerprint of
quantization effects.

10For a single electron a potential-box of size L the kinetic energy scales as L−2 with system size, and will for
some value of L equal the charging energy which scales ∝ L−1.

11If the spectrum contains degeneracies, the filling of the degenerate shell will give rise to several addition ener-
gies equal to the charging energy U , followed by one addition energy U + δ when the next shell starts to be filled.
For example, carbon-nanotube quantum dots display clear shell-filling over many tens of electron numbers [22].
It is striking that the degeneracy, a fingerprint of the microscopic molecular structure (hexagonal carbon patches),
shows up in a macroscopic transport current! In semi-conductor quantum dots with well-defined circular disk
shape the shell filling as measured in transport follows accurately a 2-dimensional analogue of the periodic table,
see [9] for details.
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Fig. 4: Stability diagram in (αgeVg,−eV ) plane for a quantum dot with multiple quantized
orbital states. Bottom: filling of the orbital levels with energies ε1, ε2 in the different charge
states. The orbital energy splitting is denoted by δ = ε2 − ε1. Blue arrows: electrochemical
potential i.e. energy-change for transitions between these states. The addition energies are
obtained by taking the electrochemical potential differences. The Anderson model Hamiltonian
gives a good description in the boxed region on the left.

In a limited gate and bias voltage range the essential transport characteristics are captured by
restricting the model to a single level with a charging energy U coupled to two electrodes. The
corresponding model Hamiltonian defines the Anderson model,

HD = ε
∑
σ=↑,↓

nσ + Un↑n↓ (9)

where nσ = d†σdσ counts the occupation of the orbital with spin projection σ =↑, ↓. This model
and its extensions form the basis for most transport calculations on quantum dots. The energy ε
here incorporates the bias and gate voltage induced shifts of the electrochemical potential and
other contributions independent of the charge number, see Eq. (10).

Electrons may of course be added to other levels than the lowest unoccupied one, resulting in
an excited state of the dot. This is possible if the generalized electrochemical potential

μb,aN1
= Eb − Ea (10)

lies in the bias energy window, where b and a denote any pair of ground or excited states with
N1 and N1 − 1 electrons respectively. This plays however no role in the Coulomb blockade
regime where no other state than the Coulomb blockaded ground state is occupied. Figure 5
indicates for a simple model, which new resonance lines appear in the SET regimes and which
processes they correspond to.
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Fig. 5: Center: Stability diagram in (αgeVg,−eV ) plane for a quantum dot with excited many-
electron states. Bottom: energy spectrum for N = 0, 1 electrons and transition induced by
electron addition. Along the full colored lines in the SET region the current changes when
the electrochemical potential corresponding to these transitions enters the bias window. The
excitation energies, relative to the ground state, can be read off in two ways: (i) either vertically
by the position of the colored dots marking the intersection with the SET regime boundary or (ii)
horizontally by the position of the lines extrapolated to zero bias voltage (the dashed parts in the
N = 0 or N = 1 Coulomb blockade regime do not show up in transport). Top: electrochemical
potential diagrams for the corresponding colored dots at the SET boundary for method (i). The
black “level” marks the electrochemical potential for the ground N = 0 to ground N = 1-
electron transition (all such transitions for other electron numbers are not shown). The colored
lines show the electrochemical potentials for transition involving an excited state, which are
obtained by shifting the ground-ground level up (red) or down (blue) by each of the excitation
energies relative to the ground state, or their difference (green). Note that the green level marks
the transition between two excited states, which can only be observed in transport if relaxation
mechanisms are weak [43], see [11] for an example of such transitions involving spin.
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3.4 Transport theory - occupations and rates

The aim of this section is twofold. On the one hand, we discuss some of the basic arguments
we used above to construct stability diagrams. On the other hand, we indicate the microscopic
origin of this picture and the general framework in which quantum transport through quantum
dots can be calculated.
The crucial starting point is that the Coulomb interaction effects need to be included non-
perturbatively: it cannot be used as an expansion parameter since it is one of the largest energy
scales. We thus should treat the tunneling as a small parameter. From the previous sections it
is clear that in general transport through a quantum dot is described by a model Hamiltonian
containing three terms, H = HD +

∑
r=L,RHr + HT , which account for the quantum dot,

the electrodes and the tunneling between them, respectively. The strong classical electrostatic
effects due to capacitive interaction with the electrodes and quantized orbitals we have been
discussing so far enter into HD, as well as further many-electron interactions on the dot (e.g.
spin-spin, spin-orbit interactions, etc.), see [41] for a systematic discussion. The metallic elec-
trodes with good screening properties are described by a single particle models Hr, which are
fully specified by the density of states ρr (which can be considered as constant in nearly all
cases of interest). The electrodes remain in equilibrium at their own electrochemical potentials
μr = εF −eVr and temperature T . In order to calculate the quantum transport current which can
be compared with experimental results, one needs to additionally specify the matrix elements
of the microscopic coupling HT accounting for electron tunneling between the electrodes and
the dot.
The calculation of the non-linear current from this well-defined model is in general a non-trivial
problem which is still under intense study. Importantly, since the electrodes impose conflicting
boundary conditions (different electrochemical potentials) on the microscopic quantum system
the occupations of the states are not given by a grand-canonical distribution. The density matrix
of the dot P is thus in general not known and must be calculated from a kinetic equation, which
in general takes the form [44]:

dP

dt
(t) = −i[HD, P (t)] +

∫ t

−∞
dt′W (t− t′)P (t′) (11)

The first term on the right hand side derives from the Liouville equation for the density operator
P for an isolated quantum dot, Ṗ (t) = −i[HD, P (t)] (equivalent to the Schrödinger equation).
The second term describes the effect of the electrodes on the quantum dot and includes non-
trivial retardation effects through the time integral extending into the past time-evolution. In
the long-time limit, t → ∞, where the dot has reached a time-independent, non-equilibrium
stationary state P (t)→ P this reduces to

dP

dt
(∞) = 0 = −i[HD, P ] +WP (12)

where W = limη→0

∫∞
0
eiητW (τ)dτ includes generalized transport rate. This is the zero-

frequency component of the memory kernel appearing in the “collision term” on the far right in
the kinetic equation (11). From this equation one can find the density matrix P which we need
to calculate the expectation value of the transport current.
For comparison with experiments the limit of weak tunnel coupling and non-degenerate quan-
tum dot states is an important starting point. In this limit only the occupations Pa of the many-
body quantum dot states labeled by a (diagonal elements of the density matrix P ) matter, which
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obey a stationary master equation:

dPa
dt

(∞) = 0 = −
(∑

b

Wba

)
Pa +

∑
b

WabPb (13)

Here we sum over quantum dot states b (electron number Nb) with one electron more or less
than state a (electron number Na). In this limit the rates simplify to those obtained by Fermi’s
golden rule:

Wba =
∑
r

Γbar

{
f+
r (Eb − Ea) Nb = Na + 1

f−
r (Ea − Eb) Na = Nb + 1

(14)

Here f±
r (x) = 1/(e±(x−μr)/T + 1) is the Fermi-distribution function for an electron tunneling

out / into the electrode r and f+ = 1−f−. The rate constant Γbar for electrode r = L,R depends
on the density of states: the quantity

�Γbar = 2π
(
T bar
)2
ρr (15)

defines characteristic energy scales for quantum charge fluctuations due to tunneling. The ma-
trix elements T bar for an electron tunneling onto the dot from electrode r, thereby inducing a
transition from state a to b on the dot, completely specify the tunneling part of the model, HT .
The expectation value for the current Ir(t) = (−e)〈−Ṅr(t)〉 flowing into the dot from electrode
r (electron number Nr) is obtained from the probabilities P (t) through

Ir(t) = Tr
∫ t

−∞
dt′WIr(t− t′)P (t′). (16)

Here Tr denotes the trace over the quantum dot eigenstates. In the stationary limit the current
follows in a similar fashion from current rates WIr :

Ir = TrWIrP. (17)

The key insight which Eq. (13) brings is that the stationary occupations follow from a balancing
of probability flows. The loss of probability due to transitions from a to all states b (first term)
must cancel the gain of probability of state a due to the decay of the latter states (second term).
Whenever a positive energy change Eb − Ea falls below the electrochemical potential μr due
to a change in the bias voltage, the transition rate Eq. (14) increases by an amount Γbar since
the tunneling onto the dot becomes energetically allowed. This implies that the probabilities
and also the current change: we obtain a non-zero dI/dV and a resonance line in the stability
plot. The width of this resonance is set by the thermal energy kT due to the Fermi-function
in Eq. (14).12 One can thus sketch the stability diagrams by considering the available quantum
dot states for each electron number and the directions of the processes with non-zero transition
rates based on the positions of the chemical potentials (10) relative to the energy bias window

12Since the change in the occupations cannot exceed one, the change in the current is on the order of the typical
values of eΓba

r which we loosely denote by eΓ. The differential conductance is now estimated as dI/dV =
ΔI/Δ(μL − μR) ∼ e2Γ/(kT ). From this one easily sees that the charge quantization condition (1), dI/dV �
e2/h requires that the life-time broadening due to quantum fluctuations (15) stays much smaller than that due to
thermal fluctuations: �Γ � kT . This small ratio is the formal expansion parameter used in perturbation theory,
although in special cases higher order effects may complicate matters e.g. due to the Kondo effect.
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μL > μR. See for instance Fig. 5. Depending on the rate constants one can even in special cases
find the qualitative dependence of the occupations and the current on the voltage.
As an explicit example, for the Anderson model the master equation for the probabilities for
N = 0, 1, 2 electrons reads

d

dt

⎛
⎝ P0

P1

P2

⎞
⎠ =

∑
r

Γr

⎛
⎝ −2f+

r (ε)P0 + f−
r (ε)P1

2f+
r (ε)P0 − (f−

r (ε) + f+
r (ε+ U))P1 + 2f−

r (ε+ U)P2

+f+
r (ε+ U)P1 − 2f−

r (ε+ U)P2

⎞
⎠ . (18)

Here P1 =
∑

σ Pσ is the occupation of the 1-electron state, irrespective of its spin value σ =↑, ↓
and the probability is conserved, i.e. P0 +P1 +P2 = 1. Plugging the solution of these equations
into the expression

Ir =
∑
r

(−e)Γr
[
2f+

r (ε)P0 +
(−f−

r (ε) + f+
r (ε+ U)

)
P1 − 2f−

r (ε+ U)P2

]
(19)

one obtains the current. This produces, for example, the curve labeled p = 0 in Fig. 8(a) in the
next section.
Finally, we mention that corrections to the above single electron transport picture can be in-
corporated by calculating non-diagonal density-matrix elements (related to quantum superpo-
sitions of quantum dot states), which turn out to be crucial for the single electron spin-valve
transistor in Sect. 4. Similarly, higher order tunnel processes can be included, such as for in-
stance “cotunneling” processes involving pairs of electrons using perturbation theory [13] and
the Kondo effect [14] using renormalization group methods [15]. Such effects play an impor-
tant and sometimes even a dominant role in experiments and are key spectroscopic tools for the
characterization and control of quantum dots, see Sect. 4.3. However, these issues are beyond
the scope of this lecture.

4 Single electron spin-valve

Effects of a spin-polarization of conduction electrons in a tunnel junction have been of inter-
est since the seminal papers of Julliere [45] and Slonczewski [46]. Consider two ferromagnetic
electrodes connected by a tunnel junction as sketched in Fig. 6(a). The ferromagnets are charac-
terized by a spin-dependent density of states ρrσ, σ =↑, ↓ and a normalized polarization vector
nr along which the majority spin ↑ is pointing in electrode r. The magnetic spin-valve effect [46]
refers to the reduction of the linear tunneling conductance when the polarization vectors nr of
the two ferromagnetic electrodes r = L,R are at a angle θ defined by cosθ = nL · nR:

dI

dV

∣∣∣∣
V=0

(θ) ∝ (1 + pLpRcosθ) (20)

Here the relative spin-polarization of the spin-dependent density of states of each electrode ρrσ
is introduced:

pr =
ρr↑ − ρr↓
ρr↑ + ρr↓

(21)

i.e. ρrσ = 1
2
(1 ± pr)ρr for σ =↑, ↓ where ρr =

∑
σ=↑,↓ ρrσ is the total density of states. The

angle dependence in Eq. (20) predicted by Slonczewski has been demonstrated experimentally
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(a) (b)

Fig. 6: (a) Tunnel junction between magnetic electrodes. (b) Quantum dot connected to mag-
netic electrodes and a normal gate electrode. The electron spin can precess on the dot, even in
the absence of an external magnetic field, thereby affecting the transport.

in detail [47, 48]. It arises from the fact that an electron polarized along e.g. nL has spinor
component cos(θ/2) (sin(θ/2)) when quantized along nR and hence the probability depends on
twice the angle i.e. on θ. For perfect ferromagnets, for which pr = 1, the resistance is infinite
(finite) for θ = π (0) i.e. we can switch between two resistance states by reversing the magneti-
zation. This tunnel-magneto resistance (TMR) effect is based on the quantum mechanical spin
degree of freedom and has been rapidly developed into a technologically relevant effect (e.g.
MRAM).
A double tunnel junction offers new possibilities due to the role of Coulomb interaction and
the tunable level in the quantum dot between the two ferromagnets. This single-electron spin-
valve transistor is sketched in Fig. 6(b). The basic effects can again be understood from the
Anderson model (9) i.e. a single level with Coulomb interaction U , simply generalized to
account for a spin-dependent density of states in the electrodes which enter into the tunnel
rates through Eq. (15).13 The charge transport is now strongly influenced by the electron spin
dynamics on the dot, which we now discuss.

4.1 Spin dynamics due to transport

We explain the basic physics of the spin dynamics in a heuristic fashion, arguing that the kinetic
equation for the expectation value of the spin of the quantum dot S(t) = 〈S(t)〉 reads

dS

dt
=

(
dS

dt

)
acc

+

(
dS

dt

)
rel

+

(
dS

dt

)
pre

(22)

This equation can be derived rigorously from the general quantum kinetic equation (11) by
accounting for the full density matrix, see the reviews [51, 52] and the original papers [53, 54].

13Additional spin effects related to the interface with the ferromagnets can be incorporated as well, see [49, 50].
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Equation (22) is in fact a continuity equation for the spin, where the total change in time derives
from the injected spin-currents (first 2 terms) and a 3rd precession term. We now discuss the
three competing influences in turn.
First, due to transport on average a single electron with a spin 1/2 will reside on the dot for
a finite time. For non-magnetic electrodes the average local spin S vanishes due to rotational
symmetry (contributions with opposite polarization cancel). If at least one electrode is polarized
(pr �= 0) this symmetry is broken and a finite spin value results. This spin-accumulation derives
from the spin-injection contribution

(
dS

dt

)
acc

=
∑
r

�

2
(Ir/e)prnr (23)

Only when both nL = nR and pL = pR does the accumulation term vanish. This follows
from Eq. (23) using the current conservation

∑
r Ir = 0 in the stationary limit. An extreme

example of spin-accumulation occurs for complete (pr = 1) anti-parallel polarizations nL =
−nR where a single electron with spin parallel to the left injecting electrode gets “stuck” on
the quantum dot, unable to exit to the right electrode at lower electrochemical potential with
opposite polarization.
The transport however, also counteracts the spin accumulation due to the negative spin-relaxation
term (

dS

dt

)
rel

= −
∑
r

Γr/�
(
f−
r (ε) + f+

r (ε+ U)
) (

S− p2
r(S · nr)nr

)
(24)

where Γr (f−
r (ε) + f+

r (ε+ U)) is the Golden Rule rate of tunneling from the one electron state
with spin to the zero- and two- electron state with zero spin (singlets). Notably, the relaxation
is anisotropic: for a perfect ferromagnet (pr = 1) and an average spin parallel to nr one of the
relaxation terms vanishes, whereas for opposite average spin this term is maximal.
The third term in Eq. (22) describes a spin-precession of the electron spin about a magnetic field
as described by the standard Bloch equation14

(
dS

dt

)
pre

= γS×
∑
r

Br. (25)

This is surprising since there is no external field applied locally to the quantum dot. In fact, the
electron, by virtually tunneling to the magnetic electrodes induces a field on the quantum dot,
which acts on its own spin. This local magnetic exchange field Br induced by the electrode r
on the dot reads

γBr = prnr
Γr
π�
P

∞∫
−∞

dω

(
f−
r (ω)

ω − ε +
f+
r (ω)

ω − ε− U
)

(26)

where γ = −gμB is the negative gyromagnetic ratio determined by the electron g-factor
(−g) and the Bohr magneton μB

15. The integral is a Cauchy principal value integral i.e.

14The Bloch equation follows simply from the Zeeman interactionHZ = −γS ·B and the Heisenberg equation
of motion: Ṡ = i[HZ ,S] = γS×B using the spin algebra Si = i

∑
jk εijkSjSk.

15Note that in many of the original publications the negative gyromagnetic factor γ is absorbed into the exchange
field, thereby reversing its direction.
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P 1
x

= Re 1
x+i0

with i0 denoting an infinitesimal imaginary part. This field is induced by vir-
tual coherent tunnel processes (∝ Γr) to the magnetic electrode r which shift the quantum dot
states with opposite spin by a different amount i.e. they split in energy. This splitting, written
as a local Zeeman term gμBS · Br, defines the exchange field.16 An important implication is
that the exchange field can be very large for strong tunneling Γr. Indeed, the exchange field
has been detected experimentally in carbon-nanotube [55] and single-molecule quantum dot
spin-valves [56], where in the latter case fields on the order of 70 T were reported.

Fig. 7: Stability diagram for the Anderson model: the boundaries of the finite bias SET regions
are defined by the resonance conditions ε = μr and ε + U = μr where r = L,R. Midway
between these resonances the exchange field induced by the left (right) ferromagnetic electrode
vanishes.

An interesting aspect is that the exchange field is a Coulomb interaction effect: it vanishes
for U = 0 in which case the two terms under the integral cancel exactly (due f− + f+ = 1
and P

∫
dω 1

ω−ε = 0). Here, the first (second) term corresponds to a virtual process where the
electron tunnels out of (into) the dot. The finite interaction prevents this destructive interference
between these electron and hole processes. The exchange field is also a many-electron effect
since it involves an integral over the entire spectrum of the electrodes (cut off by the band
widths). Furthermore, the exchange field can be electrically controlled by the bias (μr) and
gate (ε) voltages, adding a transistor functionality to the device. Due to the interference already
mentioned, one of the exchange fields Br can even be switched off completely by tuning to

16For the simple case where one excludes the N = 2 state (i.e. U = ∞), the energy shift due to the tunneling
in second order perturbation theory reads Eσ − ε =

∑
k∈σ

t2

ε−ωk
f−

r (ω) where the sum extends over the electron
states in the band of spin σ. Here f− = 1 − f+ occurs since the electron fluctuates into unoccupied states in the
electrode. Converting the sum into an integral with the density of states ρrσ = 1

2 (1± pr)ρr and Γr = 2πρrt
2, and

subtracting the results for spin σ =↑ and ↓ one obtains the Zeeman shift leading to the exchange field (26).
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the condition ε − μr = −U/2 i.e. the electrochemical potential is midway between the two
resonances of the Anderson model, ε = μr and ε + U = μr. This defines a line in the stability
diagram indicated in Fig. 7, along which the two terms in the integral cancel exactly since
ε − μr = −(ε − μr + U) and P

∫
dωf−(ω)/(ω − x) = P

∫
dωf+(ω)/(ω + x) for f±(ω) =

(e±ω/T + 1)−1. The exchange fields of the electrodes can even vanish simultaneously for zero
bias μr = 0 at the special gate voltage point for which ε = U/2 (particle-hole symmetry point).
Based on the kinetic equation for the spin (22) we now have the following picture: spin accu-
mulation and relaxation due to transport compete to establish a stationary, non-zero spin value
on the dot. The crucial new feature of the spin-valve transistor is that through the exchange
fields one can electrically control the orientation of this accumulated spin. This one can detect
this in the charge transport.

4.2 Charge dynamics and non-linear transport

Having understood the spin dynamics we now turn to the charge dynamics in order to under-
stand the transport current. The occupations of the charge states, PN , N = 0, 1, 2, obey a
generalized master equation:17

d

dt

⎛
⎝ P0

P1

P2

⎞
⎠ =

d

dt

⎛
⎝ P0

P1

P2

⎞
⎠

normal

+
∑
r

prΓr

⎛
⎝ 2f−

r (ε)

−2f−
r (ε) + 2f+

r (ε+ U)

−2f+
r (ε+ U)

⎞
⎠nr · S/�. (27)

The first term on the right hand side is given by the right hand side of Eq. (18) and does not
explicitly depend on the spin. The spin does however, influence it indirectly by changing the
occupations. The second term explicitly depends on the spin and arises only for ferromagnetic
electrodes: it may cause a gain or loss of probability depending the orientation of spin relative
to the polarization vectors. The charge current has a similar structure:

Ir/(−e) = (Ir)normal/(−e)− prΓr
[
f−
r (ε) + f+

r (ε+ U)
]
nr · Sr/� (28)

where (Ir)normal is the expression for normal electrons on the right hand side of Eq. (19). The
second term contains the rate of decay of the one-electron state with non-zero spin.
The exchange field modifies the transport in several ways. For instance, in the linear regime
−eV � kT , it weakens the normal spin-valve effect for a single tunnel junction (see Eq. (20)).18

Here we focus on the non-linear transport regime where a single electron and therefore a free
spin can be present on the dot. In Fig. 8(a) an I−V curve is shown for the case of perpendicular
polarizations, i.e. θ = π/2. With increasing polarization, the first current plateau is suppressed.
In this regime either 0 or 1 electron is present on the dot (P2 = 0) and the current directly is
proportional to the occupation P0. The striking shape of the I − V curve arises due to a kind of
spin blockade which is counteracted by the precession of the spin around the exchange fields.
This is seen by setting BL = BR = 0, in which case the kinetic equation for the spin (22)
gives S = p [(ΓL/ΓR)P0nL − P1/2nR]. One furthermore finds that the dot will be occupied
most of the time i.e. P1 ≈ 1 � P0. Thus the spin is anti-parallel to the right (drain) electrode,

17The second term on the right hand side comes from the non-diagonal elements of the density matrix i.e.
Eq. (18) is not a standard master equation which involves only occupancies.

18After tunneling through the first junction, the electron spin can precess and thereby adjust itself to the polar-
ization orientation of the drain electrode. This increases the probability of escaping relative to the single junction
case.
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(a) (b)

Fig. 8: Results of Braun et. al. [54]. (a) Current-voltage trace for perpendicular polarization
directions i.e. θ = π/2. As the degree of polarization pL = pR = p is increased there is an
overall suppression of the current due to spin blockade, which is counteracted by the precession
about the exchange field away from the center of the plateau (eV = 50kT ). The interaction
strength is U = 30kT � ΓL = ΓR = Γ/2 and ε = 10kT . (b) Upper panel: magnitude
of the exchange fields as function of bias voltage: BL vanishes at the center of the plateau
(eV = 50kT ), while BR remains finite (which is irrelevant since the spin is parallel to it).
Lower panel: comparison of the full result and the result obtain when setting the exchange field
to zero “by hand”. In the latter case the current uniformly drops to the minimum value due to
the exponential dependence the Fermi-functions in the rates, see Eq. (14). In contrast, the much
weaker voltage dependence of the exchange field, which lifts the blockade, dominates in the full
result. The parameters are the same as in (b) and p = 0.95.
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S ≈ −p/2nR. The electron cannot exit due to the low density of minority spin ↓ in the right
(drain) electrode when pR ≈ 1. No additional electrons can be transported due to the Coulomb
blockade effect and the current is suppressed. This spin blockade would however suppress the
current uniformly across the entire plateau as Fig. 8(b) shows. Instead, due to the exchange
fields a broad minimum is found. Since the spin blockade causes the spin to be parallel to the
exchange field of the right (drain) electrode it is not rotated by it. At the center of the plateau,
μL = V/2 = ε + U/2, the exchange field of the left (source) electrode vanishes, BL = 0:
only here the spin blockade is thus complete, see Fig. 8(b). However, away from this point the
spin will precess around the non-zero BL of the source electrode, generating a spin component
parallel to the drain polarization nR which increases the current.

4.3 Outlook: mapping the exchange field with higher order tunneling

Fig. 9: Result from Hauptmann et. al. [55]. Experimental stability diagram i.e. differential
conductance in color scale as function of applied voltages. The yellow dashed lines indicate
the SET regions which are hardly visible here due to the strong tunnel coupling. The white/red
color indicates a conductance peak due to higher order tunnel processes. This so-called Kondo
peak normally lies at zero bias (i.e. a horizontal line). Due to the exchange field induced by the
ferromagnetic electrodes this peak splits and shifts to a finite bias equal to the Zeeman splitting.
Clearly, this exchange field goes to zero approximately at the center of the Coulomb diamond,
in line with Fig. 7. Away from this point the dependence on the bias follows the same qualitative
behavior of |BL| as plotted in the upper panel of Fig. 8(b).

As mentioned above, the exchange field arises due to a splitting induced by virtual tunneling
processes. The single electron tunneling discussed so far cannot directly resolve this splitting
since thermal fluctuations ∼ kT dominate over any effects on the order of the tunnel rates �Γ,
such as the exchange field. However, transport effects involving higher order tunnel processes,
such as cotunneling [57] and the Kondo effect [58, 59], are sensitive this splitting. These are be-
yond the scope of this introduction, see the reviews [51, 52]. As a concluding remark, we merely
mention that the exchange field was demonstrated experimentally by measuring the predicted
Zeeman shift of the Kondo effect [58, 59] in C60 molecular quantum dots [56]. Furthermore,
recently [55] this Zeeman splitting was used to directly map out the magnitude of exchange
field as function of a level position (gate voltage) in a carbon-nanotube quantum dot contacted
with ferromagnetic electrodes, as shown in Fig. 9.
Acknowledgement F. Reckermann, S. Das and M. Baumgärtel are acknowledged for proof
reading the manuscript.
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1 Introduction

Quantum dots are small devices in which few mobile electrons are confined and can be con-
nected to macroscopic electrodes. The properties of such systems are dominated by the quanti-
zation of electronic charge- and possibly other degrees of freedom (orbit, spin). This quantiza-
tion makes quantum dots very similar to atoms (coupled dots similar to molecules). Therefore
one might think that no fundamental new physics is involved. However, their tunability and the
possibility of wiring them up in an external electric circuit enables new regimes to be accessed.
In particular in transport, on can study in detail the interplay of strong interactions, quantized
motion and non-equilibrium boundary conditions imposed by the external electrodes. A fasci-
nating aspect is that in these solid state devices single electrons can experimentally be manipu-
lated to a high degree despite the coupling to huge numbers of other electrons and other degrees
of freedom around (phonons, nuclear spins, etc). It is the dominating role of the Coulomb inter-
action in these confined systems which allows for this degree of control: once a single electron
has jumped to some new position in such a device, other electrons are prevented from following
it since the change in Coulomb interacting energy is larger than thermal and quantum fluctua-
tions. This suppression of transport is called Coulomb blockade. Coulomb interaction is also
responsible for many other effects such as exchange interactions, spin blockade, the exchange-
field induced by ferromagnetic electrodes, and also the Kondo effect. The degree of control,
however, comes at a price: the understanding of the operation of such devices is complicated
due to the inherent many-body nature of the transport processes.
However, much progress has been made. Although single electron experiments date back to
Millikan’s determination of the electron charge [1] qe = −e where e ≈ 1.602 10−19C, only
much later solid-state experiments involving single electron effects were done. Important de-
velopments came from transport through metallic layers which break up into small islands due
to surface tension effects [2] and the progress in the field of superconducting tunnel-junctions.
This stimulated the development of basic theoretical models and approaches still in use to-
day [3]. After the advent of the first tunable single electron devices [4] the field of quantum dot
physics boomed, see the key reviews [5, 6, 7, 8, 9, 10, 11]. In the last two decades quantum dots
realized in nano-structured solid-state devices have reached a high level of sophistication, rang-
ing for “on-chip” fundamental physics experiments and hybrid devices to device applications.
Nowadays nano-gap fabrication combined with chemical functionalization even allows quan-
tum dot devices to be fabricated in single real molecules. Thus, in a way the field of quantum
dots has now come full circle: the techniques which have developed for controlling “artificial”
atoms and molecules can now be applied to the real thing: the complicated problem of transport
through single molecules greatly benefits from this wealth of experience and techniques, both in
experiment and theory. Clearly, quantum dot systems are encountered in many areas of physics,
electronics, chemistry and biology and will continue to be crucial in the full range from basic
physics to nano-scale device applications.
The importance of interactions in the transport processes of charge and spin makes understand-
ing and operating quantum dot devices a complicated task. It is the aim of this lecture to
introduce some of the basic notions of single quantum dot devices underlying current research
efforts. Basics of Coulomb blockade and orbital quantization effects will be introduced in Sec-
tions 2-3 based on the above cited key reviews where more details and references can be found.
In the last decade spin effects have been at the center of attention, including Hund’s-rule / shell-
filling effects, Zeeman splitting, exchange interaction in double dots, spin-polarized electrodes.
In the remaining Section 4) a specific quantum dot devices will be discussed where the elec-
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tron spin plays a crucial role in the transport. Specifics of different realizations of quantum dots
systems are avoided if possible to focus on common principles and models. Other interesting av-
enues where spin effects are important but which are not considered here are Pauli spin-blockade
in double quantum dots [11], higher-order tunneling effects (“cotunneling”, level renormaliza-
tion, broadening) [12, 13], Kondo effect [14, 15], time-dependent transport [7, 16, 17], metallic
dots (without orbital quantization effects) [8], many-electron quantum dots and their statistical
properties [7, 18], superconducting quantum dots and/or electrodes [19] and device application
aspects of single electron circuits [8]. Specifics on transport through quantum dots realized in
semiconductor hetero-structures [9], wires [20], carbon nano-tubes [21, 22] and nanometer-size
molecular quantum dots [23] can be found in the indicated references (reviews and some key
publications).

2 Single electron charging effects on tunneling

To understand how Coulomb interactions allow single electrons to be controlled, we consider
the simplest structure, a single tunnel junction [5, 7, 8, 9] between two electrodes at potentials
Vr, where the left and right electrode are denoted by r = L,R. We first fix some conventions.
The electrochemical potentials of the electrodes is μr = εF − eVr, where e > 0 denotes the
elementary charge magnitude (i.e. the electron charge is = −e). Therefore a chemical potential
or energy bias μL − μR = −e(VL − VR) > 0 will drive an electron particle-current in the
direction L→ R i.e. L acts as the source and R as the drain electrode. This requires a negative
bias voltage V = VL − VR < 0 to be applied, and the electric current by definition flows in the
opposite in the opposite direction, I < 0. We will always discuss the electron particle I/(−e)
current versus the applied energy bias −eV (or drain-source voltage) to avoid the inconvenient
minus signs, as is common practice. 1

(a) Quantum point contact (b) Tunnel junction (c) Circuit

One can think of a tunnel junction as a pinched-off ballistic conduction channel. For such
a system the two-terminal conductance is due to contact resistance and is quantized in units
of the fundamental quantum of conductance GQ = e2/h [24]. If the conduction channel is
gradually pinched off, the conductance is reduced in steps of magnitude 2GQ (factor 2 for spin)
until finally the current drops exponentially to zero and

dI/dV � e2/h. (1)

This is referred to as charge quantization, which is a semi-classical effect. The electrons are
classically confined to either electrode (i.e. with well-defined charge numbers). To see some
effect of this in transport one needs to have quantum mechanical tunneling through the in-
sulating barrier: the junction has to be considered as a “leaky” capacitor. When an electron

1Note that in the differential conductance, this sign cancels out when converted to energy units and particle
currents: dI/dV = ed(I/(−e))/d(μL − μR).
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tunnels across the junction the polarization charge changes abruptly by the elementary quantum
of charge e. As a result potential across the junctions jumps up or down by ΔV = e/C. The
associated change in the energy of the junction, eΔV = e2/C, is called the charging energy.
If the applied bias voltage energy eV or the thermal fluctuations kT are not able to overcome
this energy barrier, the transport is blocked. Thus the tunneling of a single electron can have a
dominating effect on the macroscopically measurable transport current. Since the capacitance
C scales linearly with the junction dimensions, single electron tunneling (SET) effects become
important for sufficiently small junctions and / or sufficiently small temperatures:

kT ≤ e2/C. (2)

Generally, the suppression of tunneling due to the charging energy is termed Coulomb block-
ade.2 A tunnel junction is very different from an ordinary resistor where an incompressible
electron liquid flows in a quasi-continuous way, responding instantaneously to electric fields.
In contrast, the leakage of junction charge is a slow process i.e. only once in a while an electron
tunnels, the duration of this quantum mechanical process being much shorter than the average
time between such events [6]. The time for the charge in the junction to rearrange itself after a
tunnel process is also very short (dielectric relaxation time related to plasmon dynamics [25, 6]).
Surprisingly, despite the clear arguments above single electron charging effects are not very
important in single tunnel junctions [26, 27] and were first observed in double tunnel junctions
where a quantum dot is formed to be discussed in Sect. 3. The point is that above we have
tacitly assumed that the polarization charge on the junction is a classically well-defined variable.
However, this depends strongly on the nature of the electromagnetic environment created by the
external circuit, which is can be described by a frequency dependent impedance Z(ω) in series
with the junction. Only for a high impedance environmentZ(0)� 1/GQ the junction charge is
classically well-defined. However, this is almost never the case unless exceptional precautions
are taken [28]. Therefore, quantum fluctuations of the junction charge and voltage are strong
and can nearly completely lift the Coulomb blockade of transport: during such a fluctuation
charge moves into the circuit leads and the Coulomb barrier is lowered, allowing the electron to
tunnel. One may say that an electron tunnels directly into the leads, rather than staying localized
onto the capacitor plate. See for a clear exposition and examples [25]. A precise understanding
of the electromagnetic environment requires a full quantum description of the circuit to calculate
the transport, see the reviews [26, 29, 27] and key papers [30, 31, 32] for further details.

3 Single quantum dots

Clearly, when introducing a second tunnel junction, thus creating an island or dot between two
electrodes, the above problem with the low impedance of the external circuit is solved: when
viewed from one junction, the other junction shunts the low environmental impedance [26].
Therefore charging effects are always important for two or more tunnel junctions in series under
the conditions of charge quantization (1) and of low temperature (2), even if the environmental

2Another way of seeing how the quantum conductance enters into the condition for observing charging effects at
low temperature is based on the time-energy uncertainty relation, which states that in the classical limit ΔEΔt�
�. The energy uncertainty is set by the charging ΔE ∼ e2/C and the time for discharging the capacitor is governed
by the smallest RC-time Δt ∼ RC where R is the largest resistance dominating the current. Plugging this in the
capacitance cancels out and one obtains the condition for classical charging effects to be R� h/e2 = 25.8kΩ i.e.
Eq. 1.
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(a) (b)

Fig. 1: (a) Quantum dot connected to electrodes and a gate terminal. (b) Double junction
electrostatic circuit. Tunneling through the “leaky capacitors” is not indicated.

impedance is low compared to 1/GQ. Such systems are considered from hereon and the issue
of the environment can be ignored.
A quantum dot denotes a confined electron system where both charge and orbital quantization
effects are important, see the key reviews [7, 8, 9, 11]. We first discuss charge quantization
by extending the above capacitance model to a double junction. The success of the capaci-
tance model derives from the smallness of screening length compared to the electron wave-
length [7].3 The small capacitances needed to see charging effects are limited from below by
self-capacitance which for a sphere equals 4πεL and for a disk 8εL (height� L), i.e. roughly
10εL where L denotes the radius. The condition e2/C = kT for room-temperature T = 300 K
is satisfied for C ∼ 2 aF, whereas for low temperature T = 1 K this becomes C ∼ 6 pF. In
vacuum, this translates into typical dimensions of L ∼ e2/(kT10ε0) = 70 nm and L ∼ 20 μm
for T = 300 K and T = 1 K, respectively. The effective capacitance is actually larger than
this estimate due to the fact that the tunnel-barrier consists of materials with ε > ε0, the mutual
capacitances to the nearby conducting electrodes [34, 36] and the quantum-capacitance due
to non-locality of charge [37]. Therefore one needs smaller dimensions that the above rough
estimates, see [7].
Now consider a dot (labeled by 1) coupled by two tunnel junctions to electrodes r = L,R,
as sketched in Fig. 1. A third, capacitively coupled, gate electrode g, allows the potential
on the dot to be varied in a continuous and linear way by changing the voltage Vg4. This
originates from a continuous shift of the incompressible conduction electron liquid relative to
the ionic cores in the material [25]. The dot is thus considered as a conducting body with a
small capacitance: when discrete charges are moved from the electrodes to the dot the potential
of the dot V1 strongly changes and may block the transfer if the corresponding energy change
is larger than kT . The calculation of the energy of a set of conductors is a textbook [38, 39]
problem. However, the issue is that we need the energy as function of the electrode potentials
and dot charge. We include these voltage sources in the network of conducting elements5 as

3In semiconductors this condition is less well satisfied than in metals and there is a weak voltage dependence
of the capacitances [33, 34]. In molecular quantum dots this dependence is even stronger [35, 36]. In such cases
one can often work with differential capacitances i.e. linearized with respect to voltage.

4The gate electrode can also model constant stable background charges, which are always present and give
rise to a constant gate voltage offset. Experimentally, one can simply compensate for offset charges by changing
Vg , so we leave them out here. However, for applications background charges present a major problem. We note
that instable background charges less trivial effect and can give rise to a dynamic “resetting” of the gate voltage
scale. These have to be incorporated into the transport model, resulting in a double dot model. This is especially
important in nanometer sized molecular quantum dots.

5There are in fact two equivalent ways of approaching this [40], both used in the literature. The approach taken
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conductors with large capacitance to ground and large charge i.e. their potential is insensitive
to their charge. The opposite is true for the dot: its potential is highly sensitive to changes in the
chargeQ1 due to the small total capacitanceC1 =

∑
r=L,R cr+cg. This is seen by expressing the

charge in the capacitances in Fig. 1 and the voltage differences across the 3 different junctions,
Q1 =

∑
r=L,R cr(V1 − Vr) + cg(V1 − Vg). Solving for the dot potential V1 we find:

V1 = (C1)
−1

(
Q1 +

∑
r

crVr + cgVg

)
. (3)

To find out if tunneling is possible, we need to calculate the change in the total energy of
the whole system due to a single electron tunneling event. Introducing the electron number
N1 = Q1/(−e) and inserting it into the electrostatic energy EN1 = (V1)

2/2C1 we obtain

EN1 = U1

(
N1 −

(∑
r

crVr + cgVg

)
/e

)2

(4)

where U1 is the charging energy:

U1 =
e2

2C1
. (5)

As function of the externally induced continuous charge
∑

r crVr + cgVg each charge state
defines a potential energy parabola with a minimum at eN1 = . . . ,−e, 0, e, . . .. Clearly, at zero
applied voltages VL,R,g = 0 the state with N1 = 0 electrons has the lowest energy. The energy
change associated with adding a single electron, the electrochemical potential of the dot, takes
on discrete values:6

μN1 = E(N1)−E(N1 − 1) = U1

(
N1 +

1

2

)
−
∑

i=L,R,g

αieVi (6)

Here we introduced the capacitance ratios αi = ci/C1 < 1 for i = L,R, g. We now use the
conservation of total energy of the dot and the reservoirs for a single electron tunnel process.
For weak tunnel coupling this is sufficient, see below Sect. 3.4.7. While in the electrodes with
a continuum of electron energies is are available, only those electrons with energy equal to one
of the discrete values μN can enter the dot.

3.1 Linear transport

The charge quantization becomes evident for small applied voltages and low temperature. As
one varies the gate electrode to more positive values, one attracts electrons to the dot by the

here is simpler to extend to multiple dot systems [10] and to quantum-mechanical systems, see [41] (Appendix).
Alternatively, one can consider the dot as an open system, treating the voltage sources as external. If one then
considers a tunnel event, one has to calculate the change in free energy plus the work done by the voltage sources.
In this picture, tunneling only occurs when the free energy decreases (“downhill” process), the energy difference
being dissipated in the external sources [40].

6One should be aware that often these values of the electrochemical potential are referred to as “levels” of the
dot, even though they are energy changes (related to electron affinity, ionization potential). Energy level diagrams
where electrons are drawn in as occupying such a level often lead to confusion at first.

7For strong tunnel coupling this breaks down, since higher order processes shift the dot energy levels.
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positive continuous induced charge. As a result, all μN shift down uniformly and one achieves
subsequent resonances μN = μr for N = 1, 2, . . .. At such a charge-degeneracy point an
electron can enter / leave the dot without changing its energy. The small bias μL − μR � kT
then results in a directed transport current and a finite linear conductance (dI/dV )V=0: for
μL > μN > μR an electron can be extracted from the left, inserted into the dot and finally
extracted on the right, while conserving the total energy, see Fig. 2. Clearly, the probability for
the opposite process is smaller. Plotting the conductance as function of Vg one obtains what are
called Coulomb blockade oscillations, see Fig. 2.

Fig. 2: Coulomb blockade oscillations of the linear conductance: at the dots on the gate energy
axis the resonance condition μN = μL ≈ μR is satisfied for some N = 0, 1, 2, . . .. The left
inset shows the electrochemical potentials at the degeneracy point marked by the arrow. The
energy width of the peak is set by the electron temperature of the electrodes, kT , which smears
the sharp Fermi levels. Between the conductance peaks the charge on the dot is fixed to the
indicated value due to Coulomb blockade.

The distance between subsequent degeneracy points μN1 − μN1−1 is called the N1th addition
energy:8

μN1 − μN1−1 = U1 =
e2

C1
. (7)

This is the extra energy required to add the N1th electron, given that one already has the energy
available to add the N1− 1th electron. The addition energy is thus an electrochemical potential
difference i.e. a second difference of the energy EN with respect to N (curvature of energy
versus N). In the electrostatic model considered here, the addition energy is the same for all
N and equal to the charging energy U1. The distance between the degeneracy points allows the
addition energy to be read off directly from experimental data, giving the capacitance C1.9 To
determine αg independently, one needs to measure the non-linear transport as well.

3.2 Non-linear transport

For finite bias−eV � kT each degeneracy point from the linear transport regime widens into a
finite region where single electron transport (SET) is possible. The resulting stability diagram is

8There is no chemical contribution here i.e. the Fermi-levels of the metallic islands are assumed to be identical.
Such differences would only cause an offset in the gate voltage, similar to background charged-impurities.

9The precise position of the degeneracy points μN1 are not very useful, since they depend on the Fermi-level
of the electrodes, the number of electronsN1 (not directly accessible from the transport measurement) and uncon-
trollable offsets due to charged impurities close to the device.
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sketched in Fig. 3, the light regions indicating SET, the dark regions Coulomb blockade where
the current is suppressed and the charge state on the dot is fixed despite the finite temperature
and voltage. By using bias and gate energies on the axis, the meaning of the boundary lines at
the SET region are easily remembered: the left (right) diagonal line through theN th degeneracy
point corresponds to resonance with the left (right) electrode, μL = μN (μR = μN ). These
basic rules of thumb are illustrated by the left two insets in Fig. 3. Clearly, the boundary
lines must cross at the charge degeneracy point where μL = μN = μR. The slopes of the

Fig. 3: Stability diagram in (αgeVg,−eV ) plane. The vertical and horizontal size of the dia-
mond shaped Coulomb blockade regions is in general a measure of the stability of the charge
state (indicated by the number), given here by the charging energy U1 = e2/C1. The boundary
lines correspond to the electrochemical potential diagrams indicated in the left two insets. Their
slopes are given for the experimentally most relevant case of asymmetric bias VL = V, VR = 0:
they follow by equating μL = −eV = μN and μR = 0 = μN and using Eq. (6). The right inset
makes clear that when subsequent electrochemical potentials of the dot are simultaneously at
resonance, that the energy bias μL − μR = −eV equals the addition energy, which equals the
charging energy.

resonance lines in the stability diagram actually depend on how the bias−(VL−VR) is applied.
In experiments one usually sets VR = 0 for practical reasons, which has the added advantage
that the charging energy can be read off directly as the height of the diamond shaped Coulomb
blockade region, see the upper right inset to Fig. 3. In theoretical works one favors a symmetric
bias −VL = VR = V/2 since then for symmetric coupling CL = CR (a common simplifying
assumption) the electrochemical potentials μN1 are independent of the bias voltage and are only
shifted by Vg, see Eq. (6).
More generally, a stability diagram indicates the boundaries between regimes where the current
has a different value. At the boundary dI/dV is nonzero since the current changes drastically
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due to a resonance condition being satisfied (energy conservation). Therefore color scale plots
of dI/dV as function of the applied gate and bias voltage are the standard starting point for
transport spectroscopic studies and provide a compact format for summarizing many theoretical
results in a single figure. From such a plot, an important characteristic transport signature
of quantum dots without quantized orbital states (usually metallic particles) is immediately
evident: the Coulomb diamonds have identical shape and size, see (7). See the review [42] for
experimental examples and theoretical modeling.

3.3 Discrete states and excitations

If one makes a quantum dot sufficiently small, size quantization effects will become important
due to the wave nature of electrons.10 For such systems the above electrostatic treatment ac-
counting only for charge quantization is clearly insufficient. However, it turns out that by a
simple extension one obtains a very successful model. One first neglects Coulomb electron-
electron interactions altogether and calculates the single-particle energies (“particle in a box
problem”). The total energy is now approximated by the sum of the electrostatic contribu-
tion (4) and the single-particle energies. This is the so-called constant-interaction model. There
is now both a chemical (orbital) and electrostatic contribution to the energy change upon charge
addition, starting in the N1 − 1 and ending in N1 electron ground state:

μN1 = εN1,free + E(N1)− E(N1 − 1) = εN1,free + U1

(
N1 +

1

2

)
−
∑

i=L,R,g

αieVi. (8)

Here εN1,free denotes the energy of the lowest free orbital to which the N1th electron is added.
Clearly, this term depends on the electron number N1 and on the details of the spectrum. This
implies that in general, the addition energy differs from the charging energy. For example, if
the energy spectrum is non-degenerate, starting from a dot where the highest orbital level is
half-filled, one only needs to pay the charging energy extra to add the next electron to the same
level, i.e. the addition energy equals the charging energy, μN1 − μN1−1 = U1, for N1 =even.
In contrast, when all levels are initially doubly occupied, the N1th electron is added to the
next empty orbital when N1 =odd. In this case the addition energy is U + δ, where δ is the
separation of the highest filled level to the empty level. If the level spacing and the charging
energy are approximately constant for several subsequent electron numbers (which is often the
case) , then the stability diagram shows an even-odd alternation of the sizes of the Coulomb
diamonds, as sketched in Fig. 4. This is common fingerprint of size quantization in quantum
dots which can be directly read off from the stability diagram.11 In contrast, small quantum dots
without special symmetries have no orbital shell structure i.e. irregular orbital energy spacings.
Irregular addition spectra occurring for low electron numbers are thus another fingerprint of
quantization effects.

10For a single electron a potential-box of size L the kinetic energy scales as L−2 with system size, and will for
some value of L equal the charging energy which scales ∝ L−1.

11If the spectrum contains degeneracies, the filling of the degenerate shell will give rise to several addition ener-
gies equal to the charging energy U , followed by one addition energy U + δ when the next shell starts to be filled.
For example, carbon-nanotube quantum dots display clear shell-filling over many tens of electron numbers [22].
It is striking that the degeneracy, a fingerprint of the microscopic molecular structure (hexagonal carbon patches),
shows up in a macroscopic transport current! In semi-conductor quantum dots with well-defined circular disk
shape the shell filling as measured in transport follows accurately a 2-dimensional analogue of the periodic table,
see [9] for details.
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Fig. 4: Stability diagram in (αgeVg,−eV ) plane for a quantum dot with multiple quantized
orbital states. Bottom: filling of the orbital levels with energies ε1, ε2 in the different charge
states. The orbital energy splitting is denoted by δ = ε2 − ε1. Blue arrows: electrochemical
potential i.e. energy-change for transitions between these states. The addition energies are
obtained by taking the electrochemical potential differences. The Anderson model Hamiltonian
gives a good description in the boxed region on the left.

In a limited gate and bias voltage range the essential transport characteristics are captured by
restricting the model to a single level with a charging energy U coupled to two electrodes. The
corresponding model Hamiltonian defines the Anderson model,

HD = ε
∑
σ=↑,↓

nσ + Un↑n↓ (9)

where nσ = d†σdσ counts the occupation of the orbital with spin projection σ =↑, ↓. This model
and its extensions form the basis for most transport calculations on quantum dots. The energy ε
here incorporates the bias and gate voltage induced shifts of the electrochemical potential and
other contributions independent of the charge number, see Eq. (10).

Electrons may of course be added to other levels than the lowest unoccupied one, resulting in
an excited state of the dot. This is possible if the generalized electrochemical potential

μb,aN1
= Eb − Ea (10)

lies in the bias energy window, where b and a denote any pair of ground or excited states with
N1 and N1 − 1 electrons respectively. This plays however no role in the Coulomb blockade
regime where no other state than the Coulomb blockaded ground state is occupied. Figure 5
indicates for a simple model, which new resonance lines appear in the SET regimes and which
processes they correspond to.
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Fig. 5: Center: Stability diagram in (αgeVg,−eV ) plane for a quantum dot with excited many-
electron states. Bottom: energy spectrum for N = 0, 1 electrons and transition induced by
electron addition. Along the full colored lines in the SET region the current changes when
the electrochemical potential corresponding to these transitions enters the bias window. The
excitation energies, relative to the ground state, can be read off in two ways: (i) either vertically
by the position of the colored dots marking the intersection with the SET regime boundary or (ii)
horizontally by the position of the lines extrapolated to zero bias voltage (the dashed parts in the
N = 0 or N = 1 Coulomb blockade regime do not show up in transport). Top: electrochemical
potential diagrams for the corresponding colored dots at the SET boundary for method (i). The
black “level” marks the electrochemical potential for the ground N = 0 to ground N = 1-
electron transition (all such transitions for other electron numbers are not shown). The colored
lines show the electrochemical potentials for transition involving an excited state, which are
obtained by shifting the ground-ground level up (red) or down (blue) by each of the excitation
energies relative to the ground state, or their difference (green). Note that the green level marks
the transition between two excited states, which can only be observed in transport if relaxation
mechanisms are weak [43], see [11] for an example of such transitions involving spin.
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3.4 Transport theory - occupations and rates

The aim of this section is twofold. On the one hand, we discuss some of the basic arguments
we used above to construct stability diagrams. On the other hand, we indicate the microscopic
origin of this picture and the general framework in which quantum transport through quantum
dots can be calculated.
The crucial starting point is that the Coulomb interaction effects need to be included non-
perturbatively: it cannot be used as an expansion parameter since it is one of the largest energy
scales. We thus should treat the tunneling as a small parameter. From the previous sections it
is clear that in general transport through a quantum dot is described by a model Hamiltonian
containing three terms, H = HD +

∑
r=L,RHr + HT , which account for the quantum dot,

the electrodes and the tunneling between them, respectively. The strong classical electrostatic
effects due to capacitive interaction with the electrodes and quantized orbitals we have been
discussing so far enter into HD, as well as further many-electron interactions on the dot (e.g.
spin-spin, spin-orbit interactions, etc.), see [41] for a systematic discussion. The metallic elec-
trodes with good screening properties are described by a single particle models Hr, which are
fully specified by the density of states ρr (which can be considered as constant in nearly all
cases of interest). The electrodes remain in equilibrium at their own electrochemical potentials
μr = εF −eVr and temperature T . In order to calculate the quantum transport current which can
be compared with experimental results, one needs to additionally specify the matrix elements
of the microscopic coupling HT accounting for electron tunneling between the electrodes and
the dot.
The calculation of the non-linear current from this well-defined model is in general a non-trivial
problem which is still under intense study. Importantly, since the electrodes impose conflicting
boundary conditions (different electrochemical potentials) on the microscopic quantum system
the occupations of the states are not given by a grand-canonical distribution. The density matrix
of the dot P is thus in general not known and must be calculated from a kinetic equation, which
in general takes the form [44]:

dP

dt
(t) = −i[HD, P (t)] +

∫ t

−∞
dt′W (t− t′)P (t′) (11)

The first term on the right hand side derives from the Liouville equation for the density operator
P for an isolated quantum dot, Ṗ (t) = −i[HD, P (t)] (equivalent to the Schrödinger equation).
The second term describes the effect of the electrodes on the quantum dot and includes non-
trivial retardation effects through the time integral extending into the past time-evolution. In
the long-time limit, t → ∞, where the dot has reached a time-independent, non-equilibrium
stationary state P (t)→ P this reduces to

dP

dt
(∞) = 0 = −i[HD, P ] +WP (12)

where W = limη→0

∫∞
0
eiητW (τ)dτ includes generalized transport rate. This is the zero-

frequency component of the memory kernel appearing in the “collision term” on the far right in
the kinetic equation (11). From this equation one can find the density matrix P which we need
to calculate the expectation value of the transport current.
For comparison with experiments the limit of weak tunnel coupling and non-degenerate quan-
tum dot states is an important starting point. In this limit only the occupations Pa of the many-
body quantum dot states labeled by a (diagonal elements of the density matrix P ) matter, which
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obey a stationary master equation:

dPa
dt

(∞) = 0 = −
(∑

b

Wba

)
Pa +

∑
b

WabPb (13)

Here we sum over quantum dot states b (electron number Nb) with one electron more or less
than state a (electron number Na). In this limit the rates simplify to those obtained by Fermi’s
golden rule:

Wba =
∑
r

Γbar

{
f+
r (Eb − Ea) Nb = Na + 1

f−
r (Ea − Eb) Na = Nb + 1

(14)

Here f±
r (x) = 1/(e±(x−μr)/T + 1) is the Fermi-distribution function for an electron tunneling

out / into the electrode r and f+ = 1−f−. The rate constant Γbar for electrode r = L,R depends
on the density of states: the quantity

�Γbar = 2π
(
T bar
)2
ρr (15)

defines characteristic energy scales for quantum charge fluctuations due to tunneling. The ma-
trix elements T bar for an electron tunneling onto the dot from electrode r, thereby inducing a
transition from state a to b on the dot, completely specify the tunneling part of the model, HT .
The expectation value for the current Ir(t) = (−e)〈−Ṅr(t)〉 flowing into the dot from electrode
r (electron number Nr) is obtained from the probabilities P (t) through

Ir(t) = Tr
∫ t

−∞
dt′WIr(t− t′)P (t′). (16)

Here Tr denotes the trace over the quantum dot eigenstates. In the stationary limit the current
follows in a similar fashion from current rates WIr :

Ir = TrWIrP. (17)

The key insight which Eq. (13) brings is that the stationary occupations follow from a balancing
of probability flows. The loss of probability due to transitions from a to all states b (first term)
must cancel the gain of probability of state a due to the decay of the latter states (second term).
Whenever a positive energy change Eb − Ea falls below the electrochemical potential μr due
to a change in the bias voltage, the transition rate Eq. (14) increases by an amount Γbar since
the tunneling onto the dot becomes energetically allowed. This implies that the probabilities
and also the current change: we obtain a non-zero dI/dV and a resonance line in the stability
plot. The width of this resonance is set by the thermal energy kT due to the Fermi-function
in Eq. (14).12 One can thus sketch the stability diagrams by considering the available quantum
dot states for each electron number and the directions of the processes with non-zero transition
rates based on the positions of the chemical potentials (10) relative to the energy bias window

12Since the change in the occupations cannot exceed one, the change in the current is on the order of the typical
values of eΓba

r which we loosely denote by eΓ. The differential conductance is now estimated as dI/dV =
ΔI/Δ(μL − μR) ∼ e2Γ/(kT ). From this one easily sees that the charge quantization condition (1), dI/dV �
e2/h requires that the life-time broadening due to quantum fluctuations (15) stays much smaller than that due to
thermal fluctuations: �Γ � kT . This small ratio is the formal expansion parameter used in perturbation theory,
although in special cases higher order effects may complicate matters e.g. due to the Kondo effect.
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μL > μR. See for instance Fig. 5. Depending on the rate constants one can even in special cases
find the qualitative dependence of the occupations and the current on the voltage.
As an explicit example, for the Anderson model the master equation for the probabilities for
N = 0, 1, 2 electrons reads

d

dt

⎛
⎝ P0

P1

P2

⎞
⎠ =

∑
r

Γr

⎛
⎝ −2f+

r (ε)P0 + f−
r (ε)P1

2f+
r (ε)P0 − (f−

r (ε) + f+
r (ε+ U))P1 + 2f−

r (ε+ U)P2

+f+
r (ε+ U)P1 − 2f−

r (ε+ U)P2

⎞
⎠ . (18)

Here P1 =
∑

σ Pσ is the occupation of the 1-electron state, irrespective of its spin value σ =↑, ↓
and the probability is conserved, i.e. P0 +P1 +P2 = 1. Plugging the solution of these equations
into the expression

Ir =
∑
r

(−e)Γr
[
2f+

r (ε)P0 +
(−f−

r (ε) + f+
r (ε+ U)

)
P1 − 2f−

r (ε+ U)P2

]
(19)

one obtains the current. This produces, for example, the curve labeled p = 0 in Fig. 8(a) in the
next section.
Finally, we mention that corrections to the above single electron transport picture can be in-
corporated by calculating non-diagonal density-matrix elements (related to quantum superpo-
sitions of quantum dot states), which turn out to be crucial for the single electron spin-valve
transistor in Sect. 4. Similarly, higher order tunnel processes can be included, such as for in-
stance “cotunneling” processes involving pairs of electrons using perturbation theory [13] and
the Kondo effect [14] using renormalization group methods [15]. Such effects play an impor-
tant and sometimes even a dominant role in experiments and are key spectroscopic tools for the
characterization and control of quantum dots, see Sect. 4.3. However, these issues are beyond
the scope of this lecture.

4 Single electron spin-valve

Effects of a spin-polarization of conduction electrons in a tunnel junction have been of inter-
est since the seminal papers of Julliere [45] and Slonczewski [46]. Consider two ferromagnetic
electrodes connected by a tunnel junction as sketched in Fig. 6(a). The ferromagnets are charac-
terized by a spin-dependent density of states ρrσ, σ =↑, ↓ and a normalized polarization vector
nr along which the majority spin ↑ is pointing in electrode r. The magnetic spin-valve effect [46]
refers to the reduction of the linear tunneling conductance when the polarization vectors nr of
the two ferromagnetic electrodes r = L,R are at a angle θ defined by cosθ = nL · nR:

dI

dV

∣∣∣∣
V=0

(θ) ∝ (1 + pLpRcosθ) (20)

Here the relative spin-polarization of the spin-dependent density of states of each electrode ρrσ
is introduced:

pr =
ρr↑ − ρr↓
ρr↑ + ρr↓

(21)

i.e. ρrσ = 1
2
(1 ± pr)ρr for σ =↑, ↓ where ρr =

∑
σ=↑,↓ ρrσ is the total density of states. The

angle dependence in Eq. (20) predicted by Slonczewski has been demonstrated experimentally
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(a) (b)

Fig. 6: (a) Tunnel junction between magnetic electrodes. (b) Quantum dot connected to mag-
netic electrodes and a normal gate electrode. The electron spin can precess on the dot, even in
the absence of an external magnetic field, thereby affecting the transport.

in detail [47, 48]. It arises from the fact that an electron polarized along e.g. nL has spinor
component cos(θ/2) (sin(θ/2)) when quantized along nR and hence the probability depends on
twice the angle i.e. on θ. For perfect ferromagnets, for which pr = 1, the resistance is infinite
(finite) for θ = π (0) i.e. we can switch between two resistance states by reversing the magneti-
zation. This tunnel-magneto resistance (TMR) effect is based on the quantum mechanical spin
degree of freedom and has been rapidly developed into a technologically relevant effect (e.g.
MRAM).
A double tunnel junction offers new possibilities due to the role of Coulomb interaction and
the tunable level in the quantum dot between the two ferromagnets. This single-electron spin-
valve transistor is sketched in Fig. 6(b). The basic effects can again be understood from the
Anderson model (9) i.e. a single level with Coulomb interaction U , simply generalized to
account for a spin-dependent density of states in the electrodes which enter into the tunnel
rates through Eq. (15).13 The charge transport is now strongly influenced by the electron spin
dynamics on the dot, which we now discuss.

4.1 Spin dynamics due to transport

We explain the basic physics of the spin dynamics in a heuristic fashion, arguing that the kinetic
equation for the expectation value of the spin of the quantum dot S(t) = 〈S(t)〉 reads

dS

dt
=

(
dS

dt

)
acc

+

(
dS

dt

)
rel

+

(
dS

dt

)
pre

(22)

This equation can be derived rigorously from the general quantum kinetic equation (11) by
accounting for the full density matrix, see the reviews [51, 52] and the original papers [53, 54].

13Additional spin effects related to the interface with the ferromagnets can be incorporated as well, see [49, 50].
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Equation (22) is in fact a continuity equation for the spin, where the total change in time derives
from the injected spin-currents (first 2 terms) and a 3rd precession term. We now discuss the
three competing influences in turn.
First, due to transport on average a single electron with a spin 1/2 will reside on the dot for
a finite time. For non-magnetic electrodes the average local spin S vanishes due to rotational
symmetry (contributions with opposite polarization cancel). If at least one electrode is polarized
(pr �= 0) this symmetry is broken and a finite spin value results. This spin-accumulation derives
from the spin-injection contribution

(
dS

dt

)
acc

=
∑
r

�

2
(Ir/e)prnr (23)

Only when both nL = nR and pL = pR does the accumulation term vanish. This follows
from Eq. (23) using the current conservation

∑
r Ir = 0 in the stationary limit. An extreme

example of spin-accumulation occurs for complete (pr = 1) anti-parallel polarizations nL =
−nR where a single electron with spin parallel to the left injecting electrode gets “stuck” on
the quantum dot, unable to exit to the right electrode at lower electrochemical potential with
opposite polarization.
The transport however, also counteracts the spin accumulation due to the negative spin-relaxation
term (

dS

dt

)
rel

= −
∑
r

Γr/�
(
f−
r (ε) + f+

r (ε+ U)
) (

S− p2
r(S · nr)nr

)
(24)

where Γr (f−
r (ε) + f+

r (ε+ U)) is the Golden Rule rate of tunneling from the one electron state
with spin to the zero- and two- electron state with zero spin (singlets). Notably, the relaxation
is anisotropic: for a perfect ferromagnet (pr = 1) and an average spin parallel to nr one of the
relaxation terms vanishes, whereas for opposite average spin this term is maximal.
The third term in Eq. (22) describes a spin-precession of the electron spin about a magnetic field
as described by the standard Bloch equation14

(
dS

dt

)
pre

= γS×
∑
r

Br. (25)

This is surprising since there is no external field applied locally to the quantum dot. In fact, the
electron, by virtually tunneling to the magnetic electrodes induces a field on the quantum dot,
which acts on its own spin. This local magnetic exchange field Br induced by the electrode r
on the dot reads

γBr = prnr
Γr
π�
P

∞∫
−∞

dω

(
f−
r (ω)

ω − ε +
f+
r (ω)

ω − ε− U
)

(26)

where γ = −gμB is the negative gyromagnetic ratio determined by the electron g-factor
(−g) and the Bohr magneton μB

15. The integral is a Cauchy principal value integral i.e.

14The Bloch equation follows simply from the Zeeman interactionHZ = −γS ·B and the Heisenberg equation
of motion: Ṡ = i[HZ ,S] = γS×B using the spin algebra Si = i

∑
jk εijkSjSk.

15Note that in many of the original publications the negative gyromagnetic factor γ is absorbed into the exchange
field, thereby reversing its direction.
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P 1
x

= Re 1
x+i0

with i0 denoting an infinitesimal imaginary part. This field is induced by vir-
tual coherent tunnel processes (∝ Γr) to the magnetic electrode r which shift the quantum dot
states with opposite spin by a different amount i.e. they split in energy. This splitting, written
as a local Zeeman term gμBS · Br, defines the exchange field.16 An important implication is
that the exchange field can be very large for strong tunneling Γr. Indeed, the exchange field
has been detected experimentally in carbon-nanotube [55] and single-molecule quantum dot
spin-valves [56], where in the latter case fields on the order of 70 T were reported.

Fig. 7: Stability diagram for the Anderson model: the boundaries of the finite bias SET regions
are defined by the resonance conditions ε = μr and ε + U = μr where r = L,R. Midway
between these resonances the exchange field induced by the left (right) ferromagnetic electrode
vanishes.

An interesting aspect is that the exchange field is a Coulomb interaction effect: it vanishes
for U = 0 in which case the two terms under the integral cancel exactly (due f− + f+ = 1
and P

∫
dω 1

ω−ε = 0). Here, the first (second) term corresponds to a virtual process where the
electron tunnels out of (into) the dot. The finite interaction prevents this destructive interference
between these electron and hole processes. The exchange field is also a many-electron effect
since it involves an integral over the entire spectrum of the electrodes (cut off by the band
widths). Furthermore, the exchange field can be electrically controlled by the bias (μr) and
gate (ε) voltages, adding a transistor functionality to the device. Due to the interference already
mentioned, one of the exchange fields Br can even be switched off completely by tuning to

16For the simple case where one excludes the N = 2 state (i.e. U = ∞), the energy shift due to the tunneling
in second order perturbation theory reads Eσ − ε =

∑
k∈σ

t2

ε−ωk
f−

r (ω) where the sum extends over the electron
states in the band of spin σ. Here f− = 1 − f+ occurs since the electron fluctuates into unoccupied states in the
electrode. Converting the sum into an integral with the density of states ρrσ = 1

2 (1± pr)ρr and Γr = 2πρrt
2, and

subtracting the results for spin σ =↑ and ↓ one obtains the Zeeman shift leading to the exchange field (26).
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the condition ε − μr = −U/2 i.e. the electrochemical potential is midway between the two
resonances of the Anderson model, ε = μr and ε + U = μr. This defines a line in the stability
diagram indicated in Fig. 7, along which the two terms in the integral cancel exactly since
ε − μr = −(ε − μr + U) and P

∫
dωf−(ω)/(ω − x) = P

∫
dωf+(ω)/(ω + x) for f±(ω) =

(e±ω/T + 1)−1. The exchange fields of the electrodes can even vanish simultaneously for zero
bias μr = 0 at the special gate voltage point for which ε = U/2 (particle-hole symmetry point).
Based on the kinetic equation for the spin (22) we now have the following picture: spin accu-
mulation and relaxation due to transport compete to establish a stationary, non-zero spin value
on the dot. The crucial new feature of the spin-valve transistor is that through the exchange
fields one can electrically control the orientation of this accumulated spin. This one can detect
this in the charge transport.

4.2 Charge dynamics and non-linear transport

Having understood the spin dynamics we now turn to the charge dynamics in order to under-
stand the transport current. The occupations of the charge states, PN , N = 0, 1, 2, obey a
generalized master equation:17

d

dt

⎛
⎝ P0

P1

P2

⎞
⎠ =

d

dt

⎛
⎝ P0

P1

P2

⎞
⎠

normal

+
∑
r

prΓr

⎛
⎝ 2f−

r (ε)

−2f−
r (ε) + 2f+

r (ε+ U)

−2f+
r (ε+ U)

⎞
⎠nr · S/�. (27)

The first term on the right hand side is given by the right hand side of Eq. (18) and does not
explicitly depend on the spin. The spin does however, influence it indirectly by changing the
occupations. The second term explicitly depends on the spin and arises only for ferromagnetic
electrodes: it may cause a gain or loss of probability depending the orientation of spin relative
to the polarization vectors. The charge current has a similar structure:

Ir/(−e) = (Ir)normal/(−e)− prΓr
[
f−
r (ε) + f+

r (ε+ U)
]
nr · Sr/� (28)

where (Ir)normal is the expression for normal electrons on the right hand side of Eq. (19). The
second term contains the rate of decay of the one-electron state with non-zero spin.
The exchange field modifies the transport in several ways. For instance, in the linear regime
−eV � kT , it weakens the normal spin-valve effect for a single tunnel junction (see Eq. (20)).18

Here we focus on the non-linear transport regime where a single electron and therefore a free
spin can be present on the dot. In Fig. 8(a) an I−V curve is shown for the case of perpendicular
polarizations, i.e. θ = π/2. With increasing polarization, the first current plateau is suppressed.
In this regime either 0 or 1 electron is present on the dot (P2 = 0) and the current directly is
proportional to the occupation P0. The striking shape of the I − V curve arises due to a kind of
spin blockade which is counteracted by the precession of the spin around the exchange fields.
This is seen by setting BL = BR = 0, in which case the kinetic equation for the spin (22)
gives S = p [(ΓL/ΓR)P0nL − P1/2nR]. One furthermore finds that the dot will be occupied
most of the time i.e. P1 ≈ 1 � P0. Thus the spin is anti-parallel to the right (drain) electrode,

17The second term on the right hand side comes from the non-diagonal elements of the density matrix i.e.
Eq. (18) is not a standard master equation which involves only occupancies.

18After tunneling through the first junction, the electron spin can precess and thereby adjust itself to the polar-
ization orientation of the drain electrode. This increases the probability of escaping relative to the single junction
case.
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(a) (b)

Fig. 8: Results of Braun et. al. [54]. (a) Current-voltage trace for perpendicular polarization
directions i.e. θ = π/2. As the degree of polarization pL = pR = p is increased there is an
overall suppression of the current due to spin blockade, which is counteracted by the precession
about the exchange field away from the center of the plateau (eV = 50kT ). The interaction
strength is U = 30kT � ΓL = ΓR = Γ/2 and ε = 10kT . (b) Upper panel: magnitude
of the exchange fields as function of bias voltage: BL vanishes at the center of the plateau
(eV = 50kT ), while BR remains finite (which is irrelevant since the spin is parallel to it).
Lower panel: comparison of the full result and the result obtain when setting the exchange field
to zero “by hand”. In the latter case the current uniformly drops to the minimum value due to
the exponential dependence the Fermi-functions in the rates, see Eq. (14). In contrast, the much
weaker voltage dependence of the exchange field, which lifts the blockade, dominates in the full
result. The parameters are the same as in (b) and p = 0.95.
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S ≈ −p/2nR. The electron cannot exit due to the low density of minority spin ↓ in the right
(drain) electrode when pR ≈ 1. No additional electrons can be transported due to the Coulomb
blockade effect and the current is suppressed. This spin blockade would however suppress the
current uniformly across the entire plateau as Fig. 8(b) shows. Instead, due to the exchange
fields a broad minimum is found. Since the spin blockade causes the spin to be parallel to the
exchange field of the right (drain) electrode it is not rotated by it. At the center of the plateau,
μL = V/2 = ε + U/2, the exchange field of the left (source) electrode vanishes, BL = 0:
only here the spin blockade is thus complete, see Fig. 8(b). However, away from this point the
spin will precess around the non-zero BL of the source electrode, generating a spin component
parallel to the drain polarization nR which increases the current.

4.3 Outlook: mapping the exchange field with higher order tunneling

Fig. 9: Result from Hauptmann et. al. [55]. Experimental stability diagram i.e. differential
conductance in color scale as function of applied voltages. The yellow dashed lines indicate
the SET regions which are hardly visible here due to the strong tunnel coupling. The white/red
color indicates a conductance peak due to higher order tunnel processes. This so-called Kondo
peak normally lies at zero bias (i.e. a horizontal line). Due to the exchange field induced by the
ferromagnetic electrodes this peak splits and shifts to a finite bias equal to the Zeeman splitting.
Clearly, this exchange field goes to zero approximately at the center of the Coulomb diamond,
in line with Fig. 7. Away from this point the dependence on the bias follows the same qualitative
behavior of |BL| as plotted in the upper panel of Fig. 8(b).

As mentioned above, the exchange field arises due to a splitting induced by virtual tunneling
processes. The single electron tunneling discussed so far cannot directly resolve this splitting
since thermal fluctuations ∼ kT dominate over any effects on the order of the tunnel rates �Γ,
such as the exchange field. However, transport effects involving higher order tunnel processes,
such as cotunneling [57] and the Kondo effect [58, 59], are sensitive this splitting. These are be-
yond the scope of this introduction, see the reviews [51, 52]. As a concluding remark, we merely
mention that the exchange field was demonstrated experimentally by measuring the predicted
Zeeman shift of the Kondo effect [58, 59] in C60 molecular quantum dots [56]. Furthermore,
recently [55] this Zeeman splitting was used to directly map out the magnitude of exchange
field as function of a level position (gate voltage) in a carbon-nanotube quantum dot contacted
with ferromagnetic electrodes, as shown in Fig. 9.
Acknowledgement F. Reckermann, S. Das and M. Baumgärtel are acknowledged for proof
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1 Introduction
Small ferromagnets are essential elements of spintronic devices: The impact of the magne-
tization state of small ferromagnets on the electric conductivity due the spin-polarization of
electrical currents is exploited in spin valves, magnetic tunnel junctions, GMR elements [1, 2]
and MRAM cells, to name only a few of examples [3, 4, 5].
Apart from their technical importance due to their functionality in modern spin-based devices,
ferromagnetic nano- and microstructures are also interesting from a fundamental point of view
because of the non-trivial static and dynamic behavior that the magnetization exhibits in such
small confined geometries. Several characteristic magnetic properties of ferromagnets of size
below about one micron can in fact display a strong dependence on the particle size and shape.
A prominent example is the impact of the nanopatterning on the coercive field of magnets,
which loosely corresponds to the switching field, i.e., the value of the external field required
to reverse the magnetization. While the coercive field of bulk magnets is mostly determined
by the magnetic material 1, it becomes crucially dependent on the shape of the ferromagnet
in the case of small thin-film elements [7]. This difference is particularly striking for soft-
magnetic materials, i.e., materials with a low value of the magneto-crystalline anisotropy: in
those materials, for which the coercive field of the bulk material is comparatively low (in the
order of a few mT), the switching field can become significantly larger in elongated magnetic
nanoelements (up to about 100 mT) due to a magnetostatic effect known as shape anisotropy,
see Section 3.4. Magnetic nanostructures are therefore not just “small magnets” as their physical
properties are very different from bulk samples.
Obviously, understanding the reasons for this strong impact of the nanopatterning on the mag-
netic properties of ferromagnets is of utmost importance for the development of spintronic de-
vices. Ideally, magnetic nanostructures could be fabricated such that they are tailored to specific
shapes and sizes in order to display the desired magnetic properties. A precise control of the
magnetic properties of nanostructures through the patterning process is however difficult to ob-
tain, since various different metastable magnetic structures can occur in identical samples [8].
The theory of micromagnetism provides the necessary framework to describe the effects on
the magnetization induced by the nanopatterning. In fact, in a somewhat simplified definition,
micromagnetism could be considered as the theory on the influence of finite-size effects in
mesoscopic ferromagnets.
The finite-size effects discussed here result from classical magnetostatics: due to the general
tendency of ferromagnets to reduce the energy of the magnetic field that is emanating from
them, the magnetization often arranges in alternating magnetic domain patterns or in other, more
or less complicated ways inside confined geometries. The magnetostatic effects leading to these
arrangements of the magnetization should not be mistaken for finite-size effects as they occur
on atomistic length scales, where changes in the electronic structure at surfaces strongly affects
the magnetic structure of ultrathin magnetic surfaces or monoatomic chains [9, 10, 11, 12].
A central aspect of the theory of micromagnetism consists in describing the result of competing
interactions influencing the magnetic structure. More specifically, this statement means that the
impact of the sample size and shape on the magnetic structure is of central importance in mi-
cromagnetism. The size dependence arises from the ferromagnetic exchange interaction, which
tends to avoid inhomogeneities of the magnetization on a small length scale, while the shape
dependence results from the magnetostatic self-energy, which is minimized if the magnetiza-

1More specifically, the coercive field depends on the ratio of the magneto-crystalline anisotropy K and the
saturation magnetization Ms [6]; two material constants that will be discussed in section 3.
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Fig. 1: The magnetic properties of patterned thin-film elements can depend very sensitively on
their precise shape. The diagram on the left displays the measured switching field (in Oersted)
for elements with different shape. In the thin-film elements with two tapered ends the switching
field is more than twice as large as in the case of rectangular elements with flat ends [7]. The
panel on the left displays the array of elements with tapered ends used in the study by Kirk et.
al.

tion aligns with the surfaces and boundaries of the sample. Out of this competition, interesting
magnetization structures with particular static and dynamic properties can result which can be
analyzed theoretically in the framework of micromagnetism.

Many basic concepts of micromagnetism like the general behavior of the magnetization in sam-
ples of special, simple geometries can be understood from analytic considerations. In addi-
tion several important fundamental micromagnetic structures like elementary magnetic domain
walls can be described analytically. However, for modern applications of micro- and nanomag-
netic problems, numerical simulations are of decisive importance. Such simulations are gen-
erally required to obtain quantitative predictions for the magnetic properties of nanomagnets
and to provide explanations for non-trivial magnetization structures observed in experiments.
Owing to the tremendous progress in this field over the past years – in terms of both, numerical
techniques and increased computational power – micromagnetic simulations are now gener-
ally considered to have a strong predictive power. Perfect agreement between simulated and
observed magnetization structures has been demonstrated in several cases (e.g., [13, 14]).

2 Representation of ferromagnets on different length scales

Before introducing the basic equations that constitute the basis of micromagnetism, it is useful
to clarify the definition of the most important quantity of the theory: the magnetization. Terms
like “spin”, “magnetic moment”, and “magnetization” are usually connected to different length
scales on which the magnetic properties are considered. Magnetism on these different length
scales is generally described by different theoretical frameworks. Therefore, in order to avoid
possible misunderstanding connected with these terms, it is helpful to separate the different
theories necessary to describe the magnetization on different length scales.
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Fig. 2: Depending on their size, ferromagnetic materials display different phenomena and are
used for different applications. The bar on the bottom gives a coarse schematic overview of the
different theories involved in the description of magnetism on different length scales.

2.1 Electron theory

The smallest, most detailed level to study the magnetic properties of solids is their electronic
structure: Even if magnetism can display large-scale phenomena connected with huge magnetic
fields and macroscopic domain structures, it is ultimately the electron spin that gives rise to these
effects. The electron spin can thus be regarded as the fundamental entity of magnetism in solids.
This “electronic” level of description is governed by the quantum theory of solids and is a topic
of intense research. It is however obviously not possible to describe an entire ferromagnetic
particle including its magnetic domain structure on a purely electronic level, even if the element
is only a few 100 nm large. In fact, theoretical studies on an electronic level often require several
simplifications, such as the approximation of periodic boundary conditions, which states that it
is sufficient to consider one elementary cell and construct a magnetic solid by a repetition of
such cells. Moreover the dipolar energy is usually neglected, because it is much weaker than
the other energy terms involved in these calculations.
Important achievements have been obtained with numerical simulations within the framework
of the quantum theory of solids. Density functional theory, e.g., made it possible to obtain
material properties based on first-principles calculations [15, 16]. However, it is obviously not
possible to capture all relevant aspects of magnetism in solids with only one single theory. For
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instance, the approximations mentioned before preclude the consideration of such important as-
pects of ferromagnets as their magnetic domain structure or the impact of magnetostatic effects.
The detailed consideration of such magnetostatic effects is of crucial importance for the correct
consideration of the previously mentioned shape dependence of the magnetic properties of el-
ements on the nanoscale. In fact, several magnetic phenomena develop on length scales larger
than the ones accessible by electron theory, and their description correspondingly requires dif-
ferent theories.

2.2 Heisenberg Model

The next level of approximation is given by the atomistic theories, e.g, the Heisenberg model.
In this approximation each atom of the ferromagnet is assumed to carry a magnetic moment,
and those magnetic moments are interacting with each other in the lattice of the solid. Note
that although the moments originate in the electron spin, here they are ascribed to the lattice
sites. The exchange interaction between these moments, Jij , has a quantum-mechanical origin
(Pauli principle), but is here assumed to be just a constant prefactor to the multiplication of the
magnetic moments µi · µj:

H =
∑
i6=j

Jijµi · µj (1)

Extensions of the Heisenberg model can contain further energy terms like the anisotropy and
the dipolar interaction. Various approximations are used in the atomistic Heisenberg models
in order to address larger length scales: A common approximation used in calculations based
on the Heisenberg model consists in considering only nearest-neighbor interactions, since the
exchange interaction is short-ranged.
As a result of these simplifications, it becomes possible to access larger length scales, thereby
making it possible to calculate complicated magnetic structures on the length scale of several
tens of nanometers. The dipolar field is usually not included, since it is generally the weakest
of all interactions in a ferromagnet. Due to its long range of interaction, however, it can become
the dominating energy term in mesoscopic and macroscopic ferromagnets. The situation can be
compared to the effect of inter-particle gravitational effects in the case of classical, macroscopic
mechanics: This force can generally be completely neglected in common mechanical problems,
but it becomes of utmost importance on an astronomic length scale due to its cumulative effect
arising form the long range of the interaction.
The atomistic Heisenberg model can serve to describe spin structures on atomistic level, e.g.,
in monoatomic chains or on ultrathin magnetic films and surfaces. In many cases, however,
the relevant length scales for magnetic structures are much larger than the atomic lattice con-
stants. One of the most fundamental magnetization structures, the magnetic domain wall, typ-
ically extends over several tens of nanometers in bulk material. In thin films the domain wall
width can increase up to several hundreds of nanometers. For such large problems, an atomic
representation is not meaningful. Structures of this size are treated within the framework of
micromagnetism.

2.3 Micromagnetic approximation

The transition from the electronic to the atomistic scale can be viewed at as a coarse graining
procedure, in which the relevant electronic properties are grouped into effective spins and the
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addition over all electronic states is replaced by a summation over magnetic moments. In con-
trast to this, the transition from the atomistic to the micromagnetic approximation is a transition
from a discrete to a continuous representation. In this sense it involves a qualitative change of
the equations describing the problem.
In the micromagnetic approximation, the microscopic magnetic moments are replaced by an
averaged quantity: the magnetization. The magnetizationindexmagnetization is defined as the
density of magnetic moments. Correspondingly, the summations over dipoles or over magnetic
moments occurring in atomistic representations are replaced by volume integrals containing
the magnetic moment density, i.e., the magnetization. By means of a Taylor expansion, the
Heisenberg exchange interaction is converted into an energy term that contains gradients of the
magnetization in the continuum approximation [17].
The fundamental difference between the micromagnetic representation of ferromagnets and
atomistic Heisenberg model lies in the fact that the magnetic structure is represented by a con-
tinuous vector field in the micromagnetic approximation while it is considered as the ensemble
of discrete magnetic moments in atomistic models. The vector field of the magnetization is a
directional field, meaning that at any point in space r it is free to assume any direction (which
it can also change in time t), but it preserves everywhere its magnitude, |M | = Ms. The satu-
ration magnetization (sometimes also called spontaneous magnetization) is a material property
which is characteristic for ferromagnetic elements. The task of micromagnetic problems con-
sists in calculating the vector field of the magnetizationM (r) and sometimes also its temporal
evolution dM/dt.
Typical magnetic structures studied in the framework of micromagnetism are magnetic domain
walls, magnetic vortices and domain patterns in mesoscopic ferromagnets, but also dynamic
effects like spin waves, magnetic normal modes and magnetization reversal processes. On
the mesoscopic level addressed by micromagnetic theory, atomistic effects are completely ne-
glected, at least in any explicit form. The impact of the crystal lattice on the magnetic prop-
erties is treated only phenomenologically by means of energy terms describing the so-called
magneto-crystalline anisotropy. The magneto-crystalline anisotropy accounts for the existence
of preferential crystalline axes towards which the magnetization tends to align.
The theory of micromagnetism can provide detailed understanding for a large amount of tech-
nologically important and physically interesting phenomena of magnetic nanostructures. When
the loss of detailed information on atomistic and electronic level is not decisive, the continuum
approximation can be very powerful. The fundamental concepts of micromagnetism were de-
veloped by Landau and Lifshitz [18], although the major contribution to the theory was probably
given by W. F. Brown Jr.[19, 20]. Many other scientist have provided important contributions to
nowadays’ understanding of micromagnetic processes. Significant progress was achieved, e.g.
by F. Bloch [21], L. Néel [22], Ch. Kittel [23] and by the work of Stoner and Wohlfarth [24],
to name a few. In recent years, the developments in micromagnetism are strongly influenced
by the dramatic progress in experimental resolution in both space [25] and time [26, 27, 28] as
well as by the new possibilities given by increasingly powerful computer simulations.
It might be noteworthy that the term “micromagnetism” that was coined when the theory was
developed was referring to the importance of very small, i.e., microscopic effects on the mag-
netic properties of materials. However, the relevant length scale of these microscopic magnetic
structures like domain walls or magnetic vortices rather lies on the nanometer range than in the
micron range. As far as the length scales are concerned, a more appropriate term for the the-
ory of micromagnetism might therefore be “nanomagnetism”, but this term is nowadays mostly
used to describe magnetism on an atomistic length scale.
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2.4 Multiscale models

In spite of the huge differences between the continuum and the discrete representation, the
transition between these models can be rigorously performed in an analytic way without any
“trick” or doubtful assumptions. Nevertheless, the difference between the equations describing
these different models is important, and it poses a certain problem for the task of multiscale
modelling. Such kind of “hybrid” modelling is important in some particular cases where very
different length scales interact. In exceptional situations it can occur that significant inhomo-
geneities of the magnetic structure develop on atomistic length scales while the overall magnetic
properties are influenced by much larger structures on a mesoscopic length scale. The mod-
elling of such cases requires a combination of both, the continuum representation and atomistic
models (and possibly also electronic calculations) in order to describe system correctly. Such
situations are important, e.g., in the vicinity of topological defects such as Bloch points, which
are also known as micromagnetic singularities or Feldtkeller singularities. A detailed discus-
sion on the difficult task of multiscale modelling of magnetic materials cannot be given in this
chapter, but it should be kept in mind that in some cases the theories suitable for different length
scales might need to be combined, and that this represents a significant challenge for theory and
for computational aspects.

2.5 Domain theory

After the micromagnetic approximation, the next largest scale for the theoretical description
of ferromagnets is the domain theory. This approximation is to a certain extent similar to the
theory of micromagnetism since it considers that the magnetic structure of a ferromagnet is sub-
divided into magnetic domains, which are separated by domain walls. However, on the length
scale relevant for domain theory, the details of the transition regions in which the magnetization
changes its direction (domain walls or vortices) are neglected. The magnetization is assumed to
change its direction abruptly between neighboring domains. The transition regions are treated
as infinitely thin entities (lines or surfaces). Their contribution to the total energy is considered
by assigning an exchange energy density to them, such that the total exchange energy of the
sample results as an integration over the domain wall area. Many fundamental works that have
lead to the theory of micromagnetism are connected with domain theory. The original work of
Landau and Lifshitz, in which the famous Landau pattern was derived [18], also made use of
approximations that later became part of domain theory. The results deduced using approxima-
tions from domain theory have therefore played a very important role for the development of
micromagnetism. But today, especially if compared with (numerical) micromagnetism, domain
theory is only of marginal importance for modern problems in magnetism.

2.6 Macroscopic modelling

The last, largest length scale, the macroscopic modelling, is only mentioned for completeness
here. It refers to phenomenological constants or functions to represent the response of a ferro-
magnet to externally applied fields. On this length scale, every microscopic aspect is neglected,
and the magnetic material is exclusively described by averaged quantities like its susceptibility
or the shape of the magnetic hysteresis. As an example, the task of the Preisach modelling
essentially consists in reproducing the shape of the hysteresis curve of ferromagnetic materials
by means of distribution functions of so-called hysterons (an elementary unit that displays hys-
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teretic behavior and that is characterized by the coercivity and an offset value). It is sometimes
criticized in these models that the modelling is not based on the averaging over known micro-
scopic effects and that it is not clear how the concept of hysterons is connected to the material
properties. Such macroscopic models are mostly of importance for technical applications in
engineering sciences, like transformer coils or magnets in electric motors.

2.7 The macrospin model

So far, various theories and the models applicable to different length scales have been discussed
in this section. For the completeness of this overview a further frequently used approximation
shall be mentioned: the macrospin model. In contrast to the previously mentioned models,
this approximation or assumption refers to the dynamics of the magnetization. It essentially
assumes that the magnetization in a small nanomagnet remains homogeneous even after an
external perturbation or driving force (like a magnetic field pulse or an electric current pulse).
Due to this homogeneity, it is not necessary to consider the distribution of the magnetization
inside the sample. Instead, it is sufficient to represent the magnetization state by one single spin,
the so-called macrospin. This macrospin model, which will be discussed again in the section
on magnetization dynamics, is particularly appealing because of its simplicity.
However, the macrospin model is presumably one of the most critical and doubtful approxi-
mations commonly used in modern magnetism. The reason is that it is very difficult – if not
impossible – to estimate a priori the range of validity of this model. If a small ferromagnet is ho-
mogeneously magnetized in zero field, it is of course reasonable to represent its magnetization
by a macrospin. But it is not at all obvious that this property of homogeneous magnetization is
preserved during dynamic processes occurring on the nano- and picosecond time scales. In fact,
several numerical simulations show that significant inhomogeneities of the magnetization can
develop temporarily during, e.g. magnetic switching processes of elements which in their zero-
field equilibrium state are homogeneously magnetized. The macrospin model is often called the
macrospin approximation. This terminology suggests that the macrospin model at least coarsely
captures the essential features of the magnetization dynamics of the problems it is applied to.
However, if the magnetization temporarily becomes strongly inhomogeneous, the macrospin
model may lead to qualitatively wrong results which cannot even be considered as a meaning-
ful approximation. The model can become particularly misleading in cases where it appears
possible to fit experimental data to results obtained with macrospin models, even though the
magnetization dynamics is completely different. So far, performing accurate micromagnetic
simulations is the best way to validate the applicability of the macrospin model, which a priori
can only be safely assumed to hold for very small particles of only a few nm size.

3 Micromagnetic energy terms
The energy of a ferromagnet depends on its magnetic structure [20]. In a static equilibrium state,
the magnetization field M(r) arranges such as to minimize the total energy. This minimum
can either be a local or a global minimum. If several different minima can be achieved, the
magnetic history of the sample is decisive for the selection of the equilibrium configuration. One
possibility to calculate such equilibrium states consists in first establishing an energy functional
which provides the energy for any given magnetization structure M(r). The energy can then
be minimized by means of a variational calculation, yielding the equilibrium structure of the
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Fig. 3: Simulated magnetization reversal of a permalloy platelet (500 nm × 125 nm × 3 nm)
in an externally applied field Hext. The simulated case is a micromagnetic standard problem
used to compare results of different groups [29]. Frames at different time steps of the reversal
are shown on the right; the diagram on the left displays the average magnetization components
mx, my, and mz as a function of time t after application of the field. It can be seen that the
magnetization oscillates around the new equilibrium position for about 2 ns after the switch-
ing (magnetic ringing). Even though the platelet is a magnetic single-domain particle, strong
magnetic inhomogeneities develop during the switching process.

magnetization. Alternatively, one can use the dynamic equation of motion of the magnetization
(the Landau-Lifshitz-Gilbert equation, discussed in section 4.3) and calculate the converged
solution as the limiting case at which the magnetization does not change further in time. Let us
first consider the energy terms:
In micromagnetic problems, the most important contributions to the total energy are usually the
ferromagnetic exchange energy, the dipolar or magnetostatic energy and the magneto-crystalline
anisotropy energy and the Zeeman energy in an external magnetic field. These energy terms will
be briefly described in the next paragraphs. A more detailed discussion of the micromagnetic
energy terms can be found in various textbooks on micromagnetism [20, 30, 17, 6, 31].

3.1 Exchange energy

The characteristic property of ferromagnetic materials is their tendency to keep neighboring
magnetic moments parallel to each other. The short-range exchange interaction prevents strong
inhomogeneities of the magnetization on small length scales. In other words, any increase of
inhomogeneity of the magnetization field increases the exchange energy. The simplest and in
most cases perfectly sufficient representation of the exchange energy density is given by

eexc =
∑

i=x,y,z

A · (∇mi)
2 , (2)

whereA is the exchange constant andm = M/Ms is the reduced or normalized magnetization.
This expression can also be derived from a Taylor expansion of the Heisenberg term assuming
small-angle deviations between neighboring moments [17, 6].
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3.2 Magnetostatic energy
Each magnetic moment in a ferromagnetic sample represents a magnetic dipole and therefore
contributes to a total magnetic fieldHs inside the sample. The energy connected with this field
is known as the stray field energy or the magnetostatic energy. The local stray field energy
density depends on the orientation of the magnetic moments with respect to this field,

est = −µ0

2
Hs ·M . (3)

In the literature, different terms are used for the field Hs. It is either called the magnetic stray
field, the dipolar field, the demagnetizing field or the magnetostatic field. The factor 1/2 in
Eq. (3) is required for self-energy terms. This energy contribution arises from the long-range
magnetostatic interaction between the magnetic moments in the sample. .
The stray fieldHs(r) at one point r results from a summation of the form

Hs(r) =
1

4π

(∑
i

µi

|r − ri|3
− 3 · (µi · r) · r

|r − ri|5

)
, (4)

which extends over all the magnetic moments inside the sample.
The magnetic dipole moments µi can be assumed to be localized on an atomic length scale. It is
not practicable to perform a calculation of the stray field in mesoscopic particles by means of the
summation over these point dipoles. In the framework of micromagnetism, such dipolar sums
are therefore not considered. The micromagnetic calculation of demagnetizing fields involves a
transition from the discrete sum (4) to a continuum integration. By converting the sum (4) over
the individual magnetic dipoles into an integral over the sample volume [20], the stray field can
be obtained from

Hs(r) = − 1

4π

∫
(r − r′)ρ(r′)

|r − r′|3
dV ′ +

1

4π

∮
(r − r′)σ(r′)

|r − r′|3
dS ′ , (5)

where n is the surface normal vector. The magnetic volume charges ρ = −∇ ·M and the
surface charges σ = M ·n are the sources of the demagnetizing field. It can be shown that the
total stray field energy, which results from a volume integration of Eq. (3), is always positive
definite [19, 17]. It is therefore not possible to arrange the magnetization in a way so that the
stray field lowers the total energy. In order to minimize the stray field energy of a ferromagnet,
the sources of the field Hs have to be minimized. This is known as Brown’s pole avoidance
principle [19]
It is easy to see that the field H calculated according to equation (5) can be represented as
a gradient field of a scalar potential, H = −∇U by comparing the right-hand side with the
general solution of the Poisson equation

∆U(r) = −ρ(r) = ∇M . (6)

It follows from this that the fieldH is irrotational. In many cases it is more convenient to solve
Poisson’s equation instead of performing the integration according to equation (5).
Another way of obtaining the result that the magnetic field H can be identified as the gradi-
ent field of the potential U that solves the Poisson equation is the following: The connection
between the magnetizationM , the magnetic fieldH and the magnetic inductionB is

B = µ0H + µ0M (7)
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This fundamental equation can be interpreted according to the Helmholtz theorem, which states
that any sufficiently smooth vector field (here: µ0M ) can be decomposed into an irrotational
(µ0H) and a solenoidal vector field (B). Since B is solenoidal, and M is a general vector
field, it follows that H is irrotational, i.e., that it can be represented as a gradient field. It thus
follows directly from Eq. 7 that

∇H = −∇M . (8)

withH = −∇U it follows that U satisfies Poisson’s equation:

∆U = ∇M (9)

For the unique solution of Poisson’s equation it is obviously necessary to have knowledge of the
boundary conditions of U . The application of the boundary conditions can be problematic in
practical cases, since this is an “open boundary” problem, meaning that the boundary conditions
for the potential U and its gradients are defined at infinity,

lim
x→±∞

U(x) = 0 . (10)

Several numerical algorithms have been developed to solve such open boundary problems effi-
ciently.

3.3 Magnetocrystalline anisotropy
The magnetocrystalline anisotropy energy results from the crystalline structure of a ferromag-
net. According to the crystal symmetry, the direction of the magnetization favors energeti-
cally an alignment towards certain axes. In the simplest case of a uniaxial magnetocrystalline
anisotropy, the energy density connected with this term is to first non-vanishing order given by

ean = Ku

[
1− (m · k)2

]
, (11)

where Ku is the uniaxial anisotropy constant and k is a unit vector parallel to the easy axis.
The easy axis represents the preferential orientation of the magnetization in the crystal. In some
cases, the anisotropy energy is including a higher-order term, the second anisotropy constant
Ku2,

ean = Ku1

[
1− (m · k)2

]
+Ku2

[
1− (m · k)2

]2 (12)

Usually it is sufficient to consider only the first-order term.
In cubic crystals, the anisotropy energy density is described by two cubic anisotropy con-
stants, Kc1 and Kc2. Unlike the uniaxial anisotropy, the constant of the second non-vanishing
anisotropy term is not a higher-order contribution. The coefficients Kc1 and Kc2 refer to terms
which are generally of similar importance.

Kc = Kc1

(
m2

xm
2
y +m2

xm
2
z +m2

ym
2
z

)
+Kc2m

2
xm

2
ym

2
z (13)

Ferromagnetic materials can loosely be categorized as magnetically soft or hard, depending
on the strength of their magneto-crystalline anisotropy. A material with a huge anisotropy is
“hard” in the sense that it changes its magnetization state only under the influence of a strong
external field, whereas the magnetization state of a “soft” material is easily affected by external
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Fig. 4: The shape anisotropy of a homogeneously magnetized, elongated particle is a mag-
netostatic effect: An alignment of the magnetization with the long axis (sketch on the right)
minimizes the magnetostatic surface charges. The configuration therefore has a lower magne-
tostatic energy than a transversal orientation (left), thereby giving rise to a shape-dependent
preferential direction (“easy axis”) of the magnetization.

fields. For uniaxial materials, the quality factor Q can be introduced as a useful measure for the
magnetic hardness. It is defined as

Q =
Ku

1
2
µ0M2

s

(14)

and thus represents the ratio of the uniaxial anisotropy to the maximum value of the “shape
anisotropy” Kd = µ0M

2
s /2 (assumed in the case of a thin film) that this material can have. If

Q � 1, the magnetostatic fields prevail over the anisotropy, whereas for Q ' 1 or larger the
anisotropy of the material is of significant importance. Correspondingly, the terms magnetically
“hard” and “soft” can be assigned to materials with Q ≥ 1 and Q� 1, respectively.

3.4 Shape anisotropy

The term “shape anisotropy” used before describes how the particle shape can give rise to
preferred directions of the magnetization orientation. The effect of shape anisotropy can be
similar to that of the magnetocrystalline anisotropy. For example, an elongated ferromagnetic
particle with negligible magnetocrystalline anisotropy can have properties similar to those of
a spherical particle with uniaxial magnetocrystalline anisotropy. However, the physical origin
is completely different and the term shape anisotropy can therefore be misleading. In fact,
the effect of shape anisotropy is already fully included in magnetostatics. The impact of the
shape is due to a reduction of the magnetic surface charges σ = m · n , in order to minimize
the stray field energy. The magnetostatic energy of a homogeneously magnetized ellipsoidal
particle with axes a > b > c is smallest when the magnetization aligns with the a axis. A
quantitative description of the shape anisotropy requires the calculation of demagnetization
factors [32]. Strictly speaking, the concept of shape anisotropy is only applicable to uniformly
magnetized ellipsoidal particles. It is nevertheless often used in a more loose context to describe
the general tendency of the magnetization to adapt to the sample shape, e.g., to align in the film
plane in the case of thin films, even if their magnetic structure is inhomogeneous. It should
however be kept in mind that the concept of shape anisotropy is merely a simplified description
of magnetostatic effects. The shape anisotropy is therefore not one of the other, fundamental
energy terms described in this section.
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3.5 Further energy terms
If a ferromagnet is exposed to an externally applied magnetic fieldHext, its energy also depends
on the orientation of the magnetization with respect to the field. The Zeeman energy of the
system is then

eext = −µ0Hext ·M . (15)

Further energy terms that may be relevant in certain cases are the surface anisotropy and the
energy connected with magnetoelastic effects. These energy terms are discussed in detail else-
where [20, 30, 17, 6]. Magnetoelastic effects can be ignored in most practical cases. The
consideration of the latter would require the solution of additional differential equations, thus
remarkably complicating the overall calculation.

4 Equations for the magnetization dynamics
The energy terms described in the previous section can be applied to any given magnetization
structure. In the micromagnetic approximation, the total energy of the ferromagnetic system is
thus uniquely defined by the magnetization state. Due to the tendency of the magnetic system
to reach a minimum-energy state, the equilibrium structure of the magnetization can be calcu-
lated from a variational calculus in which the total energy is minimized2. It is thus possible
to determine static magnetization structures which represent an equilibrium configuration by
means of energy minimization. Energy considerations however do not provide information on
the temporal evolution of a system. If, e.g., a short perturbation like a magnetic field pulse is
applied to a nanomagnet, the magnetization will respond to this perturbation and will undergo a
more or less complex transformation before finding again an equilibrium state. These dynamic
processes typically occurs on the time scale of pico- and nanosecond. From the viewpoint of
technology it is important to gain detailed knowledge about the dynamics of the magnetiza-
tion since it plays an important role in many applications, like the writing speed in magnetic
data storage. The fundamental equation to describe the magnetization dynamics is the Landau-
Lifshitz-Gilbert (LLG) equation, which will be discussed in this section.

4.1 Magnetization precession
A magnetic field can have different effects on a magnetic dipole: While an inhomogeneous
magnetic field exerts a force on a dipole, a homogeneous magnetic field exerts a torque on it.
For the internal dynamics of the magnetization, only the torque term is decisive. In a field H a
magnetic moment µ experiences a torque L according to

T = µ×H (16)

By definition, the torque T is the change of angular momentum L per unit time, dL/dt = T .
The angular momentum L, in turn, is connected to the magnetic moment by the gyromagnetic
ratio γ0:

dµ

dt
= γ0µ×H (17)

2More strictly, the minimum of the free energy represents the equilibrium state, but entropy contributions can
usually safely be neglected.
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with γ0 = −g|e|µ0/2me, where µ0 is the vacuum permeability, me is the electron mass and g is
the Landé factor.
Equation (16) describes the precessional motion of the magnetizationM in an external field

dM

dt
= −γ0M ×H (18)

It is easy to see that this equation preserves the magnitude of the magnetization |M |.
Note that this fundamental equation describing the precession of the magnetization in an exter-
nal field can also be derived directly from the quantum mechanical expression of the dynamics
of the expectation value of a magnetic moment 〈µ〉 in a magnetic fieldH .

4.2 Effective field terms

The magnetization precession according to Eq. (18) describes the dynamic effect of an external
field H on the magnetization M However, an external field H is not the only possible source
of a torque on the magnetization in a ferromagnet. Interaction with the local magnetization
due to, e.g., the ferromagnetic exchange, the dipolar field or the magnetocrystalline anisotropy
can also give rise to torques on the local magnetization. These internal effects are considered
by introducing an effective field Heff . Each micromagnetic energy term is connected with an
effective field contributionHeff according to

µ0Heff = − 1

Ms

∂e

∂m
, (19)

with m = M/Ms. The effective field Heff is defined as the negative variational derivative of
the micromagnetic energy density e with respect to the magnetization 3.
The usual form of the effective field in micromagnetics is

Heff =
2A

µ0Ms

∆m+Hext +Hstray −
1

µ0Ms

δeK

δm
(20)

The effective field contains all effects from external and internal fields or energy contributions.
It is generally a complicated function of the magnetization distribution in the sample, such that
it can only be calculated numerically. A formal derivation of the effective field can be found,
e.g. in the textbooks of W. F. Brown Jr. [19, 20].
An equation for the precessional motion of the local magnetization around the local effective
field is obtained by simply replacing the external field Hext with the effective field Heff in
Eq. (18). Note that only the component of the effective field perpendicular to M has an influ-
ence on the magnetization dynamics. The effective field is thus not uniquely defined, since any
additional component parallel toM would not affect the magnetization dynamics.
Interestingly, in spite of the previous discussion according to which the micromagnetic energy
terms are primarily relevant for determining static equilibrium structures, they are evidently also
important for the magnetization dynamics. More precisely, the derivatives of the energy terms
with respect to the magnetization are the effective fields and therefore play a crucial role for the
dynamics.

3This definition of the effective field can be compared with a similar definition used in mechanical systems,
where the local force density can be obtained as the negative gradient of the energy density.
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4.3 The Landau-Lifshitz equation
Obviously equation (18) cannot represent a complete description of the magnetization dynam-
ics. In this form, a dynamic process of the magnetization once initiated would last forever: The
equation does not contain any dissipation (“friction”) term. This is an unrealistic situation which
contradicts the observation according to which the magnetization of a ferromagnet can rapidly
align with an external field and equilibrate within a few nanoseconds. In order to account for
these dissipation effects, Landau and Lifshitz introduced a phenomenological dissipation term
to the precessional motion. For a realistic description a dissipation term should modify the
equation of motion of the magnetization in a way to fulfil the following requirements:

1. In the limit of long time, the magnetization should align with the effective field Heff .
When this is reached, dM/dt is equal to zero and the magnetization comes to a halt.

2. The magnitude of the magnetization Ms = |M | should be preserved at any time. This is
a basic requirement of the micromagnetic approximation.

These conditions are realized by a damping term of the form

dM

dt

∣∣∣∣
damping

= − η

Ms

[M × (M ×Heff)] (21)

where η is the phenomenological damping constant introduced by Landau and Lifshitz. The
famous Landau-Lifshitz equation describing the magnetization dynamics is thus

dM

dt
= γL [M ×Heff ]− η

Ms

[M × (M ×Heff)] . (22)

4.4 The Gilbert equation
A different way of obtaining an equation that describes the necessary combination of precession
and damping while preserving the magnitude |Ms| has been derived by Gilbert. The Gilbert
equation has been presented much later than the Landau-Lifshitz equation, namely in 1950.
Nevertheless, it has attracted much attention and it is often considered as the more fundamental
of these two equations describing the magnetization dynamics.
The Gilbert equation is given in an implicit form as the change of magnetization in time dM/dt
appears on either side of the equation:

dM

dt
= −γ (M ×Heff) +

α

Ms

(
M × dM

dt

)
(23)

here α is a phenomenological damping constant, known as the Gilbert damping constant. Note
that the Gilbert damping constant α is not identical with the Landau-Lifshitz damping constant
η. The dimensionless Gilbert damping α is the only value used to describe the damping in the
recent literature. The Landau-Lifshitz damping constant can be found in older publications.
Physically, the difference between the Gilbert damping and the Landau-Lifshitz damping lies in
the nature of the damping. The Gilbert equation describes the commonly applicable situation of
viscous damping: the damping increases with increasing “magnetic speed” |dM/dt|, regardless
of the character of the motion. In the Landau-Lifshitz equation, however, only the relaxation
term is damped. The precession term is not affected by the damping - a situation that appears
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to describe an unphysical property since any motion of the magnetization should be subject to
damping – regardless of whether it describes a precession or relaxation motion. Due to these
and other formal aspects of the interpretation of the equations of motion, the Gilbert equation is
often considered as the more fundamental one.
As will be discussed in the following section, there is no need for a distinction between the
Gilbert and Landau-Lifshitz equation in their original form. However, it has recently been
found that additional torque terms should be added to describe the dynamics of the magneti-
zation induced by spin-polarized electric currents. Those spin-torque terms need to be treated
separately, i.e., they cannot be included into an effective field term. In these cases it can make
an important difference whether the additional torque terms are added on the right-hand side
of the Gilbert equation or of the Landau-Lifshitz equation. While the correct implementation
of these terms is partly still a subject of debate, most authors prefer including these additional
terms into the Gilbert equation instead of the Landau-Lifshitz equation, for the aforementioned
reasons.

4.5 The Landau-Lifshitz-Gilbert equation

In spite of its apparent differences, the Gilbert equation is just a different representation of
the Landau-Lifshitz equation. The Landau-Lifshitz and the Gilbert equation can be identically
converted into each other, so that a distinction is unnecessary from a mathematical point of
view. It can in fact be shown rather easily that if the Gilbert equation is rewritten into an
explicit form, it assumes precisely the form of the Landau-Lifshitz equation, with the damping
given by a term of the form [M × (M ×H)]. In this explicit form, the equation is known as
the Landau-Lifshitz-Gilbert (LLG) equation

dM

dt
= − γ

1 + α2
(M ×Heff)− αγ

Ms(1 + α2)
[M × (M ×Heff)] . (24)

The connection between the Gilbert equation and the Landau-Lifshitz equation is given by two
equations relating the damping coefficients and the prefactors of the precession terms in these
two equations:

γL =
γG

1 + α2
, η =

αγG

(1 + α2)Ms

(25)

As already mentioned, practically only the Gilbert damping α is used in the literature.
Analytic solutions of the Gilbert equation are usually only possible in the macro-spin approxi-
mation [33], where the magnetic structure of the sample is assumed to be homogeneous through-
out the reversal process. Usually, the macro-spin approximation is only valid for special cases
or for very small magnetic particles of up to about 10 nm size [34]. To calculate the dynamics in
the case of inhomogeneous, three-dimensional magnetization distributions, numerical methods
are generally required, with which the LLG equation is integrated in time. A few examples
on dynamic effects of the magnetization calculated with the LLG equation will be discussed in
section 7.
The micromagnetic model, the relevant energy terms, and the equation of motion of the magne-
tization described in the previous sections provide the basis for the description of micromagnetic
structures and effects that will be described in the rest of this chapter.
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Fig. 5: Left: Sketch of a Bloch domain wall [23]. The magnetization rotates smoothly by 180◦

between the magnetic domains. The width and the profile of the domain-wall transition result
from a balance between the exchange energy and the anisotropy energy. Right: Profile ϑ(x) of
the domain wall transition.

5 Magnetic domain walls

Inhomogeneities of the magnetization are at the core of micromagnetic studies. Even the most
complex magnetization patterns with a rich variety of features [30] can usually be decomposed
into only a few fundamental magnetization structures, such as magnetic domains, domain walls
or vortices. Perhaps the simplest and at the same time the most fundamental magnetic struc-
tures in micromagnetism are the 180◦ domain walls. These domain walls describe the magnetic
structure in the transition region between two extended regions which are magnetized homoge-
neously and in opposite direction, see Fig. 5.
In the limit of domain theory, where the internal structure of domain walls is neglected, the do-
main wall is the line (in two dimensions) or surface (in the three-dimensional case) separating
the mutually antiparallel domains. In the framework of micromagnetism the continuous transi-
tion of the magnetization is studied. Accordingly, the domain wall can there be defined as the
line or the surface on which the magnetization is oriented perpendicular to both domains, i.e.,
the region in which the magnetization has performed half of the reorientation between one do-
main wall direction and the other. The classical case, which will be discussed in the following,
is that the domain wall is oriented parallel to the magnetization direction. The famous Bloch
wall and the Néel wall are both of this type. A different category of domain wall which has been
discussed intensively in the last years are various forms of head-to-head domain walls, where
the magnetization in the domains is perpendicular to the domain wall.
For simplicity it may be assumed that the magnetization does not display any variation along
the domain wall: The orientation of the magnetization then only depends on the distance from
the domain wall, such that the description of the domain wall structure is a one-dimensional
problem. There are two fundamentally different possibilities for the magnetization to rotate
continuously from the direction of one domain to the other, known as Bloch wall and Néel
wall. These one-dimensional domain walls are the simplest domain wall types. Needless to
say that they only represent idealized situations, and that in reality a much larger spectrum
of domain wall types can be found. In particular, two-dimensional domain walls like cross-
tie walls, asymmetric Bloch walls or asymmetric Néel walls are important and fascinatingly
complex “hybrid” domain walls, which display combinations of both fundamental types: the
Bloch wall and the Néel wall.
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5.1 Bloch wall
The Bloch wall describes the rotation of the magnetization in a small region between domains
with antiparallel magnetization. Bulk ferromagnetic material with uniaxial anisotropy is as-
sumed. Effects connected with the surface of the sample are not considered and the magnetiza-
tion in the domains is aligned with the easy axis of the anisotropy. In the case of a Bloch wall
the magnetization always remains perpendicular to the wall normal, around which it rotates by
180◦ in the transition region.
To describe this situation it is useful to select a specific coordinate frame in which the x-
component of the magnetization is the component perpendicular to the domain wall. In the
case of a Bloch wall, this mx component is everywhere equal to zero. The domain wall profile
(my(x), mz(x)) only depends on the x coordinate and can be conveniently described by polar
coordinates in the form

mz(x) = cosϑ(x), my(x) = sinϑ(x) (26)

With the given boundary conditions

ϑ(−∞) = 0, ϑ(∞) = π (27)

and the selected sense of rotation of the magnetization, the static magnetic structure describing
the domain wall profile ϑ(x) can be obtained from energy minimization. The involved energy
terms are the exchange energy and the anisotropy energy. These are competing interactions in
the given situation: The exchange energy is minimized if the domain wall is wide, i.e., if the
transition occurs very smoothly over a large distance, since then the inhomogeneities (∇mi)

2

are small. On the other hand, the anisotropy energy tends to reduce the width of the domain
wall as much as possible in order to align the magnetization with the easy axes. The result of
this competition is obtained by minimizing the domain wall energy γB:

γB =

∞∫
−∞

[
Ku sin2 ϑ+ A

(
dϑ

dx

)2
]

dx (28)

The minimization δγw = 0 can be performed analytically and yields

cosϑ = tanh(x/
√
A/Ku) (29)

The profile of the magnetization of this wall type is sketched in Fig. 5. A frequent definition
of the domain wall width δB is given by the distance between the points at which the tangent at
x = 0 crosses the ϑ = 0 and the ϑ = π lines. With this definition, that is due to Lilley [35], the
domain wall width of a Bloch wall is

δB = π
√
A/Ku . (30)

The energy density γB of a Bloch wall (defined as the energy per unit area of the domain wall)
results to be

γB = 4
√
AK . (31)

An important property of the Bloch wall is that the magnetization distribution is free of di-
vergence4. Therefore, no bulk charges ρ = −∇M are formed, which would be sources of

4This property is not a result of the energy minimization. It follows immediately from the choice of the rotation
of the magnetization according to Eqs. (26).
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Fig. 6: This is the schematics of a Néel wall transition. The Bloch wall is characterized by
a rotation of the magnetization around the normal of the domain wall, i.e., the magnetization
always remains parallel to the plane separating the two domains. In the case of a Néel wall
the magnetization rotates in the film plane, such that at the central part of the transition it is
oriented perpendicular to the domain wall (adapted from Ref. [37]).

magnetostatic stray fields. Since, by definition of the problem, surface charges are neglected,
there are no sources of the magnetostatic field present and it is thus legitimate to neglect the
dipolar energy term in the energy minimization.
The Bloch wall has been derived under the assumption of bulk ferromagnetic material with
uniaxial anisotropy. The term “bulk” means that the sample is very thick, such that surface
effects can be neglected. In contrast to this, the Néel wall is the classical domain wall type
occurring in thin, soft magnetic films.

5.2 Néel wall

The difference of the domain wall type between the thin-film case and the bulk case is due to
magnetostatic effects. In bulk samples (i.e., thick samples of typically about 100 nm thickness
and above) it may be quite safely neglected that a small amount of surface charges σ = m · n
occurs in a Bloch-type domain wall transition as the magnetization rotates by 180◦. But in thin
films, the relative impact of the magnetostatic energy connected with the field created by these
charges is much larger. Louis Néel has demonstrated [36] that in these cases it is energetically
more favorable for the magnetic system to perform the change of the magnetization direction
by a rotation in the film plane. This transition is sketched in Fig. 6.
The Néel wall profile can be calculated by the minimization of a one-dimensional energy func-
tional, analogous to the case of the Bloch wall described before. In the case of Néel walls the
competing interactions are given by the magnetostatic energy and the exchange energy. The
tendency of the magnetostatics to keep the domain wall as small as possible is balanced by
the tendency of the exchange term to avoid strong inhomogeneities of the magnetization. The
magnetostatic field in the case of a Néel wall is calculated using Eq. (8). The one-dimensional
energy functional to be minimized is then

γN =

∞∫
−∞

[
µ0

2
M2

s cos2 ϑx+ A

(
dϑ

dx

)2
]

dx (32)
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Fig. 7: Magnetic stray fields are created by both, the Néel and the Bloch wall: In the former
case volume charges ρ = −∇M occur, in the latter surface charge σ = m · n. Similar to
the arguments used in the case of shape anisotropy (3.4) it can be argued that the minimization
of magnetostatic field energy gives rise to a thickness-dependent transition between these two
types of domain walls.

The result of this minimization yields the profile of the Néel domain wall

cosϑ(x) = tanh

(
x√

2A/µoM2
s

)
(33)

which has form that is very similar to that previously derived for the Bloch wall. The domain
wall width of a Néel wall is accordingly

δN = π

√
2A

µ0M2
s

(34)

and the energy density of the Néel wall is

γN = 4
√
Aµ0M2

s /2 . (35)

Evidently, the role played by the stray field constant Kd = µ0M
2
s /2 for Néel walls is analo-

gous to that of the anisotropy constant Ku in the case of Bloch walls. The ratio of anisotropy
constant Ku to stray field constant Kd is the definition of the quality factor Q that indicates
the magnetic hardness. In this context it is not surprising that the quantities Ku and Kd ap-
pear in the comparison between Bloch an Néel wall, since the Bloch wall has been calculated
for hard magnetic materials with uniaxial anisotropy while the Néel wall is derived for ideally
soft materials (Ku = 0). However, the selection between Néel and Bloch type domain wall is
not primarily given by the magnetic hardness, but rather by the film thickness. In thick sam-
ples Bloch walls are favored, in thin films Néel walls. Of course the terms “thin” and “thick”
are only relative terms which require a comparison with a well-defined length scale to become
meaningful. As far as the distinction between Néel and Bloch wall type is concerned, it can
coarsely be estimated that a film can be considered to be thin if the domain wall width is larger
than the film thickness, whereas in thick films it is the opposite.
It should be noted that Néel type domain walls are magnetically charged: Contrary to the Bloch
wall, the magnetic structure of Néel walls displays a non-vanishing divergence, so that magnetic
volume charges ρ = −∇M are connected with Néel walls. The magnetic fields created by
these volume charges are relatively small as long as the film thickness is low.
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5.3 Exchange lengths
The calculation of the Bloch and Néel wall profiles in the previous sections has provided the
characteristic length scales, which describe the width of the wall. Those so-called exchange
lengths are material specific length scales on which magnetic inhomogeneities can develop in
ferromagnetic materials. The magnetostatic exchange length is defined as

ls =
√
A/Kd =

√
2A/(µ0M2

s ) (36)

and the magnetocrystalline exchange length is

lK =
√
A/Ku . (37)

They differ from Lilley’s definition of the domain wall width by a factor of π. For a mag-
netic material, the smallest of these quantities is usually the decisive one. Typical values of the
exchange lengths are of the order of about 10 nm. Detailed tables of exchange lengths includ-
ing also other definitions (e.g., in the presence of external fields) are given in the textbook of
Kronmüller and Fähnle [6].
The exchange lengths are important quantities for two reasons: firstly, they represent good
estimates for the typical extension of magnetic inhomogeneities in equilibrium magnetization
states. Since these length scales are found to be always of the order of at least several nanome-
ters (i.e., much larger than the lattice constant), they represent an a posteriori justification of
the micromagnetic model: the smoothening effect of the ferromagnetic exchange prevents in-
homogeneities of the magnetization on an atomistic level, which is a necessary condition for
a meaningful continuum representation of the magnetization. The second important aspect of
exchange lengths refers to computational micromagnetism. In micromagnetic simulations, the
continuous vector field of the magnetization is represented in a concrete form: it is calculated
at discrete points, or within cells of a certain volume. The size of these cells (or the distance
between the points) is the size of the discretization cells. Since the exchange lengths represent
the “feature size” of typical micromagnetic structures, they also indicate the discretization size
required to resolve important inhomogeneities of the magnetization, like domain walls, vortices
and vortex cores. But the impact of the exchange length on the required discretization size goes
beyond the possible loss of information on a few micromagnetic details that can occur due to
too large cells. Using discretization cells with sizes larger than the exchange length may cause
important discretization errors that can lead to unreliable results of the overall magnetization
structure. It is therefore necessary to use cell sizes which are not larger than the length scale
given by the exchange length in micromagnetic simulations, even if one is not interested in the
details of the micromagnetic structure. Since, particularly in three-dimensional simulations, the
number of cell sizes (and consequently also the required computation time and memory require-
ments) increases drastically with increasing problem size, it is not possible to apply standard
micromagnetic simulations to large-scale macroscopic elements.

5.4 Two-dimensional domain walls
The Bloch wall and the Néel wall are the fundamental types of domain walls which represent
idealized cases. They represent the minimum energy configuration of domain walls in the limit
of thin films on one hand and in bulk materials on the other hand. Interesting situations occur
at intermediate film thicknesses, where neither the pure Bloch wall nor the pure Néel wall rep-
resents an optimal transition. In these cases mixed types of domain walls occur, which contain
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both, a Néel and a Bloch type contribution in their transition. These domain walls are nec-
essarily two-dimensional, sometimes even three-dimensional, meaning that the magnetization
direction is not only a function of the distance from the domain wall but also a function of the
position along the domain wall or along the thickness, or both.
In soft magnetic materials, the thickness-dependent transition from the Néel type to the Bloch
type domain wall can be observed by the onset of a famous domain wall known as cross-tie wall.
The cross-tie wall was first reported by Huber et al. in 1958 [40]. In spite of the low resolution

Fig. 8: a) Image of a cross-tie domain wall in a Permalloy film of 30 nm thickness, observed with
the Bitter technique [38]. Small colloidal Fe particles are deposited in regions of strong local
magnetic fields. The characteristic spikes can extend over several microns into the domains.
b) Micromagnetic simulation of a cross-tie domain structure in a 1000 nm × 200 nm × 30
nm Permalloy element. The first three images (from the top) are greyscale images displaying
the magnetization component along the long edge (x), the short axis (y) and the thickness
(z). Note the black and white spots in the z component of the magnetization, representing the
(anti-)vortex core regions. The fourth image shows the distribution of volume charges ρ =
−∇m, showing the characteristic cross-tie spikes [A. Kakay et al., FZ Jülich, unpublished]. c)
Magnetic structure of the cross-tie domain wall as described by Middelhoek [39]. d) Schematic
representation of the fine structure of a cross-tie wall as an alternating series of vortices and
antivortices.

of the magnetic imaging techniques available at that time, the fine structure of this type of do-
main wall was quickly interpreted correctly by various authors [40, 38, 39]. It can be regarded
as an alternating series of vortex and antivortex structures. The characteristic spikes that were
observed in the original images obtained with the Bitter technique [40] are due to the volume
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charges connected with the antivortex. Similar to Bloch and Néel domain walls, vortices and
antivortices are also fundamental magnetization structures which represent the fine structure of
several micromagnetic domain states. Since the magnetization in the center of the vortex and
the antivortex is perpendicular to the surface, the magnetization performs a Bloch-like transi-
tion from one domain to the other along a line perpendicular to the domain wall through the
(anti-)vortex core (see. Fig. 8). In the region between the vortex and the antivortex cores,
the magnetization remains in the film plane and the domain wall has a Néel character. There-
fore, the Bloch character of the domain wall is increased gradually with increasing number of
vortex-antivortex pairs. In the absence of these pairs (i.e., the distance between vortex and an-
tivortex goes to infinity), the domain wall has a pure Néel character. The amount of Bloch type
transition increases with increasing the cross-tie density. According to the previous consider-
ations according to which Néel walls are favored in thin films while Bloch walls are preferred
in thick films, a continuous increase of cross-tie density is in fact observed experimentally with
increasing film thickness (see Fig. 9). In spite of this relatively simple qualitative explanation
for the increase of cross-tie density with increasing thickness, understanding the details of the
energetic balance determining the equilibrium density of vortex-antivortex pairs in a cross-tie
domain wall as a function of the thickness remains a highly complicated question, which has
recently attracted much interest also among mathematicians [41].

Fig. 9: Left: In extended magnetic films the cross-tie density increases with increasing film
thickness [30]. The schematics of the cross-tie wall structure on the right indicates that the
cross-tie contains both, a Bloch- and a Néel-like transition. Changes in the density of cross-ties
increase or reduce the Bloch (Néel) character of the transition region.

Another type of two-dimensional domain walls is given by the so-called asymmetric Bloch wall.
The asymmetric Bloch wall occurs in soft magnetic films of elevated thickness of about ten ex-
change lengths or more. It also describes a combination of Néel and Bloch domain wall, but
here the variations do not occur along the domain wall (as they do in a cross-tie wall) but along
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Fig. 10: The asymmetric Bloch wall is a hybrid domain wall structure which contains Bloch-
and Néel components to reduce magnetostatic fields: Near the surface the magnetization rotates
in the plane (the so-called Néel caps) to prevent the formation of surface charges σ = m · n;
whereas in the center of the film a Bloch-like transition occurs, thereby avoiding volume charges
ρ = −∇m (schematics adapted from [42]).

the film thickness. Interestingly, the asymmetric Bloch wall was the first micromagnetic con-
figuration that was predicted by micromagnetic simulations. In 1969, Hubert [43] and LaBonte
[42] obtained a domain wall structure as displayed in Fig. 10. The results were very surpris-
ing at that time, since such a type of hybrid domain wall consisting of both, Néel and Bloch
transition regions was not known before. The structure of the asymmetric Bloch wall can be
understood as an attempt of the magnetization to reduce magnetostatic fields as far as possi-
ble. The arrangement is practically free of stray fields, since the transition minimizes volume
charges as well as surface charges. From the viewpoint of magnetostatic energy minimization,
the asymmetric Bloch wall combines the advantage of a divergenceless transition in the case
of a Bloch wall with the advantage of the surface-charge free transition of a Néel wall. As
can be seen in Fig. 10, this domain wall has a Néel character near the surface (the so-called
Néel caps), while in the bulk part of the film the transition is given by a Bloch-type rotation of
the magnetization. The existence of asymmetric Bloch walls has been verified experimentally
shortly after their theoretical prediction [44]. Many aspects of these domain walls have been
investigated in detail in various studies [45, 14, 46], including the particular effects occurring
when the direction of the Bloch component, of the Néel caps, or both, changes along the film
thickness ([30], p.445).

5.5 Domain walls in thin strips
Yet another class of domain walls has recently moved into the focus of interest of many studies
in nano- and micromagnetism, namely domain walls occurring in soft-magnetic thin strips. The
strips are typically up to a few 100 nm wide and a few tens of nanometers thick. Domain
walls forming in such strips are so-called head-to-head or tail-to-tail walls. Also in this case,
the two fundamental structures of this type (transverse wall and vortex wall) have first been
predicted by simulations [47]. It has been suggested that such domain walls could serve as
units of information that can be shifted along the strips. The magnetic strips act as guides
of these domain walls which can display a particle-like behavior [48]. Based on the domain
wall propagation along strips, novel data storage devices (“race track memory” [49, 50]) and
new concepts for devices performing logical operations [51] have been developed. Also in
the recently suggested concept of spin wave logics [52] such head-to-head domain walls have
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Fig. 11: The two most important types of head-to-head domain walls in thin strips are the
transverse wall (left) and the vortex wall (right). Such head-to-head type domain walls are
qualitatively different from Bloch walls or Néel walls (sketches adapted from Ref. [53]).

been proposed as phase shifters for travelling spin waves. A much more detailed discussion of
these types of domain walls can be found in Ref. [48]. It should be stressed that these types of
domain walls are neither Bloch nor Néel type transitions. They are qualitatively different since
the domain wall is oriented perpendicular, and not parallel to the magnetization direction in the
adjacent domains.

6 Magnetic domains in soft-magnetic thin film elements

The enormous variety of magnetic domain structures makes it an absolutely impossible task
to give a satisfactory overview of magnetic domains within this chapter. An impression of the
diversity of magnetic domains can probably best be obtained from the hundreds of figures in the
textbook by Hubert and Schäfer [30]. The domain structures discussed in the following should
therefore be considered as only a small selection of possible structures, without any claim to
completeness. To further limit the enormous size of the topic of magnetic domains, only domain
structures in soft-magnetic thin film elements shall be discussed here. Such soft-magnetic thin-
film elements are particularly important for spintronic applications.

6.1 Flux closure domain patterns

An appealing aspect of domain structures in soft-magnetic elements is that they can be under-
stood in a simple way even though the physics leading to their formation is complicated.
If the material is sufficiently soft-magnetic and the sample sufficiently large, the magnetic struc-
ture is completely determined by the need to minimize the dipolar energy. As mentioned before,
it is not possible to arrange the magnetization in such a way that the resulting charges (poles)
create a negative magnetostatic energy. The best minimization of the dipolar energy is therefore
obtained by avoiding the sources of the field. This behavior is known as Brown’s pole avoid-
ance principle. In such large and soft-magnetic thin-film elements the magnetic structure thus
arranges in a way to avoid magnetic charges as far as possible. The first obvious consequence
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Fig. 12: Left panel: The Landau state and the Diamond state are the most frequent flux-closure
domain patterns in rectangular thin-film elements. The Landau domain structure can be con-
structed easily with the Van den Berg scheme: The domain walls are given by the sets of central
points of circles that touch the sample boundary at least twice. The diamond state can be con-
structed with the same scheme if the sample is virtually cut into two parts along the dashed
line. Right panel: Virtually identical magnetic thin-film elements samples (here: sub-micron
sized Co platelets) can have very different domain structures. In all cases, practically perfect
agreement is obtained between simulation and experiment [8]. High-remanence states (a), (c)
can be found as well as the Landau (b) or the diamond structure (d).

is that the magnetization lies perfectly in the film plane to avoid surface charges5. A further
minimization of surface charges is obtained by aligning the magnetization parallel to the edges
of the thin-film element. If it is further assumed that, at least in the domain-theory limit of
vanishing domain wall width, the structure is free of volume charges, ∇M = 0, it is possible
to construct a few elementary domain structures frequently observed in thin-film elements, such
as the famous Landau structure or the diamond structure.

6.2 The Van den Berg Scheme
For such demagnetized states in soft-magnetic thin film elements as the ones shown in Fig. 12,
in which the spatially averaged magnetization is exactly zero and the structure is completely free
of stray fields, there exists a simple graphical construction scheme that is due to H. A. M. Van
den Berg [54, 55, 56]. The simplicity of the graphical scheme is remarkable in view of the
relatively complicated mathematical background from which these rules have been derived. The
construction of the domain structure can be performed for arbitrarily shaped two-dimensional
elements, and provides patterns that often correspond perfectly to the experimental observation.
In a simplified way, it can be said that the Van den Berg (VdB) scheme essentially consists in
drawing circles: more precisely, circles that touch the boundary of the element at least twice.
The set of the central points of these circles constitutes the magnetic domain walls (which are

5Topological peculiarities, like the perpendicular component of the magnetization in the case of vortex cores or
some surface charges created by head-to-head walls can be neglected here.
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Fig. 13: The equilibrium structure of carefully piled-up sandpiles depends on the shape of the
plate on which they are formed. Since there exists a mathematical analogy between the height
profile of such sandpiles and the domain structure of flux-closure states in soft-magnetic thin
film elements, suitably illuminated sandpiles resemble magnetic domain structures. (Sandpiles
and photos by O. Fruchart, Institut Néel, Grenoble, France; experimental image on the right
taken from Ref. [57]).

assumed to be lines in this model). The magnetization is perpendicular to the radial lines of the
circles that touch the boundary. Examples for domain patterns obtained with the Van den Berg
construction scheme is shown in Fig.12 The agreement of experimentally observed demagne-
tized states in patterned thin films with the Van Den Berg scheme can often be recognized
immediately.

It should be mentioned that the domain structures that can be constructed with the VdB scheme
are not unique. It is possible to virtually divide an element into different parts and apply the VdB
scheme to each of those segments. The re-assembly of these parts will then of course lead again
to a demagnetized magnetic domain structure, which is different from the one obtained when
the VdB scheme is applied directly to the sample. The lack of uniqueness is not a weakness of
the scheme, since this corresponds to the experimentally observed situation: identical samples
can display very different magnetic domain structures, even on the sub-micron scale [8].

There is a remarkable connection between the domain structures constructed according to the
VdB and the shape of sandpiles, as discussed in the book of Hubert [30] on p. 177. Without
giving the relatively simple explanation for this analogy, a similarity between illuminated sand-
piles on a macroscopic plate and magnetic domain structures in microscopic magnetic elements
is shown in Fig. 13.

A more detailed understanding of magnetization structures in thin film elements cannot be
achieved with this simple model that is exclusively based on the assumption of perfect stray
field minimization. Important aspects such as the details of the domain walls, magnetic domain
structures in non-demagnetized states and calculations of the energy of the magnetic domain
structures requires combinations of experimental and numerical studies.



Micromagnetism D1.29

Fig. 14: Particularly complex magnetic domain structures can develop in thin film elements
when several characteristic length scales interact. In this example from Ref. [58], a flux-
closure magnetic domain structure in a 10µm Co disk is analyzed using scanning electron
microscopy with polarization analysis (SEMPA), which can measure simultaneously two mag-
netization components (panel on the left). Using a 360◦ color-coding, the information can be
assembled into one image displaying the in-plane magnetization direction (middle). On a large
length scale, the domain structure is a demagnetized state according to the VdB scheme. The
smaller details of the structure display complicated cross-tie domain walls with several vortices
and antivortices (right).

6.3 High-remanence states

The technically more relevant situation than the demagnetized configuration are the high-remanence
states. In a first approximation, the high-remanence magnetization states of thin-film elements
can be regarded as homogeneously magnetized states in which the magnetization points into one
specific direction. If the magnetization can be switched in the opposite direction and if these are
the only two stable states, this represents a suitable unit for binary magnetic data storage. Al-
though such high-remanence states can be prepared and the shape of magnetic elements can be
chosen such that demagnetized states are unstable, the notion of a homogeneously magnetized
thin-film element is not correct and disregards potentially important details. Strictly speaking,
a homogeneous magnetization structure is only possible in an ellipsoidal particle [17]. It can
therefore not be achieved in a two-dimensional thin-film element, which at best can have an
elliptical shape to reduce stray-field induced inhomogeneities near the ends of the element.
The characteristic inhomogeneities near the ends are particularly well known for rectangular
elements, where the so-called S-state and the C-state are possible high-remanent states. Also in
magnetic discs and rings typical high-remanence states are known, the most common of which
is usually labelled the “onion state”. Cube-shaped particles may display a high-remanence
state known as “flower state” [61, 59, 62]. From an application point of view, it would appear
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Fig. 15: High-remanence states in thin-film elements are not homogeneously magnetized. In
rectangular platelets the most important cases are the S-state, the C-state and the Flower state
(a). In these states the magnetization near the edges and corners displays characteristic in-
homogeneities. To a large extent, the magnetization structure, e.g., of the C-state is the same
for elements of different size. The Permalloy rectangles in frame (b) are between 250 nm and
1000 nm large. In disks, the onion state (c) is the typical magnetization structure of the high-
remanence state (figures from Refs. [59] and [60])

to be desirable to have homogeneous magnetization states without any significant asymmetry
(like in the case of the S- or the C-state) or reduction of the remanence. However, as already
mentioned, it is not possible to completely suppress such magnetic inhomogeneities near the
boundary thin-film elements by tailoring their shape or size. Moreover, the inhomogeneities at
the particle’s end, sometimes called “end domains”, can have beneficial effects on the magnetic
properties. They may represent nucleation sites for the magnetization reversal process such that
the dynamic switching occurs in a reproducible fashion and at well-defined fields. The elements
with the tapered end presented at the beginning of this chapter (Fig. 1) are an example where
end domains and, in particular, any possible asymmetric magnetization state has been largely
suppressed by the particular element shape. This results in very high switching fields and, as
simulations have shown, in switching processes that are not well reproducible, in some cases
starting in the middle of the element and in other cases at the ends.
The reason for the formation of the characteristic end domains is the attempt of the magnetic
structure to minimize the magnetic surface charges as far as possible. A partial alignment of
the magnetization with the short edge, as is the case for the S- and the C-state already leads to
a significant reduction of surface charges while maintaining a largely homogeneous magnetic
structure, so that the exchange energy remains small. The precise details of the shape of a
thin-film element can strongly affect the formation of end-domains. The role of end domains
in high-remanence states and their important impact on the switching field of magnetic thin
film elements is an example of the sensitive dependence of the particle shape on the magnetic
properties which was mentioned in the beginning of this chapter.

7 Magnetization dynamics in nanostructures

Over about the last ten years, investigations on the fast and ultrafast magnetization dynam-
ics have attracted constantly growing interest. Progress in experimental techniques for time-
resolved magnetic imaging and the increasing capabilities of numerical simulations have made
it possible to access this complex topic and study the properties on the magnetization dynam-
ics on the pico- and nanosecond time scale. In fact, similar to the situation described before
for magnetic domains, the numerous phenomena on magnetization dynamics that have been
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reported in a very large amount of studies cannot possibly be summarized in this chapter. Thus,
only a small selection of examples on the magnetization dynamics in nanostructures is presented
here. More comprehensive treatments of this topic can be found elsewhere [63, 31].

7.1 Magnetization reversal of thin-film elements
The most important aspect of magnetization dynamics for spintronic applications usually refers
to the magnetic switching process in thin-film elements. A prominent example for this are
MRAM cells [4, 64], where information is stored in small magnetic thin film elements that
can be switched between two high-remanence states. This magnetic thin-film element, the so-
called free layer, is embedded in a multilayer magnetic structure, which changes its resistivity
depending on the relative orientation of the magnetization direction of the free layer with respect
to a “fixed” magnetic layer within the memory cell. The fixed layer is a magnetic element with
antiferromagnetically pinned magnetization direction that can only be switched by applying
very large fields. For the application it is obviously important to explore how fast the free layer
can be switched and how this reversal process occurs if an external magnetic field is applied
towards which the magnetization should eventually align. It was found by both, simulations and
experiments, that the switching of such an element generally occurs in a very inhomogeneous
way [26, 65, 27].

Fig. 16: The magnetization dynamics of a reversal process can be remarkably changed if a bias
field Ht is added in transversal direction (left panel). The dynamics of magnetization reversal
in a Permalloy thin-film element of 10 µm × 2 µm and 15 nm thickness is shown in the right
panel for the case of Ht = 0 (b, left part) and Ht=5.2 kA/m. The transversal field leads to a
faster and more coherent magnetization reversal (taken from Ref. [66])

Even in the case of single domain particles, i.e. magnetic elements that are so small that their
only stable magnetization structures are high-remanence states, the magnetization reversal gen-
erally occurs in a very inhomogeneous fashion, with a nucleation of the reversal starting either in
the ends or in the middle of the sample and propagating along the element. The inhomogeneous
switching is connected with the creation of spin waves which persist over several nanoseconds,
an effect known as magnetic ringing. The reason for this ringing can be understood from energy
considerations: It is connected with the difference in Zeeman energy between the initial state,
in which the magnetization is antiparallel to the external field and the final state. Therefore, im-
mediately after the switching, the element remains in an energetically excited state in which the
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Zeeman energy is converted into spin waves. The dissipation of energy with time is described
by the damping constant α in the Landau-Lifshitz-Gilbert equation. The value of the damping
constant α (typically in the order of about 0.01) is too low to allow for the dissipation of this en-
ergy difference within less than a few nanoseconds. This behavior of inhomogeneous switching
and spin wave generation is obviously not desirable for applications in which ideally the mag-
netic element should be switched as fast as possible, preferably by means of a homogeneous
rotation and without the undesired ringing after the reversal.
A switching process fulfilling almost all of these properties has in fact been discovered a few
years later. First, it was reported that a transverse bias field applied together with the longitudi-
nal switching field pulse had favorable effects on the magnetization dynamics, since it largely
suppresses the magnetic ringing and leads to a more coherent dynamic switching (cf. Fig. 16)
Even better properties of the magnetization reversal dynamics have been obtained shortly later
with the precessional switching mode, which comes very close to the characteristics of an
“ideal” switching process. In the precessional switching mode [67, 68, 69] the magnetiza-
tion of a thin-film element rotates very rapidly and coherently by 180◦ after a suitably shaped
magnetic field pulse is applied in the plane, perpendicular to the initial magnetization direction.
The pulse excites a precessional motion of the magnetization, initially around the applied field
and subsequently around the demagnetizing field created by the out-of-plane component of the
magnetization. If the pulse is shaped correctly, the magnetization comes to a halt after having
switched exactly by 180◦.
The difficulties of this switching process lie mostly in the necessity of perfectly shaping the field
pulse in terms of duration and amplitude. Only small margins of variations of the pulse shape
are allowed in order to achieve the switching. Due to these complications, the precessional
switching is more interesting from the point of view of fundamental research than for practical
applications. Apart from the specific difficulties of the precessional switching, the magnetic-
field induced reversal of magnetic elements is generally problematic because of unfavorable
scaling properties: as the sample size becomes smaller and the integration density increases, the
tolerable limits within which the amplitude of the applied field can be varied become very small.
On one hand, the switching probability of the selected element should be close to 100%, on the
other hand neighboring elements should not be switched. The Savtchenko toggle switching
mode [70] is probably the most powerful scheme to solve this so-called selectivity problem in
the case of field-induced switching. It is however probably not as promising for applications
as the recently discovered possibility of utilizing electrical currents instead of magnetic fields
to switch the magnetization. This new approach for the switching of magnetic elements, which
is particularly suitable for densely packed arrays of nanomagnets, will be briefly discussed in
section 8.

7.2 Magnetic vortex dynamics
Every flux-closure magnetic domain pattern in a singly-connected thin film element, like, e.g.
the Landau structure discussed in section 6.1, contains at least one magnetic vortex. The funda-
mental nature of vortices as elementary micromagnetic structures has already been mentioned
in the discussion of the cross-tie domain walls in section 5.4. For studies of the magnetization
dynamics, the magnetic vortex state is very interesting because it displays a very rich variety
of dynamic properties. The magnetic vortex dynamics has therefore been studied very inten-
sively over the past years. Contrary to the previously described cases of irreversible switching
processes in thin-film elements, these studied on the vortex refer to oscillations of the magneti-
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Fig. 17: The gyrotropic motion of vortices around the equilibrium position was imaged by Choe
et al. [71]. Even though the spatial resolution was not sufficient to image the tiny vortex core,
the position of the vortex could easily be identified as the intersection of the domain walls or the
junction between adjacent domains. In the same work, it was also shown that the vortex core
magnetization significantly influences the vortex dynamics.

zation around the equilibrium vortex state. Only very recently a magnetic switching process of
vortices has been discovered, which has attracted much attention and that will be discussed in
the next section. The lowest-frequency oscillatory mode of vortices is the gyrotropic motion:
when a vortex is displaced from its equilibrium position, it relaxes back to its initial position
on a spiralling orbit. This gyration of the vortex occurs with a characteristic frequency that is
typically of the order of a few 100 MHz. The value of this resonance frequency depends on
the aspect ratio (width / thickness) of the thin-film element containing the vortex [72]. The
gyrotropic motion of vortices was predicted theoretically in 1974 by Thiele [73]. An experi-
mental verification of the gyrotropic motion of a vortex due to a resonant excitation tuned at the
resonance frequency was already reported in 1984 [74]. The gyrotropic motion of the vortex
was recently imaged directly by means of scanning magnetic X-ray transmission microscopy
[71, 75]. The vortex structure can give rise to several further oscillatory modes. In the case
of square platelets with Landau structure, where four 90◦ domain walls are connected in the
middle by a magnetic vortex, also the domain walls and the triangular domains can provide
oscillations with characteristic frequencies after a short-pulse excitation [78]. In magnetic disks
with vortex configuration, higher frequency excitations consist in radial and azimuthal standing
wave modes [79, 76, 77].

7.3 Magnetic Vortex Core switching

The rich variety of dynamic properties connected with a structure as simple and fundamental as
a magnetic vortex has inspired several studies on the vortex dynamics over the past years. This
interest has further increased since the recent discovery of the dynamic vortex core switching.
Before explaining the importance of the core for the vortex dynamics, it is useful to describe
shortly the static properties of magnetic vortex cores.
As mentioned in the section on the cross-tie domain wall structure, vortices (and antivortices)
have a core region where the magnetization is perpendicular to the plane. This out-of-plane
rotation of the magnetization in the core region allows for a smooth magnetic structure. If the
magnetization was aligned everywhere in the film plane, it would abruptly change its orientation
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Fig. 18: Higher-frequency modes of the magnetization in vortex states are standing-wave pat-
terns in the order of several GHz. Buess et al. [76] performed spatial Fourier analysis of
the time-resolved measurements of the magnetization dynamics in disks with vortex configura-
tion (a) and found characteristic modes which could be compared with simulation results (b).
Such standing-wave modes in vortex structures can also be obtained if an external oscillating
in-plane field is applied with suitable frequency (c), see Ref. [77].

by 360◦ in the region near the vortex center, leading to a singularity in the exchange energy
density. The existence of the vortex core was predicted by Feldtkeller [80], who also provided
analytic calculations on the vortex core size. The vortex core region is very small: its size is
about 10 nm. Due to its small size, which for a long time was below the resolution limit of
magnetic imaging techniques, the vortex core could only be observed experimentally about 40
years after its theoretical prediction [81]. With spin-polarized scanning tunnelling microscopy
a magnetic imaging technique with ultra-high resolution has become available which has made
it possible to measure precisely the profile of a magnetic vortex core [25]. The experimental
result corresponds perfectly to the structure obtained by micromagnetic simulations.
The orientation of the magnetization in the vortex core (the vortex polarization) is not connected
to the sense of rotation of the magnetization in the film plane (the circulation). Therefore, both
quantities, the circulation and the polarization, are required to describe the static structure of a
vortex. The perfectly bistable magnetic behavior of a vortex core (the magnetization in the core
can point either “up” or “down”), its high stability, its small size combined with the fact that this
structure forms spontaneously in simple disk-shaped elements makes vortex cores interesting
candidates for binary magnetic data storage [82, 83]. However, as a result of the high stability of
the vortex core, large magnetic fields of about 300 mT need to be applied in order to switch the
core [84]. As far as the magnetization dynamics is concerned, the core region has a significant
impact on the gyrotropic mode: Whether the sense of rotation of the gyrating motion of a vortex
around the equilibrium is clockwise or counterclockwise depends exclusively on the vortex core
polarization [73, 71].
It was recently discovered that a vortex that is resonantly excited to perform a gyroscopic ro-
tation can change its sense of rotation after a short perturbation with a small field pulse [85],
see Fig. 20. This is an indirect, but unambiguous evidence that the vortex core has switched
as a result of the small perturbation. This possibility of dynamically reversing a vortex core
with small field in-plane pulses (in the case reported in Ref. [85] it was a field pulse of only 1.5
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Fig. 19: (a): A magnetic vortex is characterized by an in-plane circulation of the magnetization
and by a small perpendicularly magnetized core region. (b): The existence of magnetic vortex
cores was first evidenced directly by Shinjo et al. [81]. (c): The detailed profile of a magnetic
vortex core was measured with spin-polarized scanning tunnelling microscopy by Wachowiak
et al. [25].

mT field) is very surprising, especially if compared with the large fields required in the static
case. The micromagnetic explanation for the core switching was also suggested in Ref. [85]:
The reversal of the vortex core is achieved by the temporary formation of a vortex-antivortex
pair and a subsequent annihilation of the original vortex with the temporarily created antivortex,
see Fig. 20c). The dynamics of vortex-antivortex annihilation processes had previously been
investigated with micromagnetic simulations [87], from which it could be concluded that the
vortex core reversal process should be accompanied by a burst-like generation of spin waves.
Shortly after the experimental observation of the dynamic vortex core switch, micromagnetic
simulations predicted that the resonant excitation of the core should not be necessary to obtain
the core switch: a suitably shaped single, short and strong in-plane field pulse should lead to
the same chain of events, i.e., the temporary creation of a vortex-antivortex pair and the annihi-
lation of the original vortex with the new antivortex. The fact that the new vortex always has a
polarization opposite to the original one was attributed to the influence of the dipolar field cre-
ated by the core [88]. The simulations provide detailed information on this new micromagnetic
switching process, and very recently experimental studies seem to confirm these details [89].

In addition to this vortex core switching process triggered by field pulse excitation, it was pre-
dicted by simulations [86] and observed experimentally [90] that a single electric current pulse
through the plane of the sample should lead to the same results (Fig. 21). The current-induced
resonant switching of vortex cores was demonstrated by Yamada et al. [91].

Within short time, this new micromagnetic process has given rise to a large number of studies
with important contributions from many different groups [92, 93, 94]. The interest is not only
due to the novelty and the appealing complexity of this dynamic process: it is also of interest for
the topic of ultra-fast magnetization dynamics. Until recently, the precessional switching was
considered to be the fastest magnetization reversal process, but now the non-resonant magnetic
vortex core switching [95] has taken over this position. With a switching time of only about 50
ps the non-resonant vortex core switch is the fastest field-induced magnetic switching process
known so far.
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Fig. 20: Vortex core switching as first observed by VanWaeyenberge et al. [85]. The vortex is
in a dynamic equilibrium state, gyrating around its equilibrium position due to an externally
applied low-amplitude resonant field(b). After a short and small increase of the exciting field
over one period, the vortex core was found to rotate in gyrate direction, which demonstrates
that the vortex core magnetization has changed sign (b). The micromagnetic processes leading
to the reversal are sketched in frame (c): The switching is mediated by a vortex-antivortex pair
creation and annihilation process.

Fig. 21: Micromagnetic simulation of the vortex core switching in a 200 nm Permalloy disk
induced by a short electrical in-plane current pulse (from Ref. [86]). The three frames on the
top show snapshots of the dynamic core switching process. The stripes in these frames are iso-
surfaces displaying, respectively, the regions in which the in-plane magnetization components
mx and my are equal to zero. Their crossing points indicate the precise location of the (anti-
)vortices [87]. The additional crossings of these “ribbons” in the second frame thus highlight
the temporary vortex-antivortex pair formation. The colors refer to the out-of-plane magneti-
zation component mz, the topography of which is displayed in the snapshots on the bottom.
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8 Current-induced magnetization dynamics
Current-induced magnetization processes like the vortex core switching [86, 91, 90] are due to
the transfer of electron spin from the conducting electrons to the local magnetization. This spin-
transfer torque effect shall be discussed briefly in this section. Much more detailed treatments
on this topic are given by the contributions of D. Bürgler and S.S.P, Parkin in this book.
It was predicted theoretically by Berger [96] and Slonczewsky [97] that spin-polarized electric
currents flowing through a ferromagnet can exert a torque on the magnetization, the so-called
spin-transfer torque, which can be strong enough to generate spin waves or even to switch the
magnetization. The principle is that electric currents flowing through ferromagnets are spin-
polarized according to the local magnetization. As conducting electrons flow through differ-
ently magnetized regions, they change their spin-polarization. Conservation of angular mo-
mentum requires that angular momentum is correspondingly transferred to the magnetization,
resulting in the spin-transfer torque (STT) effect. The STT can be considered as an additional
torque term in the Gilbert equation. The influence of a spin-polarized electric current on the
magnetization is qualitatively different from that of a magnetic field. Its influence correspond-
ingly cannot be represented as an effective field term; and there is no micromagnetic energy
term connected with the STT effect.
Two different cases of current-induced magnetization dynamics are usually considered. The first
refers to the so-called “pillar” geometry, in which a spin-polarized electric current flows per-
pendicularly through a magnetic thin-film element. The polarization of the current is achieved
by a “fixed” ferromagnetic layer, the polarizer, which is part of the pillar and located next to
the free layer. As the electrons enter the free layer, a torque acts on the local magnetization if
the spin-polarization is not aligned with the local magnetization direction. The switching of the
free layer parallel or antiparallel to the fixed layer can be achieved by changing the direction of
the electron flow along the pillar [98].
In micromagnetics, the STT effect in pillar geometries is described by the torque term

dM

dt
=

χ

Ms

M × (M × p) (38)

where p is the unit vector along the spin polarization direction given by the fixed layer and χ
is a function of M · p as described by Slonczewski. This torque term should be added to the
Gilbert equation.
A particular effect of current-induced magnetization dynamics in the pillar geometry is the
possibility of exciting persistent oscillations of the magnetization with DC currents. The oscil-
lations are in the GHz range and their frequency can be tuned, to a certain extent, by varying
the current density. Such tunable nano-oscillators are supposed to have high potential for future
technological applications in nanoscale communication devices. The excitation of persistent
oscillations with DC currents is a new effect without analogy in the field-driven magnetiza-
tion dynamics. It can occur in situations where the STT effect would favor the switching of a
nanomagnet but an external magnetic field prevents the reversal.
Several studies, experimental and theoretical ones, have been performed on such current-induced
nano-oscillators [99, 100]. Frequently the experimental results are interpreted in the framework
of macrospin models. Even though the nanomagnets representing the free layer are very small,
it is not certain that the macrospin model may be applicable. Various simulations have in fact
reported the occurrence of highly inhomogeneous structures [101], indicating that a precise the-
oretical understanding of these dynamic effects can only be achieved with accurate simulations
[100].
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The second case in which current-induced dynamics plays an important role is the displacement
of domain walls along ferromagnetic strips [50]. In this case, the torque is exerted by electrons
flowing along an inhomogeneously magnetized ferromagnet. The change of spin-polarization
that the conducting electrons experience as they pass through differently magnetized regions
results in a torque on the magnetization. This torque is described by two additional terms: the
adiabatic and the non-adiabatic term [102, 103].

dM

dt
= − (u∇)M +

β

Ms

M × [(u∇)M ] (39)

Here,u is a vector pointing in the electron flow direction with the amplitude u = jPgµB/(2eMs)
[103], where j is the current density, P is the degree of electron polarization, g is the Landé
splitting factor, µB is the Bohr magneton, and e is the electron charge. Also the previously
mentioned electric vortex-core switching [86, 91] is due to the STT effect described by this
term.
The STT effect provides interesting new possibilities of manipulating and controlling the mag-
netization on the nanoscale. The technological advantages of using electric currents instead of
magnetic fields for magnetic switching are, firstly, the unproblematic selectivity of individual
elements within dense arrays of identical magnetic elements, and, secondly, the good scaling
properties of the parameters required for current-induced switching.
When current-induced magnetization processes are studied, it should not be overlooked that it is
not only the spin-polarization of the conducting electrons that can affect the magnetization, but
also the Oersted field created by the current. It depends on the individual situation whether the
Oersted field represents only a negligible perturbation of the overall magnetization dynamics
or if it significantly affects it. The precise impact of the Oersted field can be analyzed with
numerical simulations [104, 100], which unlike experimental studies allow to study the artificial
situation of electrical currents without Oersted field.
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[10] S. Lounis, P. H. Dederichs, and S. Blügel, Phys. Rev. Lett. 101, 107204 (2008).

[11] Ultrathin Magnetic Structures I, edited by J. A. C. Bland and B. Heinrich (Springer,
Berlin, Heidelberg, New York, 2005).

[12] P. Gambardella, A. Dallmeyer, K. Maiti, M. C. Malagoli, W. Eberhardt, and C. Carbone,
Nature 416, 301 (2002).

[13] C. Dietrich, R. Hertel, M. Huber, D. Weiss, R. Schäfer, and J. Zweck, Phys. Rev. B 77,
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1 Introduction

The concept of dynamic eigenmodes of unconfined magnetic media called spin waves was in-
troduced by Bloch in 1930 [1]. As shown in Fig. 1, a spin wave represents a wave of spin
precession propagating in a magnetically ordered medium. Early experimental evidence for the
existence of spin waves came from measurements of thermodynamic properties of ferromag-
nets, in particular the temperature dependence of their saturation magnetization. The first direct
observation of spin precession was made using ferromagnetic resonance by Griffiths in 1946
[2] for the case of uniform precession which can be treated as a spin wave with the zero wave
vector. Later inelastic light scattering experiments performed by Fleury, Porto, Cheesman, and
Guggenheim [3] in 1966 have confirmed the existence of spin waves.

The history of the spin-wave conception is inseparably linked with the reduction of the di-
mensions. Being first introduced for bulk media, spin waves in magnetic films have attracted
enormous interest 60s and 70s of the last century. It was found that the confinement caused
by the finite thickness of a film results in a variety of new effects and even new types of spin
waves. The so-called surface spin waves were introduced theoretically by Damon and Eshbach
in 1961 [4] and than observed experimentally by Grünberg and Metawe in 1977 [5], which is
followed by the investigation of spin waves in magnetic double layres and the experimental
observation of the interlayer coupling by Grünberg [6]. This study on spin waves in films was a
basic for discovery of the giant magnetoresistance effect by Grünberg [7] and Fert [8] and of a
wide application of magnetic films in the information technology.

The study of quantized and localized spin-wave modes of small magnetic elements is vital
for understanding of dynamic magnetic properties of magnetic storage and sensors devices.
For example, thermal magnetic noise limits the figures of merit of a magnetic reading head,
which can be considered as a magnetic resonator. The thermal noise appears at the resonance
frequencies of such a resonator which are in the microwave frequency range. Recently, it has
been found [9, 10, 11] that the frequency spectrum of the magnetic noise is quantized, i.e.
shows well defined maxima at certain frequencies. To control the noise in order to improve
the properties of such laterally confined magnetic elements one needs to study the properties of
thermally excited spin-wave modes in those systems.

q

Fig. 1: Propagating spin wave
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2 Basics of spin waves in bulk materials

In many aspects spin waves can be considered as a magnetic analogue of sound. However, as
it will be discussed in this lecture, the main difference between spin waves and sound lies in
the very different dispersion laws. Contrary to sound or light, spin waves usually have a gap in
their dispersion spectrum which depends on the applied magnetic field.
The magnetization dynamics of a ferromagnet is described by the Landau-Lifshitz torque equa-
tion [12]

−1

γ

d �M

dt
= �M × �Heff , (1)

where �M is the total magnetization, γ is the modulus of the gyromagnetic ratio for the electron
spin (γ/2π = 2.8 MHz/Oe), and �Heff = −δW/δ �M is the effective magnetic field calculated
as a variational derivative of the energy function W , where all the relevant interactions in the
magnetic substance have been taken into account.
We assume that due to applied external magnetic field �He = He�ez the static magnetization in
the elements is uniform �Mstat = MS�ez = const everywhere, except the narrow regions close to
the edges of the elements (edge domains). The total magnetization can be written as follows

�M(�r, t) ≈MS�ez +mx(�r, t)�ex +my(�r, t)�ey , (2)

where �m is the dynamic magnetization. We will neglect the nonlinear effects and we restrict
ourselves by the case that m�MS.
In general, two important interactions - the exchange interaction and the magnetic dipole inter-
action - determine the dispersion spectrum of a spin wave. In this case the effective magnetic
field can be expressed as

�Heff(�r, t) = �He +
2A

M2
S

∇2 �M(�r, t) + �Hdip(�r, t); , (3)

where A is the exchange constant, ∇2 is the Laplace operator, �Hdip(�r, t) is the dipole field,
which should be calculated based on the Maxwell equations. Let us emphasize that �Hdip(�r, t) in
Eq. 3 describes both the static and dynamic demagnetizing fields. The effective field �Heff(�r, t)
can be also presented as a sum of a static and a dynamic part similar to the presentation of the
magnetization Eq. 2,

�Heff(�r, t) = Hi(�r)�ez + heff,x(�r, t)�ex + heff,y(�r, t)�ey . (4)

with heff � Hi.
The dipole-exchange spin-wave dispersion spectrum in an unlimited ferromagnetic medium can
be easily calculated using the above approach. In this case Hi is uniform over the medium. The
spectrum is given by the Herrings-Kittel formula

(
ω

γ

)2

=

(
Hi +

2Aq2

MS

)(
Hi +

2Aq2

MS
+ 4πMS sin2 ϕq

)
. (5)

where q is the wavevector of the spin wave, and ϕq is the angle between the direction of the
wavevector and the magnetization. Both crystalline and surface anisotropy of the material are
neglected in this equation, which is a good approximation for NiFe (permalloy). It is important
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to note here that the spin-wave frequency depends on both the absolute value and the direction
of its wavevector.

3 Spin waves in films

In a magnetic film with a finite thickness d the spin wave spectrum is modified due to the
fact that the translational invariance of an infinite medium is broken in the vicinity of the film
surfaces. In the following we assume that the applied magnetic field is in the plane if the film
and use a Cartesian coordinate system oriented in such a way that the film normal is along
the x-axis and the magnetic field is along the z-axis. The detailed derivation of the equations
describing the spectrum of spin waves in films including both the dipole and the exchange
interaction for an arbitrary direction of the wavevector based on the approach proposed in [13]
can be found in [14]. In a long-wavelength limit (q‖d < 1) an approximate expression for the
spin wave frequencies of a film can be written in the form, analogous to Eq. 5

ωp = 2πνp = γ

[(
H +

2A

MS
q2

)(
H +

2A

MS
q2 + 4πMS · Fpp(q‖d)

)]1/2

, (6)

where

q2 = q2
x + q2

y + q2
z =

(pπ
d

)2

+ q2
y + q2

z =
(pπ
d

)2

+ q2
‖ (7)

Here q‖ is the continuously varying in-plane wavevector, Fpp(q‖, d) is the matrix element of the
magnetic dipole interaction, and p = 0,1,2,... is a quantization number. Equation 7 is obtained
under boundary conditions of ”unpinned” spins on the film surfaces for the dynamic part �m of
the magnetization:

∣∣∣∣∂ �m∂x
∣∣∣∣
x=±d/2

= 0. (8)

For a general description of the spin wave modes one can use a more complicated boundary
condition instead of the above one [15]:

±∂ �m
∂x

+D�m|x=±d/2 = 0. (9)

with the so-called pinning parameter D determined by the effective surface anisotropy, kS , and
the exchange stiffness constant A: D = kS/A. However, Eq. 8 is applicable if the material of
the film does not posses a large surface anisotropy.
To analyze the dispersion Eq. 6 let us divide the spin-wave modes into two groups:
(i) modes corresponding to p = 1,2,... which are called the perpendicular standing spin waves
(PSSW). The have a strongly non-uniform distribution of �m along the film thickness, since even
for p = 1 qx = π/d � q‖ for most reasonable film thicknesses. The frequencies of PSSW are
determined by the isotropic exchange interaction and the external magnetic field and can be
obtained from Eq. 6 by substituting Fpp(q‖d) = 1. Note here that the frequencies of the PSSW
modes does not depend on the orientation of q‖.
(ii) p = 0 modes with quasi-uniform profile along the film thickness. For these modes the
exchange interaction can be neglected and their properties are mainly determined by the dipole
interaction. Since the dipole interaction is anisotropic, the spin-wave dispersion spectrum in a
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Fig. 2: Left: Dispersion of spin wave modes in a magnetic film for different mutual orientations
of the magnetization, �MS, and the in-plane wavevector, �q‖; Right: Distributions of dynamic
magnetization in the Damon-Eshbach-mode with two opposite �q‖ and in the PSSW-modes with
different p.

film is anisotropic as well. For two mostly used limit cases �q‖ ‖ �MS (the so-called backward
volume (BV) geometry) and �q‖ ⊥ �MS (the so-called Damon-Eshbach (DE) geopmetry) [4] one
obtains the expressions for the spin-wave frequencies:

ωBV = 2πνBV = γ

[
H

(
H − 4πM2

S ·
1− exp(−q‖d)

q‖d

)]1/2

, (10)

and

ωDE = 2πνDE = γ · [H · (H + 4πMS) + (2πMS)
2 · (1− e−2q‖d

)]1/2
. (11)

Left panel of Fig. 2 illustrates the spin wave dsipersion for different orientations between the
in-plane wavevector, �q, and the magnetization, �MS. Two different geometries are illustrated. If
�q and �MS are both in the film plane, and if �q is perpendicular to �MS, the Damon-Eshbach mode
exists. If �q and �MS are collinear in the film plane, a BV-mode with negative dispersion. The
group velocity of the BV-mode is antiparallel to its wavevector.

The distributions of the dynamic magnetization for different modes are illustrated by the right
panel of Fig. 2. In the unpinned PSSW-modes the cos-type distribution is determined by qx =
pπ/d. More interesting is the distribution for the Damon-Eshbach-mode. Although p = 0 for
this mode, the distribution is non-uniform and assymteric: this mode has a larger amplitude at
one surface that at another. Therefore it is called the surface mode. As shown in Figure, the
assymetry inverses if �q‖ inverses. The assymetry is unimportant if q‖d � 1. For thin magnetic
films with the thickness of about 10 nm this is usually the case.
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4 Brillouin light scattering technique: a tool for investigation
of spin waves

After getting a basic information about spin waves in magnetic films let us consider Brillouin
light scattering (BLS) spectroscopy which is widely used for spin-wave studies since decades.
Together with time-resolved Kerr-microscopy and x-ray microscopy BLS recently became one
of the most powerful techniques for experimental investigations of inhomogeneous magnetiza-
tion dynamics in confined systems. BLS has a number of advantages over other techniques. It
provides a possibility to investigate spin waves with different absolute values and orientations
of their wave vectors in a very broad frequency range from 2 GHz to 500 GHz. Moreover, an
important advantage of BLS is that its sensitivity allows for detection of thermally excited spin
waves, i.e. there is no need for external excitation sources. However, up to recently, the appli-
cation of BLS for studies of spin waves in small magnetic elements was restricted by its poor
lateral resolution defined by the size of the probing laser spot, which was usually 30-40 μm in
diameter. The invention of micro-BLS (μ-BLS), where the laser beam is focused almost down
to the theoretical diffraction limit of 200-250 nm and the scattered light can be effectively col-
lected from this small area for further spectral analysis, has opened new perspectives for BLS.
Magnetic dynamics of single elements with sub-micrometer sizes is accessible now.
BLS process is illustrated by the left panel of Fig. 3. Photons of energy �ωI and momentum
��qI creates the elementary quanta of spin waves (�ω, ��q), which are magnons. The scattered
photon looses a part of its energy and changes its momentum:

��qS = �(�qI − �q)
�ωS = �(ωI − ω), (12)

The process corresponding to creation of the magnon is called the Stokes process. From Eq. 12
it is evident, that the wave vector �qI − �qS , transferred in the scattering process, is equal to the
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Fig. 3: Left: Brillouin light scattering process from spin waves (magnons). The wave vectors of
the incident and the scattered photons as well as that of the magnon are shown. If the magnon
is absorbed, the energy of the photon increases; if the magnon is radiated, the energy of the
photon is decreases; Right: Schematics of the light scattering process for infinite scattering
volume (plane spin wave) and confined spin-wave
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wave vector �q of the created magnon. A magnon can also be absorbed by the photon, which
in the scattered state has the energy �(ωI + ω) and momentum �(�qI + �q). The corresponding
process is called the anti-Stokes scattering. For room temperature (T � �ω/kB ≈ 1K) both
processes have about the same probability. In a classical treatment the scattering process can be
understood as follows: Due to magneto-optical effects a phase grating is created in the material
by a spin wave. Since the grating propagates with the phase velocity of the spin wave, light
is Bragg-reflected from the phase grating with its frequency Doppler-shifted by the spin-wave
frequency.
The conservation law Eq. 12 for wave vectors is a consequence of the translational invariance
of an infinite medium. If the translational invariance of the scattering medium is broken by con-
finement effects in one or more directions, the corresponding components of the wave vector,
�q, are not fully conserved in the light scattering process, as it is illustrated by the right panel of
Fig. 3. In this case the technique looses the resolution with respect to one or another component
of the wave vector of the scattering wave. The confinement of a spin wave itself causes uncer-
tainty of its wave vector, which breaks the conservation law Eq. 12 as well. The uncertainty
in qi is, apparently, inversely proportional to the confinement length in the i-direction ti. For
example, for the case of a film the two-dimensional in-plane wavevector is conserved only, the
confinement length in the third direction being equal to the thickness of the films, d. In the case
of a long stripe, the component of �q along the stripe axis is conserved only.
The BLS intensity from a spin wave in a magnetic film is determined by the integral:

I(q‖) ∝
∣∣∣∣
∫ ∞

−∞
m(�r)× exp(−i�q‖�r)d�r

∣∣∣∣
2

(13)

where the two-dimensional integration is performed over the entire film. Thus, the BLS inten-
sity is determined by the Fourier-component of m(�r) at �q‖.
Let us illustrate the above consideration by a BLS spectrum from spin waves in a film. Figure
4 shows a BLS spectrum of a NiFe film obtained at the direction of the transferred in-plane
wavevector perpendicular to the applied in-plane field. This arrangement corresponds to the
Damon-Eshbach geometry. One sees two peaks in both Stokes and anti-Stokes parts of the
spectrum. The low-frequency peaks (about 7 GHz) are connected with the dipole-dominated
Damon-Eshbach mode, whereas the high frequency peaks (about 17 GHz) are due to PSSW-
modes with p = 1. PSSW-modes with higher values of p are beyond the measured spectral
interval. One can see the assymetry between the peak intensities of the Damon-Eshbach mode
for the Stokes and anti-Stokes parts of the spectrum due to the surface nature of the mode. In
fact, at given experimental conditions, i.e., at fixed orientations of �qI and �qS spin waves with
opposite wavevectors participate at the Stokes (�qI − �qS) and anti-Stokes (�qS − �qI ) processes.
Since, as shown in Fig. 2 the corresponding spin waves have different amplitudes at the films
surface, where the light scattering is studied, the intensities of the Stokes and anti-Stokes peaks
are different as well.
Let us now consider a magnetic stripe with its axis aligned along the z-axis. It was shown in
[16], that by calculating the intensity of the light scattered by spin-wave modes in a stripe for
a transferred wavevector along the stripe axis (the z-axis) an one-dimensional equivalent of the
integral Eq. 13 can be used. However, for a transferred wavevector along the y-axis the BLS
intensity is connected with the profile of the dynamic magnetization, m(y) of the spin-wave
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Fig. 4: BLS spectrum of a NiFe film with a thickness of 30 nm in the Damon-Eshbach geometry
for q‖ = 0.2 · 105cm−1 and H = 600 Oe. The part of the spectrum with negative frequencies
occurs due to creation of a spin wave in the BLS process (Stokes), whereas positive frequencies
correspond to absorption of a spin wave (anti-Stokes). The exchange- and the dipole-dominated
modes are detected.

mode confined in the stripe.

I(q) ∝
∣∣∣∣∣
∫ w/2

−w/2

m(y)× exp(−iqy)dy
∣∣∣∣∣
2

(14)

where w is the stripe width. Thus, the light scattering intensity is proportional to the squared
Fourier transform of the dynamic magnetization, m(y).

Technically, to study BLS light of a single-frequency laser is focused onto the sample by an ob-
jective lens. The light scattered from the sample (elastic and inelastic contributions) is collected
and sent to a Fabry-Perot interferometer [17, 18]. In order to obtain the high contrast neces-
sary to detect the weak inelastic signals, the light passes the interferometer several times guided
by a system of retroreflectors and mirrors. The frequency selected light transmitted by the in-
terferometer is detected by a photomultiplier. Data collection is performed by a multichannel
analyzer realized using a personal computer.

A recent development of the BLS-technique is the so-called micro-BLS, allowing direct spa-
tial resolution of spin-wave modes close to 250 nm. [19]. The sample is mounted on a xyz
piezoelectric stage, which provides the sample positioning along all three dimensions. Tak-
ing into account the uncertainty in the wavevector of the scattered light caused by the spatial
confinement, the micro-BLS setup does not provide any wave vector selectivity. Instead the
contributions from all spin waves up to a certain wavevector are automatically integrated.
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5 Spin waves in magnetic double layers

Let us consider a magnetic layered system consisting of two ferromagnetic layers separated by
a nonmagnetic spacer. Interaction between two magnetic layers can be phenomenologically
described by:

W = W1 +W2 − J1 cos φ− J2 cos2 φ (15)

whereW1 andW2 describe the energies per surface unit of each layer and the last two terms cor-
respond to the magnetic coupling interface energy between the two layers. Angle φ is the angle
between the magnetizations of two magnetic layers and the parameters J1 and J2 represent the
strength of the bilinear and biquadratic coupling, respectively [20]. If J1 dominates and nega-
tive, the antiparallel orientation of two magnetization vectors is energetically favorable. If J2

dominates and is negative, it promotes perpendicular (90◦) orientation of the two magnetization
vectors. The microscopic origin of the bilinear coupling is a long-range interaction between the
magnetic moments via conduction electrons of the spacer. For smooth interfaces the strength of
the coupling oscillates as a function of the spacer thickness [21], whereas the biquadratic terms
is negligible. Below we consider the bilinear coupling only.
The interlayer coupling not only influences the magnetic ground state of the system, but together
with the dipole interaction it mixes the spin-wave modes in two magnetic layers as well. One
can imagine collective spin-wave modes of two different symmetries in such a double layer as it
is shown in Fig. 5. The dynamic magnetizations of two ferromagnetic layers in the symmetric
(acoustic) mode at the interface oscillate in phase, whereas in the anti-symmetric (optic) mode
they oscillate out-of-phase.
In contrast to intralayer bulk exchange which contributes to �Heff (cf. Eq. 3), the interlayer
exchange coupling, due to its local, interface charachter, appears only in boundary conditions
at the interface between the ferromagnetic layers.
If one assumes for simplicity that the saturation magnetizations and the intralayer exchange
constants A1 and A2 are the same and the interface anisotropy can be neglected, the bound-
ary conditions for the dynamic magnetizations of two layers at the interface can be written as

Acoustic modes Optic modes

Fig. 5: Magnetic layered system consisting of two ferromagnetic layers. Profiles of symmetric
(acoustic) and anti-symmetric (optic) spin-wave modes are illustrated.
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follows:

∂ �m1

∂x
+Dint(�m1 − �m2)|x=0 = 0.

∂ �m2

∂x
+Dint(�m2 − �m1)|x=0 = 0. (16)

where Dint = J1/A. As indicated in Fig. 5 there exist two kind of solutions fulfilling the
boundary conditions Eq. 16:
(i) the symmetric in-phase mode at which the mode profiles are continuous at the interface
(�m1− �m2)|x=0 = 0. This solution does not depend on the strength of the interlayer coupling J1

and coincides with a spin-wave mode of a single magnetic film with the thickness equal to 2d.
(ii) the antisymmetric, out-of-phase solution, where two magnitizations are oscillating out-of-
phase. This mode strongly depends on the strength of the interlayer coupling. For J1 > 0
(ferromagnetic coupling) the frequency of the out-of-phase mode increases, whereas for J1 < 0
(antiferromagnetic coupling) the frequency of the out-of-phase mode decreases.
One should also mentioned that even for J1 = 0 the frequencies of the symmetric and anti-
symmetric modes are different. The reason of that is the difference in the dynamic dipole field.
This field is weaker for the out-of-phase mode, since the out-of-phase dynamic magnetizations
of two layers effectively compensate the dipole fields of each other.
One can conclude from Eq. 16 that the interlayer coupling causes pinning at the interface. For
strong coupling this pinning becomes essential. For J1 	 A/a, where a is the lattice constant,

Fig. 6: BLS spectra of Fe/Cr/Fe layered system with different thickness of the Cr spacer as
indicated. The arrows point out the and anti-symmetric (optic) spin-wave modes, which are
sensititve to the interlayer coupling. The dash lines mark the position of the mode for vanishing
interlayer coupling (adapted from [6]).
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the profile of the out-phase-mode is close to the profile of the exchange PSSW mode of the
single layer with the doubled thickness.
The dependence of the out-of-phase mode on the interlayer coupling provides an elegant way
to investigate the interlayer coupling by studying spin waves. In real layered magnetic systems
a large direct ferromagnetic-type interlayer coupling for a relatively thin non-magnetic spacer
is often observed. This occurs due to magnetic ’bridges’ in the spacer, i.e. direct contacts be-
tween two magnetic films. Recent achievements in growth methods make it possible to avoid
’bridges’ in the best samples for spacer thicknesses more than 0.2-0.4 nm. Therefore, the inter-
layer exchange coupling observed for thicker spacers is thought to be connected with an indirect
coupling between two ferromagnetic layers transferred by the carriers of the non-magnetic spac-
ers. The antiferromagnetic type of coupling across a non-magnetic spacer (which is obviously
not connected with ’bridges’) was discovered by means of BLS in the Fe/Cr/Fe system [6]. BLS
spectra for Fe/Cr/Fe samples with different thicknesses of the spacer are shown in Fig. 6.
As expected, two spin-wave modes were detected by means of light scattering. The first one
is the in-phase mode. Its frequency is independent of the spacer thickness. The second mode
corresponds to the out-of-phase precession of magnetic moments in two Fe films and its fre-
quency is sensitive to the interlayer exchange coupling. The dash lines mark the position of the
mode for vanishing interlayer coupling. A clear frequency downshift of the second mode is pro-
nounced for dCr = 0.8-1.2 nm. The fact that this mode is observed at a frequency which is lower
than the value corresponding to zero interlayer coupling can only be interpreted as indicating
that the interlayer exchange coupling has become antiferromagnetic.

6 Spin waves in magnetic stripes

The problem of the calculation of a spin wave spectrum for an axially magnetized infinite ferro-
magnetic stripe with a rectangular cross-section has not been solved analytically yet. However,
in the particular case of a thin stripe with d � w, where d is the thickness of the stripe and w
is its width, the spectrum of long-wavelength magnetic excitations can be calculated approx-
imately using the theory of dipole-exchange spin waves in a magnetic film [13], mentioned
above.
Let us consider a magnetic stripe magnetized in plane along the z-direction and having a finite
width w along the y-direction as shown in Fig. 7. A boundary condition similar to Eq. 9 at the
lateral edges of the stripe should be imposed:

x

y
z

MS
w

l

Fig. 7: Used coordinate system for the longitudinally magnetized stripes. Note that the z-axis
is parallel to the direction of the static magnetization �MS. The lateral dimensions of the stripe
w � l are indicated as well.
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∣∣∣∣∂ �m∂y +Ddip �m

∣∣∣∣
y=±w/2

= 0. (17)

Note here, that contrary to the boundary conditions on the film surfaces Eq. 9 the inhomoge-
neous dynamic dipole field mainly contributes to the pinning coefficient Ddip at the stripe edges
[22], which depends on the aspect ratio w/d

Ddip =
2πw/d

1 + 2 ln (w/d)
(18)

For w � d this pinning is rather strong.
An additional quantization of the y-component of �q‖ is then obtained:

qy,n =
nπ

w
, (19)

where n = 1, 2, ... . Using Eqs. 6, 11, and the quantization expression Eq. 19 one can calculate
the frequencies of these so-called width- (or laterally quantized) modes. The profile of the
dynamic part of the magnetization �m in the n-th mode can be written as follows:

�mn(y) = �an · sin
(
qy,n

(
y +

w

2

))
, −w

2
< y <

w

2
. (20)

-10� 0� 10�

0�

1000�

2000�

3000�

PSSW�

region of interest�region of interest�

PSSW�

 �

 �

In
te

n
s
it
y
 (

a
.u

.)
�

Frequency Shift (GHz)�

Fig. 8: Experimental BLS spectrum obtained from the stripe array with a stripe thickness of
40 nm, a stripe width of 1.8 μm. The applied field is 500 Oe orientated along the stripe axis.
The transferred wavevector of q‖ = 0.3 · 105 cm−1 is oriented perpendicular to the stripes. The
discrete spin-wave modes are indicated by arrows. In the ”region of interest” (5-17 GHz) the
scanning speed was reduced by a factor of three increasing the number of recorded photons by
the same factor.



Spin waves D2.13

Equation 20 describes a standing mode consisting of two counterpropagating waves with quan-
tized wavevenumbers, qy,n. Note here, that due to the truncation of the sin-function at the stripe
boundaries the modes are no more infinite plane waves and the quantized values qy,n are not
true wavevectors.
Mathieu et al. [23] and Jorzick et al. [16] investigated spin wave excitations by BLS in arrays of
FeNi stripes and observed the above quantization of the spin wave mode. This quantization is
caused by a confinement effect of the spin waves in each stripe. It was not seen in the geometry
when the wavevector of the detected mode was parallel to the stripes.
The samples were made of 20-40 nm thick Ni81Fe19 films deposited in UHV onto a Si(111)
substrate by means of e-beam evaporation. Several types of periodic arrays of stripes with
stripe widths 1-1.8 μm were prepared. The length L of the stripes was 500 μm. The patterned
area was 500× 500 μm.
In a BLS experiment with backscattering geometry the in-plane wavevector �q‖ = (�qS − �qI)‖,
transferred in the light scattering process, was oriented perpendicular to the stripes, and its
value was varied by changing the angle of light incidence, θ, measured from the surface normal:
q‖ = (4π/λLaser) · sin θ. It is important to mention here again, that, strictly speaking, due to
spin wave confinement in a stripe the transferred wavevector �q‖ cannot be considered as the
wavevector of the spin wave mode taking part in the scattering process and, thus, tested in the
experiment. Because of the confinement the spin wave mode does not possess a well-defined
wavevector.
Figure 8 shows a typical BLS spectrum obtained in the stripe array. The spectrum contains four
distinct modes near 7.8, 9.3, 10.4, and 14.0 GHz, the latter being the PPSW mode, correspond-
ing to p = 1. Note here, that in the region of interest (5-17 GHz) the scanning speed of the
interferometer was reduced by a factor of three to increase the accumulation time in this region
and, thus, to improve the signal-to-noise ratio.
Figure 9 shows BLS spectra obtained for an array of 1 μm wide and 35 nm thick permalloy
stripes in a longitudinal magnetic field of 500 Oe for different transversal components of the

Fig. 9: BLS spectra of longitudinally magnetized 1 μm wide and 35 nm thick stripes for differ-
ent transferred wavevectors in an external field of 500 Oe. The transversal component of the
wavevector q‖ is given in units of 105cm−1. The vertical solid line indicates the nearly con-
stant frequency of the PSSW mode, the vertical dotted lines indicate the fixed frequencies of the
quantized spin-wave modes.
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Fig. 10: Left: Frequencies of the spin waves in longitudinally magnetized 1 μm wide and
35 nm thick stripes in an external field of 500 Oe. The squares correspond to the quantized
Damon-Eshbach modes, the circles to PSSW. The horizontal solid lines are the frequencies
of quantized spin-wave modes calculated using Eq. 19. Right: Measured BLS-intensities for
different quantized modes (black squares) as a function of the transferred wavevector q‖ and the
mode quantization number m for 1 μm wide stripes magnetized by the static magnetic field of
100 Oe in comparison to the results of calculations based on Eq. 14(gray colored curves).

wavevector as indicated. One can see from the figure that the PSSW mode (note a growth of
the PSSW-frequency with respect to that shown in Fig. 8 due to smaller thickness of the stripe)
is observed for the entire investigated range of q‖.
Having a more close look into the low-frequency part of the spectra one can conclude that con-
trary to a continuous film (cf. Fig. 2) the frequencies of the observed peaks are not varying
continuously when the wavevector transferred in the BLS-process is growing. Instead the fre-
quencies are quantized, i.e., the modes behave like discrete standing wave resonances. Every
discrete mode is observed over a continuous range of the transferred wavevector q‖. The lowest
mode has a maximum of its intensity close to q‖ = 0, the higher modes reach their maximam at
higher values of q‖.
The above conclusions are corroborated by Fig. 10 (left panel), where the measured frequencies
of the quantized modes together with that of the PSSW mode are shown as a function of the
wavevector . Horizontal solid lines represent the calculated frequencies of the Damon-Eshbach
modes quantized due to the confinement caused by the finite width of the stripe. The quantiza-
tion conditions Eq. 19 were used for the calculation. The dashed line shows the dispersion for
spin waves in an unpatterned permalloy film calculated using Eq. 11.
The theory predicts not only the frequencies of the quantized modes, but their profiles as well.
The comparison between the experimentally measured BLS intensities and the results of the
calculation based on Eqs. 20 and 14 is presented on the right panel of Fig. 10. Shown are
the BLS intensities from different quantized modes normalized to the intensity of the PSSW
mode. Squares in the figure correspond to the experimentally measured intensities. The gray
curves represent the calculated intensities using Eq. 14. The only used fitting parameter is the
scaling factor along the intensity axis which is the same for all modes. The mode profiles have
been calculated taking into account the dipolar pinning. The very good agreement between the
experimental data and the results of the calculation confirms that the observed spin-wave modes
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Fig. 11: BLS intensity as a function of the transferred wavevector for the mode m = 4. The
squares indicate the experimental data while the lines correspond to the Fourier transforms of
three different mode profiles: totally unpinned (full line), totally pinned (dotted line), effectively
pinned (dashed line).

are in fact quantized Damon-Eshbach modes and justifies the used boundary conditions Eq. 17.
Figure 11 addresses the BLS intensity for a given mode (m = 4) in more detail. Shown are the

Fig. 12: Spin-wave frequency of longitudinally magnetized 1.8 μm wide and 40 nm thick stripes
as a function of the applied field. The transferred wavevector is q = 0.3× 105 cm−1.
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calculated intensities corresponding to three pinning conditions: free spins (D = 0), effective
dipole pinning from Eq. 18, and complete pinning (D =∞). It is evident from Fig. 11, that the
unpinned boundary condition does not describe the experimental data. However, it is impossible
to distinguish experimentally between the effective dipolar pinning and the complete pinning.
This is due to a large aspect ratio of the stipe w/d� 1 causing a strong pinning.
The field dependence of the frequencies of the quantized spin-wave modes is shown in Fig. 12.
The solid lines shown in the figure are calculated based on the above described approach. The
figure is another demonstration of a nice agreement between the theory and the experiment.

7 Conclusions

We have considered spin waves, which are dynamic eigen-excitations of a magnetic media,
for ferromagnets of different geometries. Their properties are determined by the two main
interactions: the exchange and the magnetic dipole interaction. Independently of the geometry
of the medium, the main difference of a spin wave with respect to light or sound is its dispersion
spectrum with a gap at the zero wavevector. The gap is mainly determined by the applied
magnetic field. Due to the anisotropic nature of the dipole interaction the dispersion of spin
waves is anistropic as well. For unrestricted bulk ferromagnets spin waves represent plane
waves with well defined wavevectors.
Reducing the dimensionality of the problem, one inevitably modifies the spin waves. In the case
of a film spin-wave quantization due to finite thickness of the films occurs. The corresponding
perpendicular standing spin-wave modes posses a strongly non-uniform mode profile along
the film thickness. In addition, for the wavevectors which are parallel to the applied in-plane
magnetic field spin-wave modes with a negative dispersion exists. Moreover, a new surface-
localized Damon-Eshbach spin-wave mode appears. This mode has larger amplitude of the
dynamic magnetization at one surface that at another. Considering two films separated by a
thing non-magnetic spacer, one obtains hybridized two types spin-wave modes, mixing the
dynamic magnetizations of the two films.
Considering quasi-one-dimensional stripes, one find, that lateral quantization due to finite width
of the stripe further modifies the spin-wave properties. Laterally quantized spin-wave modes
appear.
The above results were experimentally confirmed by means of the Brillouin light scattering
spectroscopy, which is a powerful tool for investigation of spin-wave dynamics in different
geometries.
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1 Introduction

Magnetization dynamics and magnetization reversal as one particular dynamic process have be-
come fundamental issues of the physics of magnetic (nano)particles. The research field is driven
by the needs of current and perspective technologies in magnetic data storage and spintronics.
The magnetic random-access memory (MRAM) and patterned, ultra-high-density perpendic-
ular recording media are examples, where small magnetic elements have to be magnetically
switched. Furthermore, most envisaged spintronic devices, e.g. the spin transistor, rely on spin-
polarized currents generated or analyzed by ferromagnetic electrodes. Control of these current
polarizer and analyzer elements involves manipulating their magnetization directions by means
of external stimuli.
In the conventional approach, magnetization dynamics, which may eventually trigger a mag-
netization reversal, is induced by applying an external magnetic field. As the structures get
smaller and smaller it becomes increasingly more difficult to focus an external magnetic field
to a single nanoobject because magnetic fields are of dipolar nature and, thus, long ranged.
Furthermore, the required currents to generate these fields increase and the process becomes
inefficient. Therefore, one would prefer a excitation scheme based on an electric current or
voltage, which can be applied very locally by means of lithographically defined electrodes.
Any new concept to manipulate magnetization has to fulfill certain criteria in order to be relevant
for applications. The ever increasing clock frequencies in devices for information technology
require cycle times below 1 ns. Thus, we deal here with a timescale of roughly 100 ps. Ultra-fast
magnetization dynamics on even faster timescales down to the fs-regime, which come into play
when the electronic and hence the magnetic system is highly excited and driven away from the
equilibrium by ultra-short high-power laser pulses, is currently the subject of intense research
and is discussed in Theo Rasing’s lecture “Optically induced spin dynamics”. As a further
requirement, the switching processes should dissipate as little energy as possible in order to
reduce the heat load on the devices and the power consumption of (battery-powered) equip-
ment. Additionally, a clear potential for down-scaling and compatibility with semiconductor
technology are also criteria for competitiveness.
All these requirements –speed, low energy dissipation, local addressing, scalability and inte-
grability into semiconductor technology– demand for new and advanced concepts to induce
magnetization dynamics, in particular magnetization switching.

Mfixed

Mfree

 low R  high R
-

+

+

-

(a) GMR (b) Current-induced magnetization switching

Mfixed

Mfree

Fig. 1: Phenomenology of (a) GMR and (b) current-induced magnetization switching. (a) The
electric resistance of a trilayer structure consisting of two ferromagnets separated by a non-
magnetic, metallic interlayer depends on the alignment of the layer magnetizations. (b) The
stable alignment of the magnetizations depends on the polarity, i.e. the direction, of the current
flowing perpendicularly through the trilayer.
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The giant magnetoresistance effect (GMR), which is introduced in the lecture “Magnetoresis-
tance in layered structures” of Peter Grünberg, describes the phenomenon that the alignment of
the layer magnetizations in a trilayer controls the electric resistance, i.e. the current flow [Fig.
1(a)]. According to Newton’s third law “actio equals reactio” there should also exist an inverted
effect, for which the current flow controls the magnetization alignment [Fig. 1(b)]. Such an ef-
fect is of outmost interest as it represents a novel, alternative concept to induce magnetization
switching or more generally magnetization dynamics, in particular in nano-scale magnets.
As we will see below, the current-induced magnetization switching as sketched in Fig. 1(b) can
be traced back to the transfer of spin momentum from one magnetic layer to the other, which is
carried by the current. The transferred momentum acts as a torque on the local magnetization
and may excite a dynamic response of the magnetization. Therefore, we talk about “Spin-
transfer torque dynamics”. It turns out that the dynamics that can be excited reaches far beyond
simple switching events. Steady-state periodic motions of the magnetization with a large dy-
namic component | �Mdynamic(t)| comparable to or larger than the static component | �Mstatic| can
be excited. For instance, precessional-type motions with opening angles exceeding 90◦ or even
180◦ can appear, which are inaccessible by field excitation. Therefore, spin-transfer torques
enable novel, highly non-linear magnetization dynamics, which is of interest from a funda-
mental scientific point of view as well as in the context of applications as spin-transfer-torque
microwave oscillators and spin-wave emitters. A comprehensible review article on spin-transfer
torques and dynamics by Stiles and Miltat can be found in Ref. [1].

2 Spin-transfer torque (STT)

In 1996 Slonczewski [2] and Berger [3] predicted that a spin-polarized current propagating into
a ferromagnetic layer exerts a torque on the magnetization of the layer, due to the exchange
interaction between the electrons and the local magnetic moments. In layered metallic systems
with alternating magnetic and non-magnetic layers, a current flowing perpendicular to the plane
of the layers (CPP-geometry) is polarized by one ferromagnetic layer and transfers spin angular
momentum to another ferromagnetic layer, where the transferred momentum acts as a torque on
the magnetization, the so called spin-transfer torque. For this torque to be sufficient to perturb
the magnetization from equilibrium, large current densities (> 107 A/cm2) are required.

2.1 Phenomenology

If two stable equilibria for the magnetization exist (e.g. due to an uniaxial anisotropy), the spin-
transfer torques due to currents of opposite polarity can reversibly switch the magnetization
from one equilibrium position to the other. This process is called current-induced magnetization
switching and does not require an external magnetic field to induce switching.
The phenomenology of current-induced magnetization switching is shown in Fig. 1(b). We
consider two ferromagnetic layers separated by a non-ferromagnetic spacer with a thickness
below its spin diffusion length. The ferromagnetic layers are different in such a way (e.g.
thickness or coercive field), that one of them can be remagnetized more easily than the other.
We distinguish the two layers in the following by calling them “free” and “fixed” and draw
them as a thinner and ticker layer, respectively. When electrons flow1 from the fixed to the free

1Whenever I refer in this lecture to the direction of a current, I mean the direction of the electron flux rather
than the (opposite) technical current direction.
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layer, the magnetization of the free layer aligns parallel to the magnetization of the fixed layer
and this alignment is stabilized [Fig. 1(b) left side]. When the current direction is reversed,
however, the antiparallel alignment is more stable and is therefore taken [Fig. 1(b) right side] as
will be explained in Sect. 2.2. Thus, a magnetization reversal can be induced by reversing the
polarity of the DC current flowing through the layers.

An experimental arrangement for the observation of current-induced switching is displayed in
Fig. 2(a) taken from one of the pioneering experimental papers in this field by the Cornell group
[4]. The sample is a nanopillar consisting of a thin, free Co layer (Co 1) with a thickness of
2.5 nm and a thick, fixed Co layer (Co 2) of 10 nm thickness. The Cu spacer in between is 6 nm
thick and, thus, thinner than the spin diffusion length of Cu (about 100 nm). The lateral diameter
of the pillar is 130 nm. A current can be applied between leads I− and I+, and the voltage drop
is measured at V − and V +. The lateral restriction is required to obtain the necessary high current
density (of the order of 107–108 A/cm2 corresponding to 1–10 mA in a 100 nm-diameter pillar)
to establish a steady (constant current) non-equilibrium situation. The relative orientation of the
Co layers can be measured via the GMR effect of the Co 1/Cu/Co 2 trilayer system. Figure 2(b)
displays the differential resistance (dV/dI) as a function of the applied current. At negative
bias electrons flow from the fixed (thick) to the free (thin) Co layer and stabilize the parallel
magnetization alignment which yields a low dV/dI [green curve in Fig. 2(b)]. At positive bias
the parallel alignment is destabilized, Co 1 switches to the antiparallel alignment at a sufficiently
large current, and dV/dI increases [red curve in Fig. 2(b)]. Upon reducing the current [thick
black line in Fig. 2(b)] hysteretic behavior is observed such that Co 1 switches back to parallel
at a negative current. An external magnetic field is applied to define and fix the magnetization
direction of the Co 2 layer. Note, that the curve shows hysteretic behavior with two different
stable states at zero applied current. Therefore, positive and negative current pulses allow to
switch between states at zero current with parallel and antiparallel magnetization alignments.
This mechanism constitutes the basis for an advanced switching mechanism, that fulfills all the
requirements discussed above.
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Fig. 2: (a) Schematic pillar device with two Co layers (Co 1 and Co 2) separated by a 6 nm
thick Cu layer. The pillar diameter is 130 nm. (b) The dV/dI measurement as a function of the
current through the column device yields the relative alignment of the magnetic layers via the
GMR effect. After [4].
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2.2 Physical picture:
Absorption of the transverse spin current component

In view of the high current densities, one might suppose that the Oersted field generated by
the current is responsible for the switching behavior. However, the Oersted field has the wrong
symmetry. Its circular field lines lie in the plane of the sample and favor in the steady state
(i.e. state formed a long time after switching on the current) a vortex-like magnetization state
with the direction of rotation depending on the current polarity. These vortex states would
appear symmetrically for both current directions in clear contrast to the experimentally observed
behavior [see for instance Fig. 2(b)]. Furthermore, the strongest Oersted field occurs at the
pillar circumference and scales like I/d, where I is the current and d the pillar diameter. The
spin-transfer torque, on the other hand, scales like the current density I/d2. Therefore, the spin-
transfer torque effect becomes stronger below a certain structure size dc. Theoretical estimates
and available experiments suggest a dc of the order of 100 nm. This fundamental size restriction
fortunately coincides with the possibilities of e-beam lithography (see Sect. 5.1) and at the same
time yields the needed current densities at technically convenient current amplitudes [10 mA
flowing through an area of (100 nm)2 correspond to 108 A/cm2]. In practice one always has to
be aware of the presence of the Oersted field and has to take into account its possible influence.

In order to develop a physical picture for the spin-transfer torque effects, we start by consider-
ing the fate of a polarized current that enters a ferromagnet from a metallic non-magnet. The
situation is sketched in Fig. 3(a). We assume, that the incident current is polarized along an axis
tilted by the angle θ with respect to the magnetization �M of the ferromagnet. For simplicity we
assume a polarization axis in the drawing plane. In experiments, due to the shape anisotropy,
the polarization axis is usually in the plane of the layers. The general arguments given below
are valid for both cases. The (normalized) spinor Ψin of an incident, accordingly polarized
electron can be written as a superposition of spin-up and spin-down components with respect

electron flux
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Fig. 3: Two effects contributing to the absorption of the transversal spin current component
in the interface region (dashed box) between a non-magnet and a ferromagnet. (a) Spin filter-
ing: The incoming Ψin, transmitted Ψtrans, and reflected Ψref wave functions (spinors) for the
idealized case of perfect spin filtering are indicated. The absorbed transversal spin current is
proportional to sin(θ) and acts as a torque on the interface magnetization. (b) Spatial preces-
sion of the spin in the ferromagnet: The phase ξ is constant in the non-magnet, but increases in
the ferromagnet with distance x from the interface.
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to the quantization axis defined by �M . The amplitudes are cos(θ/2) and sin(θ/2), respectively,
and correspond to a transverse component of the spin vector given by sin(θ). At the interface to
the ferromagnet the potential experienced by the electron changes and becomes spin-dependent.
Inside the ferromagnet this gives rise to the spin-split density of states. At the interface it leads
to spin-dependent transmission and reflection. Therefore, the transmitted and reflected spinors,
Ψtrans and Ψref , are modified superpositions of spin-up and spin-down components compared
to the incident spinor. This leads unavoidably to different transverse spin components and,
thus, to a discontinuity in the transverse spin current. The ”missing” transverse spin current
is absorbed by the interface and acts as a current-induced torque on the magnetization. This
effect occurs for each electron individually and is called spin filtering [2]. Figure 3(a) shows
the spinors in the extreme case of perfect spin filtering. This means that only one spin orien-
tation (here spin-up) can propagate in the ferromagnet, whereas the other cannot and therefore
is completely reflected at the interface. For realistic ferromagnets like the 3d transition metals
(i.e. Fe and Co) and their alloys, roughly 50% of the transversal component is absorbed, and
the transmitted as well as reflected spinors still carry transversal components [5].
The actual current polarization of the transmitted and reflected currents is obtained by summing
over all electronic states contributing to the transport. This introduces two additional effects.
The first one arises because the reflection and transmission amplitudes at the interface may
be complex. This means that the spin of an incoming electron rotates upon reflection and
transmission. The angle of rotation is in general different for each state under consideration, as
it depends on the k vector of the incoming electron. The cancellation, which occurs when we
sum over all the resulting different spin vectors, reduces the net outgoing transverse spin current.
This is an entirely quantum mechanical phenomenon, for which there is no classical analog. A
second effect arises because spin-up and spin-down components of an electron have the same
wave vector k↑↓ in the non-magnet, but different wave vectors when they are transmitted into
the ferromagnet, Δk = k↓ − k↑ �= 0. This is a consequence of the spin-split density of states.
The two components are coherent, and a spatial phase ξ(x) = ξ0 + Δkx builds up [Fig. 3(b)].
This corresponds to a precession of the spin vector in space rather than time. The precession
frequency is different for electrons from different portions of the Fermi surface due to different
Δk. Therefore, when we sum over all conduction electrons, almost complete cancellation of
the transverse spin occurs after propagation into the ferromagnet by a few lattice constants.
Taking all three effects –(i) spin filtering, (ii) rotation of the reflected and transmitted spin, and
(iii) spatial precession of the spin in the ferromagnet– together, to a good approximation, the
transverse component of the transmitted and reflected spin currents are zero for most systems
of interest (the completeness of the cancellations depends on the actual band structures). Thus,
the incoming transverse spin current is absorbed by the interface and acts as a current-induced
torque on the magnetization. A comprehensive theoretical treatment of these effects is given in
Ref. [5].
Up to now we have assumed that the incident current is polarized. In the experiment this can be
achieved by a second ferromagnetic layer with a slightly tilted magnetization (angle θ). This is
possible when the two magnetic layers are separated by a non-magnetic spacer layer as shown
in Fig. 4. The spin polarization process in this layer proceeds by the same mechanisms as
described above. However, the polarization is not modified at the interface to the non-magnetic
spacer layer because its density of states is not spin-split. The only requirement is that the
spacer layer thickness is below its spin diffusion length to prevent significant depolarization by
spin-flip scattering. Additionally, we reduce in Fig. 4 the extended ferromagnet of Fig. 3(a) to
a thin film element and arrive at a situation very similar to the experimental setup of Fig. 2(a).
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Fig. 4: Physical picture of the current-induced magnetization switching. Orange regions rep-
resent the two ferromagnetic layers. Due to the assumed asymmetry �Mfixed does not respond to
the torque (short gray arrows) acting on it, whereas �Mfree can follow the torque (short green
and red arrows). The numbers in the spins refer to the sequence of the description. (a) and (b)
show the situation for opposite electron flux directions, which result in stable parallel or stable
antiparallel alignment, respectively.

In Fig. 4(a) the electrons flow from the fixed to the free layer. A current polarized by the fixed
layer (1) hits the free layer and transfers its transversal component as a torque to the free layer.
Part of the current is transmitted (2) and another part is reflected (3). This reflected current can
now be considered as a polarized current impinging on the fixed layer. Again, the transversal
component will be absorbed and acts as a torque on the fixed layer. However, due to the assumed
large coercivity of the fixed layer, the torque will not be sufficient to induce a coherent rotation
of the magnetization. It will rather generate incoherent spin waves to dissipate the energy
and angular momentum associated with the exerted torque. Therefore, the fixed magnetization
resists to the torque, and only �Mfree starts to rotate due to its lower coercivity in order to reach
the stable parallel alignment with �Mfixed. For the opposite direction of the electron flux in Fig.
4(b), we obtain a similar situation but the resulting torques point in the opposite directions.
Therefore, the stable state corresponds to the antiparallel alignment of �Mfree and �Mfixed. Note,
that in this case the torque on �Mfree arises from the current which first has been reflected (3) from
the fixed layer. Obviously, the asymmetry (fixed↔ free) plays an important role, which is very
reasonable because ”left” and ”right” flowing current cannot be distinguished in the symmetric
case.

2.3 Role of diffusive transport

The consideration given in the previous section is valid independent of what gives rise to the
spin-polarized current. Obviously the picture holds for ballistic transport and for the drift mo-
tion of electrons due to an applied bias voltage. In the presence of spin-flip scattering there is
also a diffusive contribution to the spin current. The origin is a deviation of spin density from
the equilibrium spin density, the so-called spin accumulation δm. Spin accumulation occurs
whenever a current crosses a region with unequal spin-dependent resistivities, e.g. a ferromag-
netic layer with ρ↑ < ρ↓ (Fig. 5). In this example spin-down electrons accumulate in front of
this region (left of the Co layer in Fig. 5), and spin-up electrons prevail behind it (right of the
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Fig. 5: Spin accumulation δmz (dotted, left ordinate) and current polarization Pz (solid, right
ordinate) due to a diffusive current flowing in the +x-direction through a single ferromagnetic
Co layer embedded between two semi-infinite Cu leads. After [6].

Co layer in Fig. 5). Due to spin-flip scattering for instance from magnetic impurities, the spin
accumulation exponentially decays with distance x from its source (in our case an interface
between a ferromagnet and a non-ferromagnet). The characteristic length scale is the spin-flip
scattering length λ, which is material-dependent and varies in the range from a few nanome-
ters (e.g. Ni80Fe20 alloy, also called permalloy) up to several tens of nanometers (e.g. Co) for
magnetic alloys and metals and exceeds 100 nm for non-magnetic metals (e.g. Cu). λ also de-
pends on extrinsic properties like crystallinity and purity of the material. Any gradient in the
spin accumulation gives rise to a spin current, very much in the same manner as a gradient in a
particle density induces a diffusive particle current. In general, the polarization of the diffusive
spin current is not collinear with the magnetization in a ferromagnet. Therefore, the processes
discussed in the context of Figs. 3 and 4 apply: The transversal component of the diffusive spin
current is also absorbed and acts on the magnetization like a torque [5, 7].

2.4 Experimental confirmation of physical picture

The critical current Ic (or critical current density Jc) needed for switching can be derived from
the condition that the spin-transfer torque term must exceed the Gilbert damping torque [see Eq.
(5) in Sect. 3.2]. The explicit expression for Ic depends on details of the geometry, anisotropies,
etc. and is not displayed here. In general the critical current density for switching from parallel
to antiparallel alignment J+

c is different from the critical current density J−
c needed for the

reversed switching direction.
Figure 6 displays the dependence of the critical current densities J±

c and the CPP-GMR times
area product ΔRA of Co/Cu(dCu)/Co nanopillars as a function of the spacer thickness dCu =
6 . . . 50 nm [8]. All three quantities are normalized to their value at dCu = 6 nm. Due to the
rather large spacer thicknesses one expects spin-flip scattering to play a role, at least for the
largest dCu. CPP-GMR exponentially decreases like ΔRA ∝ exp(−dCu/λ), where λ is the spin
diffusion length of Cu at RT. The fit of the CPP-GMR data (solid circles) in Fig. 6 yields λ =
190± 20 nm. Spin-flip scattering also reduces the efficiency of spin-transfer torque. Therefore,
the critical current densities should increase with the total distance the electrons travel in Cu
before they exert the switching torque on the free layer. According to Fig. 4(a) the electrons
have to traverse the Cu spacer once from the fixed to the free layer to switch to the parallel state.
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−dCu

λ
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− ∝ exp(
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Fig. 6: Normalized critical current densities J−
c (open squares), J+

c (filled squares), and mag-
netoresistance ΔRA (filled circles) of Co/Cu(dCu)/Co nanopillars as a function of dCu. Dashed
lines are fits to the exponential functions given on the right hand side. After [8].

Hence, J−
c ∝ exp(dCu/λ). For the switching to the antiparallel state, however, the electron

travel first from the free to the fixed layer, where they are reflected, and then back to the free
layer to induce the switching [Fig. 4(b)]. Hence, we expect for J+

c a factor of 2 in the exponent,
J+

c ∝ exp(2dCu/λ). The dashed lines in Fig. 6 are fits according to these expectations and yield
λ = 170 ± 40 nm for J−

c and λ = 140 ± 30 nm for J+
c . If the factor of 2 is not taken into

account, the J+
c data yields λ = 70±20 nm, which is not in agreement with the values from the

ΔRA and J−
c data. Therefore, this experiment nicely confirms the physical picture introduced

in Sect. 2.2.

3 Extended Gilbert equation

Now that we have developed a physical picture for the origin of spin-transfer torque on a
quantum-mechanical level, we address the question how this torque influences the dynamics
of the macroscopically observable magnetization. In order to do so we have to consider the
micromagnetism of the magnetic elements, on which the torque acts.

3.1 Basics of magnetization dynamics

A comprehensive introduction to magnetization dynamics is given in the lecture “Micromag-
netism” by Riccardo Hertel. This section is intended to be a brief reminder of the basic ideas
and to define the quantities and symbols to be used later on in this lecture.
The micromagnetic approach is a non-atomistic, continuum description of magnetization dy-
namics, which assumes that the amplitude of the magnetization attributed to a certain volume
of magnetic material is constant. Therefore, the magnetization dynamics of a volume element
is restricted to changes of the magnetization direction, which can be described by the Gilbert
equation of motion for a magnetic moment:

d�m

dt
= −γ �m× �Heff︸ ︷︷ ︸

∝ d �MP
dt

+α�m× d�m

dt︸ ︷︷ ︸
∝ d �MD

dt

, (1)
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Fig. 7: Motion of a magnetization vector �M in an effective field �Heff. The first term in Eq. (1)
gives rise to the tangential torque d �MP/dt driving the precession and the second term d �MD/dt
causes the damping.

where �m is the normalized magnetization vector of the considered volume element, γ is the
gyromagnetic ratio, and α is the phenomenological Gilbert damping constant. The effective
field �Heff is the negative variational derivative of the total areal energy density Etot with respect
to the magnetization �M

�Heff = − 1

μ0

δEtot

δ �M
. (2)

The total energy Etot comprises contributions from the exchange energy, anisotropy energy,
stray field energy, and the Zeeman energy due to an external field. The first term in Eq. (1)
describes the precessional motion of �m about �Heff, and the second term the damping, which
forces �m to relax to the lowest energy configuration, �m|| �Heff (Fig. 7).

Obviously, the temporal evolution of a remagnetization process is intimately related to the mag-
netization dynamics described by the Gilbert equation. Note that both terms in Eq. (1) have
their own timescales. The precession period (given by the Larmor frequency) is determined
by the effective field �Heff. The stronger �Heff, the higher the Larmor frequency. Typical fre-
quencies for magnetic materials like Fe, Co, Ni, or permalloy are of the order of several GHz
yielding precession periods τ of fractions of a nanosecond. The timescale of the damping term,
on the other hand, is governed by the phenomenological damping parameter α. Typical values
α ≈ 0.001 result in relaxation times of several nanoseconds. Therefore, relaxation usually oc-
curs over several precessional revolutions. The magnetization component along �Heff approaches
exponentially saturation magnetization MS , and components perpendicular to �Heff show an ex-
ponentially damped oscillatory behavior, the so-called magnetic ringing.

In order to describe mesoscopic magnetic objects properly, micromagnetic simulations are em-
ployed: The object to be described is geometrically subdivided into small volume elements with
a size smaller than the exchange length of the material (typically a few nm), within which the
assumption of constant magnetization is justified. The magnetization dynamics of each element
is described by the Gilbert equation. The direct exchange with neighboring volume elements
and the demagnetizing field due to all other elements are taken into account through the effec-
tive field. The resulting set of coupled equations is solved by means of finite-element computer
codes, see lecture “Micromagnetism” by Riccardo Hertel.
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3.2 STT extension of the Gilbert equation

The current-induced spin-transfer torque d �Mfree/dt acting on the free layer as introduced in
Sect. 2.2 has been calculated by Slonczewski [2] as

1

MS

d �Mfree

dt
=
d�mfree

dt
=
I

A
· g(θ) · �mfree × (�mfree × �mfixed), (3)

where I/A is the current density. g(θ) is the material dependent STT efficiency function, which
is a measure for the conversion of current into spin-transfer torque. In general it depends on the
angle θ between �Mfree and �Mfixed. The materials enter via the spin polarization P , volume and
interface resistivities and other transport properties. In particular, the spin accumulation effects
discussed in Sect. 2.3 modify the functional form of g(θ). An example will be given in Sect.
5. The double cross product is indeed proportional to sin(θ) and, thus, the absorbed transversal
component of the spin current. The linear dependence on I yields the reversed torque upon
reversing the current direction. In order to study the influence of the spin-transfer torque effect
on the magnetization dynamics the additional torque in Eq. (3) must be included into the Gilbert
equation (1)

d�m

dt
= −γ �m× �Heff︸ ︷︷ ︸

∝ d �MP
dt

+α�m× d�m

dt︸ ︷︷ ︸
∝ d �MD

dt

+
I

A
· g(θ) · �m× (�m× �mfixed︸ ︷︷ ︸

∝ d �MSTT
dt

). (4)

The subscript free is dropped for clarity. This equation can again be separated into one part of
precessional character and a second part of damping character:

1

γ

d�m

dt
= −β �m× ( �Heff +

I · g(θ)
Aγ

α�mfixed)

−β �m×
[
�m× (α �Heff − I · g(θ)

Aγ
�mfixed)

]
, (5)

with β =
1

1 + α2
.

The damping constant is usually much smaller than unity, α� 1, and, thus, β ≈ 1. Due to the
smallness of α the impact of the STT on the precessional term, i.e. the precession frequency,

dMdMD

M

Heff

dMdMP

dMdMSTTSTT for gI > 0 for gI > 0 dMdMSTTSTT for gI < 0 for gI < 0

Fig. 8: The spin-transfer torque d �MSTT/dt can point along the Gilbert damping d �MD/dt or
opposite to it. In the latter case it can destabilize �M and induce switching or microwave oscil-
lations, see Sect. 4.
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in the first term of Eq. (5) is only weak. However, the STT also appears in the damping term,
where it “competes” with α �Heff . Depending on the sign of I the damping due to the STT can
be negative or positive, see Fig. 8. The latter case is more interesting, because the conventional
damping torque d �MD/dt may be compensated by the STT term d �MSTT/dt, and the precession
amplitude is amplified, which leads to a destabilization of �Mfree, i.e. switching or steady-state
oscillatory modes.

4 Current-driven magnetization dynamics

The extended Gilbert equation (5) allows for a more detailed analysis of the impact of the STT
on the magnetization dynamics. It turns out that the current-induced magnetization dynamics
is very rich and in some respects exceeds the limits of the dynamics that can be stimulated by
magnetic fields alone.

4.1 Steady-state oscillatory modes

In the phenomenological description of current-induced magnetization switching, e.g. in the
context of Fig. 1, we have considered the STT and damping terms of the Gilbert equation, but
neglected the precessional term. A more complete analysis taking all terms into account shows
that the switching process after applying a DC current of the correct polarity starts with the exci-
tation of a precessional motion about the initial state [for an example see Fig. 22(a) below]. The
cone angle of the trajectory increases steadily under the action of the STT, which opposes the
restoring Gilbert torque. When the magnetization reaches the position, where a potential max-
imum separates the initial and the final states, switching occurs and the magnetization relaxes
towards the final state, now on a precessional trajectory with decreasing cone angle. The details
of the transition from excitation to damping (increasing to decreasing cone angle) depend on
the energy landscape Etot( �M) and the functional form of g(θ) in Eq. (5).
Up to now we have assumed that the external field is lower than the coercive field of the free
layer. Therefore, the presence of (uniaxial) shape or magnetocrystalline anisotropy gives rise
to at least two stable states, and the current-induced torque can cause switching between these
states. If the external field exceeds the coercivity, the energy landscape Etot( �M) is modified in

free layer

fixed layer

external field H>H
c

DC current

Fig. 9: A DC current excites a steady-state oscillatory motion, if the external field exceeds the
coercive field Hc of the free layer.



Spin-Transfer Torque Dynamics D3.13

Sample   Bias-T
21 dB 

Amplifier

Voltmeter or
Lock-In

DC current
source

DC

DC   HF HF

Spectrum
analyzer 

Fig. 10: Experimental setup for the measurement of microwave signals generated by the spin-
transfer torque in the nanopillar shown on the left side. The bias-T separates the applied DC
current and the HF output signal. The voltmeter or lock-in amplifier allow for a simultaneous
measurement of (differential) DC resistance changes in four-point geometry.

such a way that only one stable magnetization state exists, namely parallel to the external field.
In this situation, switching is not possible for either current polarity. For one polarity the system
is not excited at all, whereas for the other polarity it enters a steady-state oscillatory motion,
which is characterized by an equilibrium between the Gilbert damping torque and the STT due
to the applied current (Fig. 9). This is a very interesting case because the magnetization of the
free layer can be driven into new types of oscillatory dynamic modes, which are not attainable
with magnetic fields alone. An example are the large-angle precessional modes with excitation
angles as large as 180◦. Any oscillatory motion of the free layer with respect to the fixed layer
results, due to the GMR effect, in a variation of the resistance. Therefore, the DC current that

(a) (b)

Fig. 11: (a) Differential resistance versus current for different fields. The hysteresis still visible
in the black and red curves vanishes for external fields exceeding the coercivity and peaks
appear instead, e.g. purple curve. (b) Microwave spectra measured at 2 kOe [gray curve in (a)]
at different current amplitudes as marked by colored dots in (a). After [9].
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gives rise to the STT effect generates a time-varying voltage with typical frequencies in the GHz
range. Figure 10 shows a measurement setup that allows direct electrical measurements of the
microwave-frequency dynamics. The microwave voltage signal generated due to an oscillatory
excitation and the GMR inside the nanopillar is separated from the DC current using a bias-T,
amplified, and fed into a spectrum analyzer for GHz frequencies. Figure 11(a) shows resistance
versus current plots, similar to Fig. 2(b), for different external fields. With increasing field (from
bottom to top) the hysteretic behavior (black and red) gives way for peaks, because external
fields larger than 1 kOe (purple curve) exceed the coercivity of the free layer. Microwave spectra
taken under the current and field conditions marked in Fig. 11(a) by colored dots are displayed
in Fig. 11(b). Rather sharp peaks at frequencies of several GHz are resolved. Figure 12(a)
shows the dynamic stability diagram determined from such spectra. The basic features can be
reproduced by numerically solving the extended Gilbert equation (5) for a macrospin, which is
supposed to describe the complete free layer, as demonstrated in Fig. 12(b). Here, P and AP
stand for stable parallel and antiparallel alignment, and P/AP is the region of bistability, where
hysteretic switching is possible. S marks the small-amplitude precessional regime and L the
large-amplitude dynamic regime. Region W in Fig. 12(a) cannot be described by a macrospin
simulation. Recent micromagnetic simulations beyond the Stoner-Wohlfarth approximation
have identified region W to correspond to the formation and annihilation of dynamic vortices
through the interplay of the current-induced Oersted field and the STT effect [10].
Stability diagrams like these in Fig. 12 show the richness of the current-driven magnetization
dynamics, although the comparison to simulations is based on a simple macrospin model. The
fact that region W cannot be reproduced in macrospin models indicates that the dynamic be-
havior of real samples is even more complex and can only be understood in the framework of
full-scale micromagnetic simulations.
Figures 13 and 14 show an example of a micromagnetic simulation of current-driven magneti-
zation dynamics in an Fe disc of 150 nm diameter and 2 nm thickness. The sample is assumed
to be monocrystalline with cubic magnetocrystalline anisotropy. If an external field of 50 mT is
applied in the film plane, the magnetization in the disc is essentially homogeneous and aligned
with the external field H . Due to the disc shape and the inhomogeneous demagnetizing field in
any non-ellipsoidal particle, some small inhomogeneities occur at the perimeter of the disc. The

(b)(a)

Fig. 12: (a) Experimental and (b) calculated dynamic stability diagram. Different regions are
explained in the text. Current and field axes in (b) are normalized to the critical current I+

c and
the coercive field Hc, respectively. After [9].
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(a) (b) (c)

Fig. 13: Simulated current-driven oscillations of the magnetization in a disc-shaped nanomag-
net (d = 150 nm). After applying the current, the initial oscillations (a) quickly evolve into a
noisy signal (b). At least one clear peak can be seen in the Fourier spectrum (c). From [11].

magnetization of the disc is in a so-called onion state in order to reduce magnetostatic surface
charges. H is applied at 45◦ with respect to the easy axis and a polarized current with homoge-
neous current density j = 5× 107 A/cm2 runs perpendicularly through the sample plane. The
polarization direction of the current is parallel to one of the easy axes and encloses an angle of
135◦ with H as sketched in Fig. 14(a). The dynamics of the magnetization can be monitored
by plotting the volume-averaged normalized Cartesian components of the magnetization as a
function of time. In the first 1.5 ns after switching on the electric current, only relatively small
oscillations occur [Fig. 13(a)]. After about 3 ns, these small oscillations are soon replaced by
a noisier signal. While the frequency of the oscillations remains conserved to a good extent,
the amplitude varies strongly in a seemingly chaotic way [Fig. 13(b)]. The Fourier transform
of this signal shows a sharp peak at about 7 GHz and some additional features at about 13 GHz,
which are less pronounced [Fig. 13(c)]. Snapshots of the magnetic structure in the disc during
this process are shown in Fig. 14. Surprisingly, the magnetization structures are very inhomoge-
neous and do not display any clear pattern. In contrast to this result, more well-defined features
like resonant modes, spin waves or domain wall displacements usually occur in the case of or-
dinary, field-driven magnetization dynamics. These inhomogeneities can be attributed to the
constant supply of energy provided by the electric current [12]. The system apparently converts

(a) (b)

p

(c)

H

Fig. 14: Typical snapshots of the simulated magnetic structure in the disc at different times
after applying the current. (a): 0 ns; (b): 5.4 ns; (c): 8.3 ns. The magnetization structures are
strongly inhomogeneous and are very dissimilar to structures known from field-driven magne-
tization dynamics. The directions of the current polarization p and the external field H are
indicated. From [11].
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this energy into a large number of spin waves, which superimpose incoherently and lead to this
type of noise [13]. The value of the intrinsic damping constant α, which was set to 0.01 in this
example, has a strong influence on the balance between energy dissipation and energy pumping
[12, 13]. In spite of the pronounced magnetic inhomogeneities, the Fourier signal is remarkably
clear in the sense that the average magnetization oscillates mainly at a well-defined frequency.
It is reasonable to assume, that it is this dominant frequency that is measured experimentally
[e.g. in Fig. 11(c)].
Simulations of this sort yield the following general conclusions: (i) The macrospin approxima-
tion does not describe all the details of the real dynamics of the magnetization. It is only suited
as a first simple toy model to obtain qualitative understanding that then needs to be confirmed
by full-scale micromagnetic simulations. (ii) A clear signal in the frequency (as it is observed in
experiments) does not necessarily result from a homogeneous spin precession. (iii) The magne-
tization dynamics induced by STT is qualitatively very different from the field-driven dynamics.

4.2 Spin-torque nano-oscillators

Nanomagnets driven by spin-polarized currents have the potential to serve as nanoscale, on-
chip microwave sources or oscillators, tunable by field and current over a wide frequency range.
These devices are called spin-torque nano-oscillators (STNO). Possible fields of application are
communication technology, e.g. for inter- and intra-chip communication. At present the major
drawback of STNOs is the low output power level of the order of 1 nW.
An obvious route to increase the output power of STNOs is to take advantage of the much larger
magnetoresistive effects in TMR structures (see lecture on “Tunneling Magnetoresistance” by
Daniel Wortmann). Tunneling junctions based on epitaxial MgO barriers can reach TMR ratios
above 500% at room temperature and, thus, exceed typical GMR ratios by about two orders
of magnitude. Since STNOs are operated under constant-current conditions, the output power
scales with the square of the magnetoresistance ratio. Therefore, TMR-based STNOs readily
have a 3 to 4 orders of magnitude larger output power.
A recent example of a CoFeB/MgO/CoFeB tunneling junction with a 1.2 nm thick MgO bar-
rier is shown in Figs. 15 and 16. The junction with an elliptical cross-section of 160 × 70 nm2

yields a TMR ratio of 110% [Fig. 15(a)]. Compared to the value of 500% mentioned above,
this lower TMR ratio results from a compromise between a large TMR ratio and a high bar-
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Fig. 15: Field (a) and current (b) sweep loops of a CoFeB/MgO/CoFeB tunnel junction with a
resistance times area product RA = 4 Ωμm2 and an elliptical cross-section of 160 × 70 nm2.
The critical current density for switching is about 3× 106 A/cm2. After [14].
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Fig. 16: Microwave spectra for the same tunneling junction as in Fig. 16 for increasing negative
DC current. After [14].

rier transparency, which is required to obtain sufficiently large current densities. The resistance
times area product of this junction is only RA = 4 Ωμm2 and the critical current density for
switching is about 3× 106 A/cm2 [Fig. 15(b)]. Figure 16 shows the evolution of the microwave
spectra with increasing negative DC current. The different peaks correspond to first and sec-
ond harmonic of modes located in the center and at the edge of the elliptical magnetic element.
Samples of this type reach maximum integrated output power of up to 0.48μW although a sig-
nificant fraction of the generated power is not detected due to the impedance mismatch between
the nanopillar and the 50 Ω leads [14]. Thus, the μW range needed for applications [15] is
within reach.
Another route to increase the output of STNOs is to arrange a large number of STNOs in an
array and to synchronize the oscillatory motion in all oscillators. Due to the coherent generation
of the microwave signal, one expects that N coupled STNOs yield about an N2-fold power
output. The coupling of STNOs can be achieved via spinwaves in a common ferromagnetic
layer [15] or via microwave cross-talk in contact leads [16]. The synchronization of ensembles
of STNOs and other aspects of STNOs will be discussed in Albert Fert’s lecture on “Spin
transfer oscillations and synchronization of spin transfer oscillators”.

5 STT in epitaxial Fe/Ag/Fe(001) nanopillars

In this section I want to present experiments performed with a specific set of samples with the
aim to discuss how the sample design and the choice of the materials can influence the spin-
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transfer torque effects. We have chosen to study single-crystalline, epitaxial nanopillars because
they can be considered as model systems with well-defined interfaces and homogeneous mag-
netic as well as electric properties. The absence of grain boundaries (which are present in the
usually employed polycrystalline samples) ensures a unperturbed current distribution across
the pillar area. The crystalline order of the magnetic layers gives rise to magnetocrystalline
anisotropy, which in our case is a four-fold, in-plane effective anisotropy with the magnetic
easy axes along Fe[100] and Fe[010] directions. The presence of a four-fold anisotropy is dis-
tinctly different from the usually employed two-fold shape anisotropy induced by elliptically
shaped nanopillars. We will see that the four-fold anisotropy gives rise to a novel two-step
switching behavior as well as to a novel oscillatory mode in very low or even zero external
magnetic fields.

5.1 Sample fabrication

As already mentioned in Sect. 2.2, the observation of STT effects requires small cross sections
for the current flow in order to minimize the influence of the Oersted field and to obtain high
enough current densities. As an example for the fabrication of samples with suitable proper-
ties, the preparation of single-crystalline Fe/Ag/Fe(001) nanopillars according to the process
developed in Jülich [17] is introduced below.
In order to achieve single-crystalline growth the magnetic multilayers are deposited in a stan-
dard molecular-beam epitaxy (MBE) system. The native oxygen layer of the GaAs(001) sub-
strates (10 × 10 mm2) is desorbed by annealing for 60 min at 580◦C under ultra-high vacuum
(UHV) conditions. We deposit 1 nm Fe and 150 nm Ag at 100◦C to get a flat buffer system after
annealing at 300◦C for 1 h. The Ag buffer also acts as a bottom electrode for the transport mea-
surements [Figs. 17(a) and (b)]. The following layers are then deposited at room temperature:
Fe(20 nm)/Ag(6 nm)/Fe(2 nm). We check the crystalline surface structure after each deposited
layer by low-energy electron diffraction (LEED). The spots characteristic of (001) surfaces
slightly broaden with increasing total thickness, but still indicate high crystalline quality, even
for the final 50 nm Au(001) capping layer. Thicknesses are controlled by quartz crystal moni-
tors. The bottom Fe(20 nm) layer is magnetically harder with respect to the top Fe(2 nm) layer.

In order to measure the STT effects in the CPP-geometry we have developed a combined pro-
cess of optical and e-beam lithography. First, we define the leads and contact pads of the

SiOx +

_
DC bias

I
Voltage

U 

150 nm

(b)(a) (c)

70 nm

6 nm Ag
20 nm Fe

Au
2 nm Fe

0 nm Fe

Ag

   decoupled by 

top electrode

bottom electrode

“free” layer

“fixed” layer

Fig. 17: (a) Sequence, thicknesses, and functions of the layers within the multilayer stack. (b)
Scheme of the junction geometry and the contacts for transport measurements. The DC current
is confined to a diameter of d ≈ 70− 150 nm by the nanopillar. The voltage drop is measured
across the pillar in 4-point geometry. (c) SEM micrograph of a free-standing nanopillar after
ion-beam etching.
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(a) (b) (c)

(d) (e) (f)

Nanopillar Ø 70-150 nm

Si3N4 HSQ

Fig. 18: Lithographic process: (a) Extended epitaxial multilayer grown by MBE, (b) definition
of 10μm-wide bottom electrodes by optical lithography and IBE, (c) definition of nanopillars of
70-150 nm diameter by e-beam lithography and IBE, (d) planarization by HSQ and additional
insulation by Si3N4; e-beam exposure converts HSQ into insulating SiOx, (e) opening of a
8×6μm2 window to the top of the nanopillar by IBE, and (f) definition of the top electrodes by
optical lift-off. The colors of different materials correspond to those of Fig. 17.

bottom electrode by using AZ5206 photoresist and ion beam etching (IBE) [Fig. 18(b)]. We
then employ HSQ (hydrogen silsesquioxane) as negative e-beam sensitive resist and a Leica
EBPG 5HR e-beam writer to define small nanopillars. The resist structures are circular and
transferred into the magnetic layers by IBE [Fig. 18(c)]. The timed etching process is stopped
inside the magnetic multilayer. Typical dimensions of the developed resist structures are 50 -
150 nm (measured with an atomic force microscope). Due to redeposition of etched material
during IBE, the nanopillars broaden to 70 - 200 nm. An SEM micrograph of the free-standing
nanopillars in stage (c) of Fig. 18 is shown in Fig. 17(c). The pillars are planarized by spin-
coating HSQ [Fig. 18(d)]. Subsequent e-beam exposure turns HSQ into SiOx, which electrically
insulates the pillars. In order to improve the insulation, especially at the side walls of the bot-
tom electrodes, a 50 nm-thick Si3N4 layer is deposited by plasma enhanced chemical vapor
deposition (PECVD). We open the insulation above the nanopillars by IBE and use an optical
lift-off process of 300 nm Au for the preparation of the top electrode for the 4-point resistance
measurements.

5.2 Slonczewski’s model

We have chosen Fe and Ag not only for their good epitaxial match, but also for the specific
spin-dependent transport properties of Ag/Fe(001) interfaces. According to Stiles and Penn
[18] the spin-dependent interface resistances R+,− differ by more than one order of magnitude,
AR+

Fe/Ag(100) = 1.07×10−15 Ωm2 andAR−
Fe/Ag(100) = 12.86×10−15 Ωm2, whereA is the pillar

cross-section. Therefore, we can apply Slonczewski’s theory [19] for a unified description of
GMR and STT, which is based on two main assumptions: (i) Negligible interfacial reflection
for majority-spin electrons and (ii) electrically symmetric trilayer system. Assumption (i) is ful-
filled because AR+

Fe/Ag(100) � AR−
Fe/Ag(100), and (ii) is fulfilled even for trilayers with unequal

Fe thicknesses because the interface resistances are much larger than the volume resistance.
In Slonczewski’s theory, the angular dependences of the GMR effect with the current flowing
perpendicular to the plane (CPP-GMR) and the STT LSTT = g(θ) sin(θ) [compare Eq. (3)] on
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Fig. 19: Angular variations of the GMR signal (a) and the spin-transfer torque (b) for three
different Λ values according to Eqs. (6)-(8). The dotted line shows the symmetric behavior. The
solid (ΛGMR = 1.6) and broken (ΛSTT = 3.4) line is what we determine from GMR and STT
experiments, see below. After [20].

the angle θ between the two layer magnetizations are given by [19]

r(θ) =
R(θ)−R(0◦)

R(180◦)−R(0◦)
=

1− cos2(θ/2)

1 + χ cos2(θ/2)
(6)

LSTT (θ) =
�IPΛ

4Ae

sin(θ)

Λ cos2(θ/2) + Λ−1 sin2(θ/2)
(7)

with Λ2 = χ+ 1 = AG
R+ +R−

2
. (8)

R(θ) is the dependence of the resistance on θ, G = e2k2
f/
√

3πh the conductance of the in-
terlayer, R+(−) the total (interface and bulk) resistance for spin-up (spin-down) electrons for
one half of the symmetric system, and P = (R− − R+)/(R− + R+) is the spin polarization.
The parameters Λ (or χ) is a measure for the deviation from the so-called symmetric behavior,
which is given by Λ = 1 (χ = 0). Λ2 expresses the ratio of the mean resistance of one mag-
netic layer (including the lead) to the intrinsic interlayer resistance. If it deviates from unity,
the averaged spin-dependent resistance is different from the interlayer resistance, which leads
to an enhanced spin accumulation. The expectations according to Eqs. (6) and (7) are plotted in
Fig. 19 for various values of Λ. The dotted lines for Λ = 1 represent the symmetric case. The
GMR effect is then given by r(θ) = sin2(θ/2) with point symmetry about the value at θ = 90◦

as known for current-in-plane (CIP) GMR. The angular dependence of the STT is reduced to
LSTT (θ) ∝ sin(θ) and is thus mirror symmetric about θ = 90◦. Having Λ �= 1 breaks this
mirror symmetry.
For the Fe/Ag(001) system we expect based on theoretical calculations [18] an asymmetry pa-
rameter Λ = 4 yielding a strongly asymmetric behavior as well as a large polarization P = 0.85,
which should result in strong STT effects. The asymmetric behavior can directly be seen in the
GMR data of Fig. 20, where we show r(θ) according to Eq. (6) as a function of the magnetic
field applied along a hard axis of the Fe layers. The red lines are simulations for which we
assume for single domain behavior for both Fe layers (Stoner-Wohlfarth model). The exper-
imental curve is well reproduced and yields the relative alignment of the magnetizations as a
function of the external field (icons with pairs of arrows). An interesting magnetic configuration



Spin-Transfer Torque Dynamics D3.21

-150 -100 -50 0 50 100 150

Magnetic Field B (mT)

N
o

rm
a

liz
e

d
 r

e
s
is

ta
n

c
e Experiment

Simulation:
least energy
2nd least

0.0

0.2

0.4

0.6

0.8

1.0

B

Fig. 20: CPP-GMR data (blue) measured at 5 K with the magnetic field being applied along a
hard axis of the single-crystalline Fe layers. Thick and thin red lines are least and second least
energy solutions of a Stoner-Wohlfarth fit, respectively. Pairs of red arrows indicate the relative
alignment of magnetizations as derived from the fit. After [20].

occurs after decreasing the field to zero, where the two magnetizations rest in two different easy
axes and, thus, include an angle of θ = 90◦. For a standard, symmetric angular dependence of
the GMR, r(θ) = sin2(θ/2), r(90◦) would be 0.5. Instead we find a much lower value of 0.3
(dashed line). This deviation originates from enhanced spin accumulation at the Fe/Ag(001)
interfaces and yields with Eqs. (6) ans (8) and asymmetry parameter ΛGMR = 1.6.

5.3 Two-step switching process

Figure 21 shows the differential resistance through the pillar versus DC current taken at a mag-
netic field of 7.9 mT applied roughly along a hard axis. This field is much weaker than the
anisotropy field of about 40 mT. Therefore, both magnetizations are aligned along an easy axis
and the measurement starts at zero DC current in a low resistive state. In contrast to the data
in Fig. 2(b) the switching occurs here in two steps via an intermediate resistance level. At a
positive current Ic1 the free layer starts to rotate with respect to the fixed layer. The anisotropy
energy minimum at 90◦ stabilizes the orthogonal state. Only at an even higher current Ic2 the lo-
cal energy minimum is overcome and the free layer switches to the antiparallel alignment. Upon
reversing the current, a similar behavior is observed. At first glance, it is surprising that there
are two switching events at different critical currents, because the anisotropy energy barriers
to overcome are in both cases the same. The different current densities arise from the angular
dependence of the STT efficiency function g(θ) as can be seen in the macrospin simulations of
Fig. 22. The trajectory of the first switching step from parallel to perpendicular with respect to
the fixed magnetization is shown in Fig. 22(a). The direction of the damping torque (red) and
the STT (blue) during the switching are shown in Fig. 22(c). The viewing direction is along
the −x-direction. As expected, the STT always points outward and, thus, acts as an excitation.
Therefore, the cone angle of the precession around the initial state increases, until the anisotropy
energy barrier between the initial and the 90◦-state is overcome. Fig. 22(d) shows the torques
after the switching; now with the viewing direction in −y-direction [note the different abcissae
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Fig. 21: Two-step current-induced magnetization switching of a single-crystalline
Fe/Ag/Fe(001) nanopillar measured at 5 K. The free layer magnetization switches first from
parallel to perpendicular and then to antiparallel alignment relative to the fixed layer magne-
tization and vice versa for the decreasing current branch (green). A static magnetic field of
7.9 mT, which is weaker than the in-plane anisotropy field, is applied roughly along a hard axis.
The diagrams looking like cloverleaves represent the in-plane anisotropy energy landscape. The
four minima correspond to easy axis directions. After [20].

of Figs. 22(c) and (d)]. The symmetry of the STT after switching is completely different. For
mx < 0 [right half of Fig. 22(d)] the STT is still pointing outward and is an exciting torque.
For mx > 0 [left half of Fig. 22(d)], however, the STT points towards the precession axis and
damps the oscillatory motion. The total action of the STT along one revolution tends to cancel
out. Therefore, the magnetization relaxes towards the +x-direction after the first switching step
as can also be seen in Fig. 22(a). The simulation also reproduces the second switching step at
a higher DC current from the 90◦-state to the antiparallel state [Fig. 22(b)]. Again, the angle
of the precession around the initial state increases until the switching occurs. (In this specific
simulation the switching is a bit more complicated, because the magnetization overcomes the
energy barrier on the “wrong” side of the trajectory, which requires it to reach the final state
via a “detour”.) But how can the STT in Fig. 22(d) at a higher current excite the magnetization
and induce the switching? The answer can be found in the magnitude of the STT, which is not
constant along the trajectory. In fact, the STT for mx < 0 [right half of Fig. 22(d)] is stronger
than for mx > 0 [left half of Fig. 22(d)]. Therefore, the total action along one revolution does
not completely cancel out and a small exciting net torque remains. For a large enough critical
current Ic2 this net torque is sufficient to overcome the damping torque and induces the second
switching step. This asymmetry of the magnitude of the STT is a consequence of Slonczewsi’s
theory: For an asymmetry parameter Λ > 1 the maximum of the STT occurs for angles larger
than θ = 90◦ (see blue or red curve in Fig. 19(b)]. From a comparison between the experimen-
tally determined ratio of the critical currents Ic2/Ic1 with corresponding values extracted from
simulations with varying asymmetry parameter Λ, we obtain ΛSTT = 3.4. These experiments
represent the first direct determination of the asymmetry parameter Λ for GMR and STT in
the same sample. The deviations between the calculated value of Λ (4.0) and those determined
from GMR and STT data (1.6 and 3.4, respectively) most likely arise from imprecise knowledge
of material parameters and from simplifying assumptions of the model, such as the complete
neglect of the minority channel, which is only approximately fulfilled for Fe/Ag(001).
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Fig. 22: STT-induced switching of a macrospin in the presence of cubic magnetocrystalline
anisotropy and demagnetizing field. The magnetization switches under the influence of a per-
sistent DC current first from parallel (+x-direction) to a 90◦-orientation (+y-direction) with
respect to the fixed layer magnetization and then from the 90◦-orientation to the antiparallel
alignment (−x-direction). (a,b) Trajectories of the two switching events. (c,d) representation
of the STT (blue arrows) and damping torque (red arrows) viewed along (b) the initial, parallel
and (c) the 90◦-orientation of the macrospin. Only a fraction of the trajectory in the immediate
vicinity of the switching event (a) is shown in (c) and (d). After [21].

5.4 Zero-field excitations in the 90◦-state

The simulations in Fig. 22 suggest that a steady-state oscillatory mode can be excited at a low
external field, if the system is prepared in the 90◦-state and a DC current between Ic1 and Ic2 is
applied. Figure 23 shows microwave spectra measured under these conditions using the setup
described in Fig. 10. The frequencies of the observed modes slightly shift with increasing
current strength to higher frequencies.
The corresponding macrospin simulation is shown in Fig. 24. We indeed find a precessional
trajectory around the +y-direction, which is the static direction of the free magnetization in the
90◦-state. The analysis of the torques in Fig. 24(b) yields a similar picture as for the second
switching step in Fig. 22: The integrated action of the STT along one revolution almost cancels
out. Only a relatively small net excitation remains due to the asymmetry of the STT magnitude
as a function of the angle θ. The excitation of the STT on the right hand part of the trajectory is
larger than the damping on the left hand part. The relatively small cone angle of the trajectory
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Fig. 23: (a) Low-field precession: Microwave spectra recorded at 5 K with a weak field of 5 mT
applied at an angle of 15◦ relative to an easy axis and at different DC currents as indicated. All
curves are taken at DC currents that correspond to the 90◦-state [red range in (b)]. After [21].

in Fig. 24(a) and the weak peaks in Fig. 23(a) reflect the weak excitation.

The observation of a steady-state precession at low external or even zero field is of importance
from the application point of view, because the usual need for an external field exceeding the
coercivity of the oscillating layer is disadvantageous as it increases the complexity and cost
of STNOs. In our case, the role of the external field is taken by an internal field, namely the
magnetocrystalline anisotropy field. Therefore, the observation of low-field excitations in the
90◦-state is – as is the case for the two-step switching process presented in Fig. 21 – a direct
consequence of the interplay between magnetocrystalline anisotropy and the STT.
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bic magnetocrystalline anisotropy and demagnetizing field. (a) Simulated trajectory and (b)
representation of the STT (blue arrows) and damping torque (red arrows) viewed along the
90◦-orientation (−y-direction) of the macrospin. After [21].
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6 Spin-transfer torques in non-uniform magnetization struc-
tures

Up to now we have assumed that the magnetic element, which is subject to the STT, displays
in the static state –apart from minor deviations, such as the edge effects shown in Fig. 14(a)–
a uniform magnetization pattern. However, STT also occurs when a current passes through a
non-uniformly magnetized object or when a spin-polarized current impinges on a non-uniform
magnetization pattern. In fact, STT in non-uniform structures has recently attained a lot of
scientific interest because it reveals novel concepts for the control and manipulation of the
magnetic state in nanomagnets. Some of these phenomena are expected to have a strong impact
on applications.

6.1 Current-driven domain wall motion

A domain wall is per definition a non-uniform magnetization pattern. In a thin and narrow mag-
netic wire domain walls divide the system into sections of opposite magnetization directions. A
current flowing along the wire has to repolarize each time after passing a domain wall in order
to adjust to the local magnetization. This repolarization is associated with a transfer of spin
momentum and generates a STT on the local magnetization in such a way that the domain walls
move in the direction of the electron flux. The first observation of current-driven domain wall
motion is shown in Fig. 25.
In fact, the situation in a wire with a domain wall is very similar to Fig. 4, except that the
domain wall plays to role of the spacer layer. Since the magnetization direction is varying

Fig. 25: Successive magnetic force microscopy (MFM) images with one current pulse ap-
plied between each consecutive image. The current density and the pulse duration were
1.2 × 1012 A/m2 and 0.5μs, respectively. Note that the white arrows indicate the technical
current direction; the electron flux is in the opposite direction. After [22].
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continuously within a domain wall, the corresponding torque term to be included in the Gilbert
equation needs to be formulated in the continuos limit. The Slonczewski STT term in Eq.
(3) becomes the so-called adiabatic STT term, for which polarization adiabaticity (the spin of
the charge carrier is always aligned with the local magnetization) and full transfer of angular
momentum to the local magnetization is assumed. It turns out [23] that a second, so-called non-
adiabatic STT term is needed to achieve agreement with experiments. Several mechanisms,
such as linear momentum transfer [24] or spin accumulation in combination with s-d exchange
interaction [25], are discussed as the origin of the non-adiabatic term. The relative strength
of the adiabatic and non-adiabatic term is an important, yet unresolved issue. In spite of this
lacking of a complete understanding of the underlying physics, current-driven domain wall
motion is a crucial ingredient for the concept for a novel non-volatile magnetic storage device,
the so-called magnetic domain-wall racetrack memory. It will be discussed in detail along with
recent developments in the controlled movement of domain walls in magnetic nanowires in the
lecture “MRAM and Domain Wall Memories” by Stuart Parkin.

6.2 Current-driven vortex motion and switching

A magnetic vortex is a flux-closure domain pattern with circular magnetization lines in the
plane of the sample. Towards the center the magnetization lifts out of the plane in order to
avoid a divergence of the exchange energy. This so-called vortex core has typically a diameter
of the order of 10 nm, whereas the whole vortex structure is micron-sized. With the exception
of a small contribution of the core, no stray field is emanating from a vortex. Therefore, it
represents a highly stable magnetization configuration. A vortex is characterized by the vorticity
(clockwise or anti-clockwise) and the core polarization (up or down), which are independent
and thus allow for four different configurations. The stability together with these two binary
quantities renders magnetic vortices interesting objects for magnetic storage. The controlled
switching of the polarity or the vorticity is a indispensable requirement for the writing process
of vortex-based memory cells. Recent micromagnetic simulations by Liu et al. [26] predicted
a current-induced core switching process based on STT. The current is applied in the plane of
the vortex and is polarized while passing from the edge to the central part of the vortex. Spin
momentum is then transferred to the second half, which initially is magnetized in the opposite
direction. Details of this process as well as the excitation of the gyrotropic motion of the vortex
core by STT are discussed in the lecture “Micromagnetism” by Riccardo Hertel.

6.3 GMR and current-induced torques in metallic antiferromagnets

Recent calculations [27, 28, 29] suggest that current-induced torques and GMR also occur in
antiferromagnetic metals, i.e. in antiferromagnet/paramagnet/antiferromagnet structures. The
basic result is the following: A current impinging on a paramagnet/antiferromagnet interface
is partly transmitted into the antiferromagnet and partly reflected. The transmitted electrons
conserve their spins. Spin filtering is not effective because there is no exchange splitting of the
bandstructure in an antiferromagnet. The spin orientations of the reflected electrons, however,
are rotated around the order parameter �n of the antiferromagnet in opposite senses depending on
their direction of incidence. This leads to a spin polarization of the reflected current along the di-
rection of �n. Next, we consider an antiferromagnet/paramagnet/antiferromagnet heterostructure
as shown in Fig. 26, where the two antiferromagnets are characterized by the order parameters
�n1,2. If �n1 and �n2 are non-collinear, then multiple reflection processes from the antiferromag-
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Fig. 26: Antiferromagnet/paramagnet/antiferromagnet heterostructure. The antiferromagnets
are assumed to be commensurable spin density wave systems. PM stands for paramagnet. After
[27].

netic layers lead to a spin-density with the quantization axis along �n⊥ = (�n1 × �n2)/|�n1 × �n2|.
The spin-density is periodic with the same period as the static spin-density wave in the antifer-
romagnets. Figure 27 shows the Landau-Bütiker conductance calculated for this situation as a
function of the angle θ between �n1 and �n2. θ = 0 corresponds to the configuration sketched
in Fig. 26, where the two spins next to the spacer layer are parallel. The angular dependence
of this so-called antiferromagnetic giant magnetoresistance (AGMR) is similar to that of the
GMR effect. The effect size in this particular calculation amounts to noticeable 12%. Since
interference is involved, AGMR is expected to be restricted to spacer layers thinner than the
phase coherence length. This condition is not very severe because it is similar to that for in-
terlayer exchange coupling; another effect that arises from interfering wave functions in the
spacer layer. Another important issue for the experimental realization are (lateral) domains in
the antiferromagnets, which tend to reduce the AGMR due to destructive interference.
Next we consider the interaction of the current-induced spin-density wave with the antiferro-
magnetic layer. We distinguish between (i) the current-induced spin-density amplitude at lattice
site i, �Wi, which is a non-equilibrium, steady-state quantity and is due to the transport electrons

Fig. 27: Landau-Büttiker conductance as a function the angle θ between �n1 and �n2 for the
structure shown in Fig. 26. N and M denote the number of atomic layers of the two antiferro-
magnetic layers. After [27].
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Fig. 28: (a) Local current-induced torques �Γi on different lattice sites i of the antiferromagnetic
layer. The component Γin in the plane defined by �n1 and �n2 is shown. (b) Cooperative rotation
of all local moments �mi in the antiferromagnet. After [27].

with energies within the transport window and (ii) the local magnetization �mi due to the elec-
trons outside the transport window. The two subsystems interact and can mutually precess.
Writing down an equivalent equation to Eq. (3) for each lattice site i we obtain the torque �Γi

exerted on �mi:

�Γi ∝ �mi × �Wi × �mi. (9)

The component Γin in the plane defined by �n1 and �n2 changes sign from each atomic site to the
next [Fig. 28(a)]. Therefore, the net action of the current-induced torques in the antiferromagnet
is a cooperative rotation of all local moments �mi with the same sense of rotation. For the ex-
ample sketched in Fig. 28(a) the order parameter of the antiferromagnet rotates clockwise. This
rotation does not cost exchange energy. Note that in Fig. 28(a) the amplitude of the torque does
not decay with distance from the interface, where the current enters at i = 0. This is a remark-
able difference to the situation in a ferromagnetic layer, where the STT rapidly decays over the
Fermi wavelength (few lattice constants) due to the spatial precession of the transmitted spins
as explained in Fig. 3(a). The spatial precession is not present in an antiferromagnet because
there is no exchange splitting of the bandstructure, i.e. Δk = k↓ − k↑ = 0 (see Sect. 2.2). As a
consequence the current-driven torque in an antiferromagnet is a bulk effect. In the presence of
scattering it acts within an inelastic scattering length of the interface with the paramagnet. This
volume is about one order of magnitude larger than for a ferromagnet. Therefore, the current-
induced torque effect in metallic antiferromagnets is expected to be sizable. The absence of
shape anisotropy for an antiferromagnet leaves the crystalline anisotropy as the only contribu-
tion to the effective field and yields low estimates for the critical current density for switching
of the order of 105 A/m2 [27]. Finally note, that I use the term “current-induced torque” instead
of “spin-transfer torque” for the case of metallic antiferromagnets. The latter implies conser-
vation of angular momentum, which indeed was a main ingredient for the explanation of STT
presented in Sect. 2.2. Here, however, there is no transfer of spin angular momentum between
the subsystems. This can directly be seen in Fig. 28(a), where the integrated torque and, thus,
the transferred angular momentum, vanishes.
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7 Conclusions

The field of spin-transfer torque effects is rapidly evolving and bears the potential for further
exciting physics and applications, e.g. the realization of the magnetic analog of the injection
laser. This device would provide spin-wave amplification by stimulated emission of radiation,
and, accordingly, the name SWASER is already suggested [3].
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[27] A. S. Núñez, R. A. Duine, P. Haney, and A. H. MacDonald, Phys. Rev. B 73, 214426
(2006).

[28] P. M. Haney, D. Waldron, R. A. Duine, A. S. Núñez, H. Guo, and A. H. MacDonald, Phys.
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1 Introduction

Optical pulses could be an alternative stimulus for spins, see Figure 1. Indeed, due to tremen-
dous developments of ultrafast laser sources over the past 20 years, a laser pulse has become
one of the shortest ever man-made events. It has been recently demonstrated that excitation of
a magnetically ordered material with an ultrashort (10−13 seconds and shorter) laser pulse may
result in demagnetization [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], spin-reorientation [16, 17], or
even modification of magnetic structure [18, 19] and this all on a time-scale of 1 picosecond or
less. Nevertheless, for all the above-mentioned experiments, the observed laser-induced mag-
netic changes were of thermal origin. It means that the magnetic changes were the result of
optical absorption followed by a rapid temperature increase. This thermal origin of spin exci-
tation considerably limits potential applications because the repetition frequency is limited by
the cooling time [20]. Moreover, because of this thermal excitation mechanism, heat diffusion
will also limit the recording density. The solution to both these problems could be a nonthermal
optical control of magnetism.

Time-scales and stimuli 
in magnetism

Laser

1 ns

1 ps

1 fs

100 ps

10 ps

100 fs

10 fs

Magnetic
field

~ 0.01 ps ~ 0.1 psExchange
interaction

Spin-orbit (LS)
interaction

L S

Spin
precession
~ 1 ps - 1 ns

~ 0.1 ps-1 ps

Fig. 1: Time scales and stimuli in magnetism.

Can light manipulate and control the magnetization? The essence of magnetization is angu-
lar momentum. A circularly polarized photon carries angular momentum too. If it would be
possible, using this angular momentum, to affect spins of electrons directly, this would result
in ultrafast and nonthermal laser control of magnetism, since right- and left-handed circularly
polarized light-waves should affect spins as magnetic fields of opposite sign. This lecture sum-
marizes the recent progress in the study of ultrafast nonthermal effects of light on magnetic
materials.

2 Interaction between photons and spins

2.1 Spin motion

Let us discuss first the motion of spins in an external magnetic field. It is known that a spin S
in a magnetic field H experiences a torque T = −|γ|S×H, where γ is the gyromagnetic ratio.
From the fundamental law of the conservation of angular momentum one can find an equation
for the spin motion in the external magnetic field

δS

δt
= −|γ|S×H, (1)
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This equation shows that the time derivative of the spin S is perpendicular to both the magnetic
field H and the spin S itself. Thus the spin S in an external magnetic field H will precess
around this field. It can be shown that the frequency of this precession is a linear function of
the external magnetic field. In ferro- and ferrimagnetic materials it is convenient to introduce
the vector of the magnetization M = −|γ|J, where J is the total angular momentum of a unit
volume. The equation of motion of the magnetization can be written in a similar way

δM

δt
= −|γ|M×H. (2)

If the spin experiences not only the action of the external magnetic field, but is also affected by
the magneto-crystalline anisotropy, shape anisotropy, magnetic dipole interaction etc, the situ-
ation becomes more complicated. All these interactions will contribute to the thermodynamical
potential Φ and the combined action of all these contributions can be considered as an effective
magnetic field

Heff = −∂Φ/∂M (3)

Thus the equation of motion of the magnetization vector can be written as

δM

δt
= −|γ|M×Heff , (4)

This expression is also known as the Landau-Lifshitz equation in the nondissipative approxi-
mation [21, 3].

2.2 Magneto-optics and opto-magnetism

Let us now discuss the interaction between photons and spins using the energy consideration
[22]. It can be shown that the thermodynamical potential Φ of an isotropic, nonabsorbtive,
magnetically ordered medium with static magnetization M(0) and in a monochromatic light
field E(ω) includes a term:

F = αijkEi(ω)Ej(ω)∗Mk(0), (5)

where αijk is the magneto-optical susceptibility [23, 4, 24, 25, 26]. In the electric dipole ap-
proximation the linear optical response of a medium to a field E(ω) is defined by the optical
polarization P(ω)=∂Φ/∂E(ω)∗. From Eq. 5 one can easily see that the optical polarization
P(ω) should have a contribution P(m) proportional to the magnetization M:

P
(m)
i (ω) = αijkEj(ω)Mk(0). (6)

From this equation one can find that when linearly polarized light is transmitted through a
magnetized medium, the polarization plane of the light gradually rotates over the angle θF

given by:

θF =
αijkMk(0) · ωL

cn
, (7)

where c is the speed of light in the vacuum, n is the refraction coefficient of the medium, and L
is the propagation distance of the light in the medium [27]. Equation (7) describes the so-called
magneto-optical Faraday effect discovered by M. Faraday in 1846 [28].
The magneto-optical Faraday effect clearly demonstrates that a magnetically ordered medium
can indeed affect photons and change the polarization of light [27]. Is the inverse phenomenon
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feasible, that is, is it possible that polarized photons affect the magnetization? From Eq. 5 one
can see that an electric field of light at frequency ω will act on the magnetization as an effective
magnetic field Heff directed along the wave-vector of the light k:

Hk = − ∂F

∂Mk
= αijkEi(ω)Ej(ω)∗. (8)

In isotropic media, αijk is a fully antisymmetric tensor with a single independent element α.
Therefore, Eq. (8) could be re-written as

H = α[E(ω)×E(ω)∗]. (9)

From this it becomes obvious that right- and left-handed circularly polarized waves should act as
magnetic fields of opposite sign [23, 4, 24, 25]. Therefore, it is seen from Eq. (9) that in addition
to the well-known magneto-optical Faraday effect, where the polarization of light is affected by
the magnetization M, the same susceptibility α also determines the inverse, opto-magnetic phe-
nomenon: circularly polarized light affects the magnetization via the inverse Faraday effect.
Thus in a thermodynamical approach, the effect of light on spins in a magnetically ordered ma-
terial can be described by the Landau-Lifshitz equation, where the magnetic field is generated
by light via the inverse Faraday effect.
However, it must be noted that Eq. (9) has been derived for a monochromatic optical excitation
and using the approximation of thermal equilibrium. It is therefore interesting to consider the
situation when the product [E(ω) × E(ω)∗] changes much faster than the fundamental time-
scales in a magnetically ordered material, given by the spin precession period and the spin-
lattice relaxation time [25]. Consider the excitation of spins by a laser pulse with duration Δt =
100 fs. Using Fourier transformation one can see that such a laser pulse, being ultrashort in the
time domain, is spectrally broad (Δω ∼5 THz). Such laser excitation of spins is conveniently
described in the frequency domain (see Figure 2). Initially the electron is in the ground state |1〉
and its spin is up. If the state is non-degenerate, being an orbital singlet, the spin-orbit coupling
for the electron in this state can be neglected. If we act on this electron with a photon, dur-
ing the optical transition the wave-function of the electron becomes a superposition of several
eigenstates. This will effectively increase the orbital momentum of the electron, leading to an
increased spin-orbit coupling and thus resulting in an intensification of the spin-flip process. If
the energy of the photon is smaller than the gap between the ground state |1〉 and the nearest
excited state |2〉, the photon will not excite any real electronic transition, but just result in a
spin-flip of the electron in the ground state. (As the excitation involves a virtual state, the de-
excitation process is very fast). In other words, the spin-flip in the ground state is due to the fact
that circularly polarized light mixes a fraction of the excited-state wave function into the ground
state [25]. This process will be accompanied by the coherent re-emission of a photon of energy
�ω2 = �(ω1 − Ωm). In magnetically ordered materials �Ωm corresponds to the energy of a
magnon. Moreover, such a laser-induced spin-flip process can be coherently stimulated if both
frequencies ω1 and ω2 are present in the laser pulse (see Fig. 2). The time of the spin-flip pro-
cess τsf is given by the energy of the spin-orbit interaction in the perturbed ground state ESO.
For materials with a large magneto-optical susceptibility the energy of the spin-orbit coupling
may exceed 50 meV [29] and thus the spin-flip process can be as fast as τsf ∼ �/ESO ∼ 20 fs.
Note that such a spin-flip process is allowed in the electric-dipole approximation [30]. In con-
trast to magnetic dipole transitions, this mechanism is much more effective and does not require
annihilation of a photon. It means that the energy transfer from photons to spins (magnons) is
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Fig. 2: Ultrafast spin-flip via the process of the stimulated Raman scattering.

realized via an inelastic scattering process. While some photons loose a small part of their en-
ergy, the total number of photons remains unchanged. It is important to note that in a spin-flip
via stimulated Raman scattering, as described above, the stimulating and re-emitted photons
have identical polarization, implying that such induced spin-flip is not accompanied by a loss
of the angular momentum of the photons.

3 Measurements of the inverse Faraday effect at femtosecond
time-scales

The inverse Faraday effect was already predicted more than 40 years ago in a theoretical analysis
by Pitaevskii. He showed that circularly polarized light acts on a transparent dispersive medium
as an effective magnetic field and this may result in magnetization of the medium [23]. Soon
after the predicted inverse Faraday effect was observed in paramagnetic solids [25, 24] and in
plasmas [31]. These earlier studies demonstrated that excitation of a medium with a circularly
polarized laser pulse corresponded to the action of an effective magnetic field. For a 30 ns laser
pulse with a fluence of 107 W/cm2 the strength of the effective magnetic field was only 0.01 G.
Modern ultrafast laser systems are able to generate pulses shorter than 100 fs (10−13 sec) and
the fluence of the laser excitation may exceed 1012 W/cm2. Consequently one may expect that
a far stronger inverse Faraday effect is feasible with such pulses. Indeed, recent experimental
studies of the inverse Faraday effect in plasmas reported that circularly polarized light is able to
create an axial magnetic field of tens of kilogauss [32].
Only very recently an ultrafast inverse Faraday effect in a magnetically ordered material was
demonstrated for the first time [36]. The measurements were performed at a photon energy
of 1.55 eV using amplified 100 fs pulses from a Ti:sapphire laser at a repetition rate of 1 kHz
(Fig. 3). Using a pump and probe configuration, a laser pulse is split into two parts. The
most intensive pulse is used as a pump, while the less intensive one is used as a probe. Both
pulses follow different optical paths and are focused to the same spot on the sample. Due to
the direct magneto-optical Faraday effect, the magnetic changes induced by the pump can be
monitored via measurements of the angle of rotation of the polarization plane of the probe αF .
For the detection of the Faraday rotation a balanced two-photodiode detector was used. Varying
the time delay between pump and probe pulses one can monitor the temporal evolution of the
magnetic changes in the medium induced by the pump, with a resolution limited by the pulse
width. Making use of the fact that the speed of light is finite but high, the delay between pump
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and probe pulses can be sensitively varied by changing the length of the pump or probe paths: a
difference of 1 μm corresponds to a time difference of about 3 fs. The latter was accomplished
with the help of a mechanical delay-line that moved a retro reflector in the probe path. In order
to improve the signal-to-noise ratio, a combination of gate integration and lock-in technique
was used. In particular, a chopper modulated the pump beam at the frequency of 500 Hz. This
chopper was synchronized with the laser source such that it chopped out every second laser
pulse. The signal from the detector of the probe beam was sent to the gated integrator. The
latter was synchronized with the laser and set to integrate the signal from the detector in a
limited time-window. Since the photo-detector was rather slow, this time-window was set to a
few microseconds. The output signal from the integrator was fed to the lock-in amplifier. The
latter used the 500 Hz modulation frequency of the pump as a reference for the phase sensitive
detection of the signal. A detailed description of a similar detection technique has been also
described elsewhere [37]. The intensity ratio between the pump and probe pulses was about a
100. Both beams were focused on the sample to a spot diameter of about 200 μm for the pump
and somewhat smaller for the probe beam. The pump fluence on the sample was around 10 mJ
cm−2. The measurements were done in a cold finger cryostat where the temperature could be
stabilized in the range 15-300 K with a precision better than 0.5 K.

detector

delay line

Ti:sapphire
laser & amplifier

pump

probe

magnet

sample

��

��

Fig. 3: The scheme of the experimental setup for for studies of laser-induced spin excitations
with sub-picosecond temporal resolution.

In Ref. [36], the first observation of an inverse Faraday effect in a magnetically ordered struc-
ture, the material under study was DyFeO3. The rare-earth orthoferrites RFeO3 are a well-
studied family of magnetic compounds [38]. These materials crystallize in an orthorhombic
perovskite-type structure with four molecular units per unit cell, with space-group symmetry
(Pbnm). The spins of the Fe3+ ions (3d5, ground state 6A1g, S=5/2) are coupled antiferro-
magnetically by isotropic exchange. The Dzyaloshinskii-Moriya interaction [39, 40] leads to a
slight canting of opposite spins over an angle of about 0.5◦, giving rise to a spontaneous mag-
netization 4πMs=100 G at room temperature. Despite the fact that the magnetization in the
dysprosium orthoferrite is small, this material exhibits a large Faraday rotation owing to their
strong spin-orbit interaction [27, 29]. Thus the inverse Faraday effect is expected to be large in
this compound as well.
Figure 4 shows the temporal response of the Faraday rotation in a DyFeO3 sample cut perpen-
dicularly to the [001] crystallographic axis for two circularly polarized pump pulses of opposite
helicities. At zero time delay instantaneous changes of the Faraday rotation are observed. These
ultrafast changes of the magneto-optical signal can be explained in terms of nonlinear optical
polarizations induced during virtual and real optical transitions in the Fe3+ ions. The instanta-
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Fig. 4: Magnetic excitations in DyFeO3 probed by the magneto-optical Faraday effect. Two
processes can be distinguished: (1) instantaneous changes of the Faraday effect due to the photo
excitation of Fe ions and relaxation back to the high spin ground state S=5/2; (2) oscillations
of the Fe spins around their equilibrium direction with an approximately 5 ps period. The
circularly polarized pumps of opposite helicities excite oscillations of opposite phase. Inset
shows the geometry of the experiment. Vectors δH+ and δH− represent the effective magnetic
fields induced by right-handed σ+ and left-handed σ+ circularly polarized pumps, respectively.
[36]

neous changes of the Faraday rotation are followed by oscillations with a frequency of about
300 GHz. The frequency of these oscillations is in excellent agreement with the frequency of
the antiferromagnetic resonance in DyFeO3 (see below inset in Fig. 5). Thus the oscillations
of the Faraday rotation can be clearly assigned to spin oscillations. It is seen from the figure
that the phase of the laser-triggered spin oscillations depends on the helicity of the pump pulse.
Right-handed and left- handed circularly polarized pulses excite spin oscillations of opposite
phase. Therefore, this experiment clearly indicates an ultrafast and efficient coupling between
angular momentum of photons and spins.
Sending laser pulses along different crystallographic axes of DyFeO3, different modes of spin
wave precession could be excited, which gives us further insight into the excitation mechanism.
Fig. 5 shows the temperature dependence of the frequencies of the spin oscillations excited by
circularly polarized laser pulses. In particular, filled and open circles show the frequencies of
the oscillations excited by laser pulses propagating along the [001] and [100] crystallographic
axes, respectively. The lines show the temperature behavior of the frequencies of the quasi-
antiferromagnetic and quasi-ferromagnetic modes of magnetic resonance in DyFeO3. The fig-
ure clearly shows that laser pulses propagating along the [001] crystallographic axes trigger
the quasi-antiferromagnetic mode of the magnetic resonance. Note that this mode can only
be triggered if light acts on the spins as an effective magnetic field directed along the [001]
axis. Similarly, laser pulses propagating along the [100] crystallographic axis trigger the quasi-
ferromagnetic mode of the magnetic resonance, indicating that such pulses act on the spins as an
effective magnetic field directed along the [100] axis. Above T=55 K the magnetic anisotropy
favors orientation of the spins along the x axis with the weak magnetic moment aligned along
the z axis. The action of a strong magnetic field pulse will deviate the spins from their equi-
librium. Analyzing the torques experienced by the spins S1 and S2 due to the action of the
magnetic field pulse δH directed along the z or x axis (see Eq. 2) and taking into account the
antiferromagnetic coupling between the spins, one finds that the magnetic field will trigger spin
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Fig. 5: Temperature dependence of the frequencies of the observed spin oscillations. Filled and
open circles show the frequencies of the excited oscillations for laser pulses propagating along
[001] and [100] crystallographic axes, respectively. Red and blue lines show the frequency of
the quasi-antiferromagnetic (quasi-AFM) and the quasi-ferromagnetic (quasi-FM) resonance
modes from Refs. [38, 43]. Top right inset shows the temperature dependence of the oscillation
amplitudes. Top left and bottom right insets are respectively schematic representations of the
quasi-FM and quasi-AFM modes of the spin resonance. Vectors δH show the directions of the
instantaneous magnetic field that is equivalent to the laser excitation. [36]

oscillations around the equilibrium orientation and along the elliptical trajectories as shown on
the insets to Fig. 5. This has been also confirmed by a detailed theoretical investigation of the
laser-induced antiferromagnetic resonance in DyFeO3 [41]. All these studies unambiguously
show that a circularly polarized laser pulse acts on the spins as a short effective magnetic field
pulse directed along the wave-vector of light. A rough estimate shows that spin oscillations
with an amplitude as observed in the experiment can be triggered if a 100 fs laser pulse acts on
the spins as an equally short pulse of an effective magnetic field up to 1 T [42].

In addition it was verified experimentally, see Fig. 6(a) [36], that the amplitude of the effect
is linear-proportional to the incident laser intensity. This is in full agreement with Eq. (8)
that shows the quadratic dependence of the effective field on the incoming electromagnetic
field amplitudes, that is, linear on the intensity. Note that the extrapolation of the intensity
dependence shows that the photoinduced effect on the magnetization would reach the saturation
value of Ms at a pump fluence of about 500 mJ/cm2. The effect of such a 100 fs laser pulse on
the magnetic system would be equivalent to the application of a magnetic field pulse of about
10 T. According to our measurements, the absorption in DyFeO3 in the near-infrared spectral
range is of the order of 100-200 cm−1. Given this low value of the absorption, a photoexcitation
of 500 mJ/cm2 is still below the damage threshold of DyFeO3 and is thus quite feasible, given
a sample of high optical quality.
Fig. 6(b) shows the behavior of the excitation amplitude for the two different magnetic reso-
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nance modes the frequency of which is plotted in Fig. 5. To explain these dependencies, one
would have to evoke the microscopic probability of light scattering on particular spin-wave
modes in a particular geometry. Indeed, the process of stimulated Raman scattering as sketched
in Fig. 2, involves these probabilities. Generally speaking, they define the interaction of light
with magnetic materials, i.e. the coefficient αijk in the Eqs. (6-8).
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Fig. 6: (a) Amplitude of the excited precession as a function of the incident light intensity; (b)
The dependence of the excited spin precession amplitude on the sample temperature for the two
different spin wave modes of Fig. 5. [36]

4 Coherent control of spins

As shown above, a subpicosecond circularly polarized laser pulses affect the spins in magnet-
ically ordered materials as equally short pulses of effective magnetic field with strengths up
to 1 T. In this section we will show that using such opto-magnetic excitation one may coher-
ently control the spin precession in magnetically ordered materials. As a consequence, one may
amplify or stop the collective precession of spins on a femtosecond time scale.

4.1 Double pump excitation

Ultrafast coherent control of spin precession can be achieved by using multiple laser pulses in
rapid succession.
In Fig. 7 the results of such coherent control experiments are shown for a magnetic garnet.
Initially, for t < 0 the spins are aligned along the total effective magnetic field Heff that is of
the order of 0.05 T. A pump pulse of helicity σ+ arriving at t = 0 acts as a strong pulse of
magnetic field HF � Heff and thus it triggers precession of the magnetization, as explained in
the previous sections. A second pump pulse of helicity σ− arriving after an odd number of half
precessional periods rotates the magnetization further away from Heff , causing the subsequent
precession to have almost twice the amplitude (upper graph). If, however, this second pump
pulse arrives after an integer number of full periods, the magnetization is rotated back into its
original equilibrium orientation along Heff and no further precession takes place (lower graph).
Fig. 8 gives a pictorial illustration of these two situations. Similarly, circularly polarized light
can control the precession of antiferromagnetic spins in the THz domain (see Fig. 9).
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Fig. 7: Double pump experiment in magnetic garnet with circularly polarized laser pulses of
opposite helicity and 15 μJ pulse power. The upper panel shows the pump-induced change of
the sample transmittivity due to the photoexcitation of impurities. The lower panel shows how
amplification and complete stopping of the magnetization precession can be achieved depending
on the phase of the precession when the second laser pulse arrives. The time delay between the
two pump pulses is fixed at approximately 0.6 ns, and the precession frequency is controlled by
varying the external field. [45]

These experiments clearly demonstrate that femtosecond optical pulses can be used to directly
and coherently control spin motions. Depending on the phase of the precession when the second
pulse arrives, energy is either transferred from the laser pulse to the magnetic system (amplifi-
cation of the precession) or from the magnetic excitation to the optical pulse (stopping of the
precession). In view of the low intrinsic damping in the orthoferrites and garnets, and therefore
the long lifetime of their magnetic excitations, it is remarkable how ultrashort laser pulses can
completely and instantaneously stop the long period coherent precession of spins. This pro-
cess of transferring the energy back into the optical pulse can also be viewed as coherent laser
cooling of magnons.

The complex spin oscillations in orthoferrites triggered by a train of laser pulses has recently
been studied theoretically using nonlinear Landau-Lifshitz-Gilbert equations. It was demon-
strated that such a periodical excitation of spins results in various patterns of spin oscillations,
which depend on intensity and periodicity of the laser pulses [51].

It should be pointed out that the present double pump experiments, which demonstrate control
of the magnetization in ferrimagnetic garnets and antiferromagnetic orthoferrites, are consider-
ably different from those previously reported in diamagnetic and paramagnetic materials. Dur-
ing the past two decades a great number of publications has been devoted to the photoexcitation
of a nonequilibrium spin polarization in direct band gap semiconductors through the phenom-
ena of optical orientation [52, 53, 54]. In these materials, absorption of circularly polarized
photons may lead to a nonequilibrium population of spin polarized electrons and holes in the
conduction band and valence band, respectively. In paramagnetic semiconductors these spin
polarized carriers can cause partial alignment of the moments of magnetic ions due to a sp-d
exchange interaction, and thereby also affect their precession in a magnetic field [55]. Using
this phenomenon of optical orientation, Akimoto et al. [56] have demonstrated control of the
precession of Mn2+ moments in CdTe/Cd1−xMnxTe quantum wells. Note that this approach,
in contrast to our experiments, is based on the absorption of photons. A nonabsorptive mecha-
nism for manipulation of spins in Zn1−xCdxSe quantum well structures was reported by Gupta
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Fig. 8: Illustration of the double pump experiment for circularly polarized pump pulses of
opposite helicity arriving at an (a) odd number of half precessional periods and (b) an integer
number of full precessional periods. The magnetization is either rotated further away from
the effective field direction causing subsequent precession to take place with almost twice the
original amplitude, or the magnetization is rotated back into the effective field direction and no
further precession takes place.

et al. [57], who used below band gap optical pulses to control the spin precession of photoex-
cited electrons in the conduction band via the optical Stark effect. However, these experiments
were performed on paramagnetic materials, where coupling between the spins of magnetic ions
is small and the spins oscillate independently. Therefore, in a double pump experiment with
paramagnets, the first and second laser pulses can simply excite different spins so that the in-
tegrated signal will show either amplification or quenching of the oscillations. However, the
amplification and quenching of the oscillations in such an experiment would only mean that
the spins excited by the first and second pump pulses oscillate in-phase or out-of-phase, respec-
tively. In magnetically ordered materials, discussed in this review, spins are strongly coupled
by the exchange interaction and spin excitations are delocalized. Therefore, in contrast to para-
magnets, laser control of spins in magnetically ordered materials indeed means control of the
collective motion of spins. Additionally, control of the spin precession in paramagnetic semi-
conductors requires very low temperatures, typically below 10 K, and strong magnetic fields of
several Teslas. In contrast, the optical control of magnetization reported here can be done at
room temperature and in applied static magnetic fields well below 0.1 T.

4.2 Pulse shaping

As was shown above, the optical control of magnetism can be achieved via a two-photon pro-
cess, similar to stimulated Raman scattering. Generally, multi-photon processes can be reached
by many routes through a continuum of virtual levels. Therefore, the probability of a multi-
photon process can be controlled by the spectral phase distribution of a femtosecond laser pulse,
so that several paths leading to the final state interfere in a constructive or destructive way. This
means that the efficiency of the opto-magnetic interaction must be a function of the shape of
the laser pulse. By tuning the pulse shape we should thus be able to optimize opto-magnetic
interactions and achieve highly efficient laser-control of magnetism. Therefore, pulse-shaping
appears to be another effective tool to achieve an effective control over the spin motion at ultra-
fast time-scales.
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Fig. 9: Coherent control of spins in DyFeO3 with two circularly polarized laser pulses. a)
precession triggered by the first laser pulse; b) amplification of spin precession by the second
laser pulse that comes after an even number of full periods; c) stopping of the spin oscillations
by the second pump that comes after an odd number of half periods.

Pulse-shaping for control of quantum interference effects has attracted intense research inter-
est in molecular physics, bio-physics and chemistry as a mean to influence the outcome of a
quantum-mechanical interaction [58, 59, 60, 61, 62]. This technique, which is called coherent
quantum control, is so effective that specially tailored laser pulses may steer chemical reactions
[58] and control the energy flow in biological objects [59]. It has been recently demonstrated
theoretically [63] as well as experimentally [64] that adaptive shaping of the amplitude, phase
and polarization of femtosecond laser pulses can also be an effective tool for nanoscale local-
ization of ultrafast optical excitations. Here we show that the technique of coherent quantum
control and pulse shaping can also be used to control the energy flow from photons to spins.
To shape ultrashort laser pulses and thus to control the energy flow from photons to spins we
have built a programmable pulse shaper similar to the one described earlier [65]. More partic-
ularly, the shaper was composed of a pair of diffraction gratings with 1200 lines mm−1, and
a pair of cylindrical mirrors that played the role of achromatic lenses with a focal length of
F=300 mm (see Fig. 10). The first mirror and grating spatially map the complex spectrum
of the input pulse at the Fourier plane, where a spatial modulator is inserted. The second mir-
ror and grating reassemble the spectral components to form a modified time-shaped pulse. A
one dimensional programmable liquid-crystal spatial light-modulator array, composed of 320
computer-controlled discrete phase elements was placed at the Fourier plane of the shaper, and
was used for spectral phase manipulation of the pulses. The shaper was incorporated in the
pump-probe setup described above and the shaped pulses were used to excite spin oscillations.
To demonstrate coherent control of collective spin oscillations, or magnons, we have chosen
HoFeO3. An excitation of the crystal by an ultrashort Fourier limited circularly polarized laser
pulse propagating along [001] results in an effective excitation of collective spin oscillations.
In particular, at T=62 K the frequency of the resonance of Fe-spins in this compound is about
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Fig. 10: Principle scheme of the shaper for ultrashort laser pulses. F is the focal distance of
the lenses. In the real schemes the achromatic lenses are often substituted by cylindrical mirrors
[58, 59, 60, 61, 62, 65]

.

fs=280 GHz. In order to demonstrate the efficiency of the pulse-shaping we have performed
a series of experiments with the shaped pulses. We have used a periodic modulation of the
spectral phase of the ultrashort laser pulses for different frequencies of the modulation fm (see
Fig. 11a). From Fig. 11 one can see that the efficiency of the laser excitation of magnons is
indeed a function of the pulse shape. A transform-limited pulse (fm=0) gives the most effective
excitation. Most spectral phase perturbations will attenuate the efficiency of the laser excitation
of the spin oscillations, however periodic spectral phases with periodicity fs=fm will not. Such
periodic phase structures split an initial transform-limited pulse into a pulse sequence with a
repetition rate of fm. As it has been noticed earlier [60], such a pulse sequence can be used to
narrow down the response of the impulsive Raman excitation, i.e., to cancel all but the desired
spin-flip transition. It should also be noted that the effectiveness of pulse sequences exciting
vibrational levels was demonstrated by Weiner et al. [66]. In this subsection we have demon-
strated that the same principle also holds for the laser excitation of magnons.

5 All optical magnetic recording

As was demonstrated above, using femtosecond circularly polarized laser pulses one may trig-
ger spin oscillations and have a control over the spin motion at ultrafast time scales. However,
magnetization reversal induced by a subpicosecond stimulus, i.e. a true 180◦ switching of the
magnetization into a stable and oppositely magnetized state, has remained an important funda-
mental and technological challenge. Further adding to this challenge is the fact that for direct
transfer of angular momentum from the light to the magnetic system, the number of photons
available in optical experiments is far from enough [11]. Despite the predicted speed limit [2]
and shortage of photons, we here demonstrate that a single 40 femtosecond circularly polarized
laser pulse can cause well controlled permanent magnetization reversal in materials typically
used for data storage. The optical excitation causes an ultrafast heating of the magnetic sys-
tem which makes it highly susceptible to the magnetic field simultaneously generated by the
circularly polarized light pulse. The combination of theses two effects leads to magnetization
reversal in a reproducible way. No external magnetic field is required for this opto-magnetic
switching, and the stable final state of the magnetization is unambiguously determined by the
helicity of the laser pulse.
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Fig. 11: a) A periodic modulation of the spectral phase with the frequency Ωm. The bottom
panel shows the spectral profile of the pulse intensity. The phases of these spectral components
get a modulation sketched at the top panel. b) Excitation of magnons with the shaped laser
pulses. A transform-limited pulse (Ωm=0) gives the most effective excitation of the spin oscilla-
tions at the frequency Ωs=0.28 THz. Most spectral phase perturbations attenuate the efficiency
of the laser excitation of the spin oscillations, however the periodic change of spectral phases
with the periodicity Ωs=Ωm does not.

The switching experiments were done on GdFeCo, an amorphous ferrimagnetic alloy that is
widely used in magneto-optical recording [67] and known for its strong magneto-optical effects
[68]. Thin films of this alloy usually exhibit strong perpendicular magnetic anisotropy, a square
hysteresis loop and large magnetic domains which are easily observable in a polarizing micro-
scope. Our samples had a typical composition of Gd22Fe74.6Co3.4, a saturation magnetization
of about 4πM = 1000 G at room temperature, and a Curie point TC = 500 K. They were grown
by magnetron sputtering in a multilayer structure: glass/AlTi(10 nm)/SiN(5 nm)/GdFeCo(20
nm)/SiN(60 nm), where the AlTi layer served as a heat sink and SiN was used as a buffer and
capping layer. The experiments were performed by placing a sample under a polarizing mi-
croscope, where domains with magnetization “up” and “down” could be observed as white and
black regions, respectively. To excite the material we used regeneratively amplified pulses from
a Ti:sapphire laser at a wavelength of λ=800 nm and a repetition rate of 1 kHz. Each pulse
had a Gaussian intensity profile, with a width at half-maximum of 40 fs. The laser pulses were
incident normal to the sample surface, so that an effective optically generated magnetic field
would be directed along the magnetization. The beam was focused down to a 100 μm spot and
the laser-induced magnetic changes were studied by recording magneto-optical images of the
domain patterns before, during and after the laser excitation. This is a well known technique for
studying the magnetic material response to ultrashort field pulses [69, 70, 2]. The experiments
were performed at room temperature in air.

The effect of polarized laser pulses on the magnetization is most readily demonstrated by slowly
sweeping a laser beam across the surface of the sample. Figure 12 shows how three different
sweeps with the laser beam right-handed circularly polarized (σ+), linearly polarized (L), and
left-handed (σ−) circularly polarized affect the initial domain pattern in dramatically different
ways. The region exposed to linearly polarized light is turned into small domains randomly
oriented up or down. In striking contrast, the magnetization of the regions exposed to circularly
polarized light is completely switched into an “up”- or “down”-state (white or black) determined
only by the helicity of the optical excitation.
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Fig. 12: The effect of ultrashort polarized laser pulses on magnetic domains in Gd22Fe74.6Co3.4.
(a) Magneto-optical image of the initial magnetic state of the sample before laser exposure.
White and black areas correspond to “up” (M+) and “down” (M−) magnetic domains, respec-
tively. (b) Domain pattern obtained by sweeping at low speed ( 30 m/s) linear (L), right-handed
(σ+) and left-handed (σ−) circularly polarized beams across the surface of the sample, with a
laser fluence of about 11.4 mJ/cm2. The central area of the remaining spots at the end of each
scan line consists of small magnetic domains, where the ratio of “up” to “down” magnetic
domains is close to 1 [50].

In order to unambiguously determine whether excitation by a single 40 fs laser pulse is suffi-
cient to reverse the magnetization, the laser beam was swept at high speed across the sample, so
that each pulse landed at a different spot. The results of this experiment are shown in Figure 13
for the two helicities of the laser excitation. One can see that each of the σ+ pulses reverses the
magnetization in the black domain, but does not affect the magnetization of the white domain.
The opposite situation is observed when the sample is exposed to σ− pulses. Thus, during
the presence of a single 40 fs laser pulse, information about the photons’ angular momentum
is transferred to the magnetic medium, and subsequently switching occurs when the optically
generated field is in the opposite direction of the initial magnetization. These experiments un-
ambiguously demonstrate that all-optical magnetization reversal can be achieved by single 40
femtosecond circularly polarized laser pulses without the aid of an external magnetic field. The
actual speed of the magnetization reversal is still an intriguing question and subject to current
experimental investigations. However, it can be estimated quite accurately by considering the
coherence time of optical excitations in metals. During the 40 fs interaction of the optical pulse
with the sample, information about the angular momentum of the photons is transferred to the
electrons via electric-dipole transitions. However, the electrons loose this information very
rapidly, typically within 200 fs, due to decoherence processes such as electron-electron and
electron-phonon collisions [71, 72]. Moreover, the optical spectrum of Gd22Fe74.6Co3.4 does
not show any narrow lines, thus excluding the possibility of any long-lived electronic states
acting as a reservoir of angular momentum. It follows that the actual magnetization reversal
must take place on a sub-picosecond time scale, as this is the only way for the helicity infor-
mation to survive. The complete recovery of the magnetization in the new state will be a much
slower process determined mainly by the speed of heat diffusion in the sample. As a simple
illustration of opto-magnetic recording it is shown in Figure 13(b) how optically written bits
can be overlapped and made much smaller than the beam waist by modulating the polarization
between σ+ and σ− while the laser beam is swept across the sample. High density recording
may also be achieved by employing especially designed near-field antenna structures [73] such
as those currently being developed for HAMR. With the recent development of compact ultra-
fast laser systems [74] and the successful incorporation of lasers in magnetic storage devices
[73], the present demonstration of ultrafast and all-optical magnetization reversal might spur
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the realization of a new generation of all-optical magnetic recording devices.

b) a) 

σ+

-σ

 µm150

Fig. 13: All-optical magnetic recording by femtosecond laser pulses. (a) The effect of single
40-fs circular polarized laser pulses on the magnetic domains in Gd22Fe74.6Co3.4. The domain
pattern was obtained by sweeping at high-speed ( 50 mm/s) circularly polarized beams across
the surface so that every single laser pulse landed at a different spot. The laser fluence was
about 2.9 mJ/cm2. The small size variation of the written domains is caused by the pulse-to-
pulse fluctuation of the laser intensity. (b) Demonstration of compact all-optical recording of
magnetic bits. This was achieved by scanning a circularly polarized laser beam across the
sample and simultaneously modulating the polarization of the beam between left- and right
circular [50].

6 Conclusions

We have summarized the recent progress in the study of ultrafast laser manipulation of spins in
magnetic materials. It was shown that in addition to the well-known magneto-optical Faraday
effect, where the polarization of light is affected by magnetization, the same magneto-optical
susceptibility determines the inverse, opto-magnetic phenomenon: circularly polarized light
affects the magnetization via the inverse Faraday effect. Due to this opto-magnetic phenomenon
an intense 100 fs circularly polarized laser pulse acts on the spins similar to an equivalently short
effective magnetic field pulse up to 1 T. Using this opto-magnetic effect one may selectively
excite different modes of magnetic resonance, realize quantum control of magnons and trigger
magnetic phase transitions on a subpicosecond time-scale. Finally, it has been demonstrated
that with a single 40 fs circularly polarized laser pulse the magnetization can be reversed in a
controllable way without the aid of any applied magnetic field. The direction of this switching
is determined only by the helicity of the light pulse. We are strongly convinced that all these
findings open new insights into the understanding of ultrafast magnetic excitation and, regarding
recent progress in the development of compact ultrafast lasers [74], may provide new prospects
for applications of ultrafast opto-magnetic phenomena in magnetic storage and information
processing technology.
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1 Introduction

Quantum information technology is a fast developing field where the unique properties of quan-
tum mechanics are used for computation or communication. In contrast to a bit processed in
a conventional computer, which can only be in the state 0 or 1, here the bit is constituted by a
quantum mechanical two-level system, the so-called qubit. A well-known example of a two-
level system is the two states of an electron with spin 1/2 in a static magnetic field. What
make the quantum bit so powerful is that superpositions of the two quantum states are allowed.
If this property, which has no counterpart in conventional computers, is cleverly used, some
computational problems can be solved much faster. The reason for this is that by employing a
superposition of quantum states a quantum algorithm effectively calculates very many solutions
in parallel. A prominent example of this kind of algorithm is Shor’s prime number factorization,
where a large number is decomposed into its prime factors [1]. As illustrated in Fig. 1, Shor’s
algorithm can factorize a large number exponentially fast compared to a classical computers.
A quantum computer is not commercially available, yet, as the technology to build such a device
is still in an early stage and up to now systems with only a few quantum bits have been realized
[2]. Of course, this is not sufficient for serious applications. One of the problems scientists face
is the loss of coherence of the quantum mechanical state, due to the coupling of the quantum bit
to the environment. If the coherence is lost during the computational sequence, the final result
is meaningless.
Since quantum mechanics is one of the very fundamental principles in physics, many different
experimental realizations in various fields of physics have been proposed. Quantum computing
with a few quantum bits has been demonstrated by using nuclear magnetic resonance (NMR)
[3]. Another possibility is to manipulate the electronic states of ions stored in a trap [4]. Quan-
tum bits can also be realized in solid-state systems, in particular by using quantum dots [5, 6],
single impurities in a semiconductor [7] or Josephson junctions [8, 9, 10].
In this lecture we will only discuss the basic principles of quantum computation. Quantum bits
and quantum registers will be introduced first. Later on it will be discussed how the state of
a quantum bit can be manipulated by means of a quantum gate. We will distinguish between
two different gates, the single-qubit gate, where the state of single qubit is modified, and a
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Fig. 1: Completion time as a function of number size for a classical and a quantum factorization
algorithm, respectively.
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two-qubit gate, where the first qubit controls the state of the second one. Furthermore, we will
discuss what else is required to build a properly operating quantum computer. In the last part
the basic ideas of the two most popular quantum algorithms, the Shor and Grover algorithm will
be explained.

2 Quantum Bits and Quantum Registers

In this section the basic elements of a quantum computer, the quantum bit and the quantum
register are discussed. We will start by defining the smallest unit, the quantum bit and we will
see what strange things can happen if more quantum bits are combined.

2.1 Quantum Bit

The basic element of a quantum computer is the quantum bit, or qubit, which can be viewed as
an extension of the classical notion of a bit. As illustrated in Fig. 2 (a), in a classical computer
only 0 and 1 are possible values corresponding to zero and a fixed finite voltage level [11].
Similarly, a qubit consists of a quantum mechanical two-level system. However, the crucial
difference is that in addition to the two eigenstates |0〉 and |1〉 a qubit can be configured in any

Fig. 2: (a) Possible values in a digital computer. Here, the signal is switched between the values
0 and 1. (b) In a quantum mechanical two-level system the partical can be in the ground state
|0〉 or in first excited state |1〉 but also in a superposition of both. (c) Schematic illustration of a
digital computer. The calculation is performed by means of gates, e.g. inverters or NAND-gates
(inverted AND). (d) Schematics of a 3-qubit quantum computer. The qubits are manipulated by
single-qubit gates (U) and two-qubit gates (XOR).
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Fig. 3: Zeeman-splitted spin up |0〉 and spin down |1〉 states representing a qubit. The energy
splitting is given by �ωp, with ωp the cyclotron frequency.

superposition of these eigenstates1

|Q〉 = c0|0〉+ c1|1〉 . (1)

In contrast to the classical bit, a qubit can be prepared in an infinitive number of appropriate
quantum states by choosing different coefficients c0 and c1. The qubit state is normalized so that
|c0|2 + |c1|2 = 1. The two eigenstates usually correspond to the ground and excited states of a
two-level system, as depicted in Fig.2 (b). A possible realization is the Zeeman splitting of the
spin-up and spin-down state of a spin-1/2 particle (s = ±1/2), i.e. an electron, in a magnetic
field B. The corresponding two basis vectors can be represented by

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
. (2)

The qubit can then be expressed by

|Q〉 =

(
c0
c1

)
. (3)

In case of an electron in a magnetic field B, the two-level system is described by the Hamilto-
nian

H =
1

2
g∗μBBσ , (4)

with g the effective gyromagnetic factor.2 The Bohr magneton is defined as μB = e�/2m0, with
e the elementary charge andm0 the free electron mass. The components of the σ = (σx, σy, σz)
are the Pauli spin matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (5)

As illustrated in Fig. 3, if one assumes a constant field along the z-direction: B = (0, 0, Bz),
the Zeeman effect leads to a splitting of the spin-up and spin-down states. The level splitting is
given by ΔE = gμBBz, which can be rewritten as

ΔE = �ωp , (6)

1Here, we used the Dirac notation which allows us to describe quantum mechanical states without defining a
particular set of basis vectors.

2In order to be consistent with the usual notation in quantum computation, we assume a negative g∗-factor so
that the spin-up state is the ground state, i.e. the state with the lower energy. A negative g∗-factor is found for
example in GaAs.
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Fig. 4: Bloch spheres illustrating different states of a spin 1/2-particle. (a) and (b) spin-up and
spin-down state along the z-direction. (c) Superposition state 1/

√
2(|0〉+ |1〉) pointing towards

the x-direction. This state is an eigenstate of σx.

with
ωp = |g|μBBz/� (7)

the precession frequency. We will see below, ωp plays an important role for the manipulation of
a qubit.
The state of a spin-1/2 can best be visualized by using a Bloch sphere. Here, all possible spin
orientations are mapped on a sphere. Using this scheme, the spin-up and spin-down state are
illustrated in Fig. 4 a) and b), where the arrows representing the spin states point towards the
±z-direction, respectively. For the superposition state 1/

√
2(|0〉 + |1〉), which is an eigenstate

of σx, the arrow points towards the x-direction, as shown in Fig. 4 c).
Although an infinitive number of quantum states can be realized in a qubit state, a single qubit
cannot be used to transmit more than one bit of information. This is due to the fact that in
quantum mechanical systems only eigenstates of the quantum system are finally detected by the
measurement procedure. For a superposition state, as given by Eq. (1), the final measurement
will return 0 with probability |c0|2 and 1 with probability |c1|2. Thus, after the measurement the
state of the qubit will either be the eigenstate |0〉 or |1〉 but definitely not in a superposition of
both. Returning back to the spin 1/2-particle: If the spin orientation would be measured, e.g. by
a Stern-Gerlach apparatus, the spin-up state would be measured with probability |c0|2 and the
spin-down state with probability |c1|2.
Of course as a final result of a computation a superposition state is useless, because no unam-
biguous outcome is produced. Thus, at the end of a computation an eigenstate is required as a
result. However, one should keep in mind that during calculation superposition states are very
important, since they are responsible for the higher performance of quantum algorithms.

2.2 Quantum Register

A collection of qubits, which is usually called quantum register, can be used to encode more
complex information. In the schematics of a quantum computer depicted in Fig. 2 (d) the
quantum register contains three quantum bits. As a very simple example a two-qubit register
can be composed from the following set of eigenvectors:

|0〉2 ⊗ |0〉1 = |00〉 , |0〉2 ⊗ |1〉1 = |01〉 , |1〉2 ⊗ |0〉1 = |10〉 , |1〉2 ⊗ |1〉1 = |11〉 . (8)
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Here,⊗ denotes the direct product of the vectors. The indices specify the first and second qubit.
By using this set of basis vectors a general superposition of these state is given by

|ψ〉 = c0|00〉+ c1|01〉+ c2|10〉+ c3|11〉 . (9)

Instead of writing the basis vectors as given in Eq. (8), we can also use the notation

|00〉 = |0〉 , |01〉 = |1〉 , |10〉 = |2〉 , |11〉 = |3〉 , (10)

which is sometimes easier to handle if many qubits are involved. Generally, for an n-bit quan-
tum register we can write:

|ψ〉 =
2n−1∑
i=0

ci|i〉 . (11)

For an n–qubit state we obtain 2n states |i〉. Please note that by preparing a superposition state
all these states are simultaneously present.

2.3 Entangled States

A closer look on two or more qubit registers reveal that states can be prepared where the states
of constituting qubits in a register are not independent. This situation is called entanglement. A
typical two-qubit entangled state is given by:

|ψ〉 =
1√
2

(|1〉2 ⊗ |0〉1 − |0〉2 ⊗ |1〉1) (12)

=
1√
2

(|10〉 − |01〉)

Here, |0〉1 and |1〉1 are states constituting the first qubit, while |0〉2 and |1〉2 are the correspond-
ing states of the second qubit. An entangled state cannot be factorized into an expression like:

|ψ〉 = |m〉2 ⊗ |n〉1 . (13)

A typical representative of a state which can be factorized is given by

|ψ〉 =
1√
2

(|1〉2 ⊗ |0〉1 − |1〉2 ⊗ |1〉1) , (14)

since we can simplify it to

|ψ〉 =
1√
2
|1〉2 ⊗ (|0〉1 − |1〉1) , (15)

corresponding to Eq. (13).
What is the consequence of entanglement? Let us assume that we are able to measure the state
of the first qubit of the state given by Eq. (13). If the result would be |0〉1, it directly implies that
the second qubit is in the state |1〉2. This behavior is of special importance, if the two qubits
are represented by two polarized photons emitted in two opposite directions. A measurement
of the polarization state of the first photon directly implies the polarization state of the second
photon, although the detectors of the photons can be very far apart. Fundamental questions, how
the second photon knows about the state of the first one are addressed in the famous article by
Einstein-Podolsky-Rosen (EPR) [12]. Entanglement is also of outmost importance for quantum
key distribution. Here, a secure key is generated by transmitting entangled photon between two
parties. In the second step this key is used to encode information. The securities of this scheme
is ensured by the fact that a possible eavesdropper can be discovered.
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3 Quantum-Gates

The state of a qubit or of a set of qubits is controlled by quantum-gates. This is in analogy
to boolean gates, e.g. to an inverter or AND gate in classical digital computers, where the
corresponding truth tables are given in Table 1.

a b
0 1
1 0

a b c
0 0 0
0 1 0
1 0 0
1 1 1

Table 1: Truth table of a NOT and AND gate. For the NOT gate a is the input parameter and b
the output parameter. For the AND gate a and b are the input parameters and c the output.

Interestingly, by using an inverter (NOT gate) and an AND gate any boolean expression can be
constructed. If we combine an AND and a NOT gate to form a NAND gate, even a single gate is
sufficient to synthesize any boolean operation. In quantum computing the gates are represented
by unitary transformations. Similar to conventional computers, one can define gates which are
applied to a single qubit or gates, which connect two or more qubits. Furthermore, it was found
that a set of two quantum gates is sufficient to implement all quantum computer operations.

3.1 Single-Qubit Gate: Basics Concept

By performing quantum computational operations, the qubit states are changed in course of
time. The eigenstates |0〉 and |1〉 themselve are fixed, only the probabilities for their occupation,
expressed by the coefficients c0(t) and c1(t) are explicitly time-dependent:

|Q(t)〉 = c0(t)|0〉+ c1(t)|1〉. (16)

In quantum gate operations the coefficients c1(t) and c2(t) are changed in a defined manner, e.g.
by applying an external magnetic field for a well-defined period of time.
In order to express the following single-qubit operations more compactly, the qubit state needs
to be described a little bit more formally

|Q(t)〉 =
∑
i=0,1

ci(t)|i〉 . (17)

The basis vectors defining the qubit are orthonormal which implies that they fulfill

〈i|j〉 = δij , i, j = 0, 1 . (18)

Here, 〈i| are the vectors of the dual space while 〈. . . | . . . 〉 denotes the inner product. For
example, by using the definition of the inner product the coefficients ci(t) can be extracted by:

〈i|Q(t)〉 = 〈i|
∑
j=0,1

cj(t)|j〉 = ci(t) . (19)
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In the framework of quantum mechanics the gate operation on a qubit corresponds to a transfor-
mation of the state in the course of time, which can be described by means of the Schrödinger
equation

i�
∂

∂t
|Q(t)〉 = H(t)|Q(t)〉 , (20)

where H(t) is the Hamilton operator. Inserting the definition of |Q(t)〉, as given by Eq. (17),
into the Schrödinger equation and multiplying by 〈i|, we obtain a set of two equations for the
coefficients c0(t) and c1(t):

〈i|i� ∂
∂t
|Q(t)〉 = 〈i|H(t)|Q(t)〉

〈i|i�
∑
j=1,2

∂

∂t
cj(t)|j〉 = 〈i|H(t)

∑
j=1,2

cj(t)|j〉 (21)

i�
∂ci(t)

∂t
=

∑
j=1,2

Hij(t)cj(t) . (22)

Here, Hij(t) = 〈i|H(t)|j〉 are the elements of the Hamilton matrix. In order to obtain the values
of the coefficients c0(t1) and c1(t1) at time t = t1, the two equations have to be integrated in the
interval [t0, t1], where t0 is the initial time.
A single-qubit gate operation is realized by switching on a Hamiltonian for a period of time
Δt = t1 − t0 and thus modifying the coefficients c1(t) and c2(t). As we will see below, for
a spin-1/2 particle this can be realized by applying an oscillating magnetic field for a certain
period of time. In this case the gate operation relies on the coupling of the magnetic moment of
the particle to the field.
In order to clarify how the qubit is changed after a short period of time Δt we write the
Schrödinger equation as follows

ci(t0 + Δt)− ci(t0)
Δt

= − i
�

∑
j

Hij(t0)cj(t0) . (23)

By regrouping this equation we get for the final state of the qubit at time t1:

ci(t1) = ci(t0 + Δt) =
∑

j

[
δij − i

�
Hij(t0)Δt

]
cj(t0) (24)

The matrix on the right side is a unitary matrix and can be summarized by defining:

Uij(t0 + Δt, t0) = δij − i

�
Hij(t0)Δt (25)

Thus, the change of the qubit state between t0 and t1 calculated by integrating the Schrödinger
equation what can be expressed by a unitary transformation U . For a qubit represented by a
two component vector defined by Eq. (3), U can be described by a unitary 2× 2 transformation
matrix (Fig. 5):3

(
c0(t1)

c1(t1)

)
= U

(
c0(t0)

c1(t0)

)
=

(
U11 U12

U21 U22

)(
c0(t0)

c1(t0)

)
. (26)

3An unitary matrix has the property: U †U = 1, with U † the adjoint matrix defined by U † = (U∗)T .
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Fig. 5: Quantum circuit diagram of an single-qubit gate. The gate operation is described by a
unitary transformation.

This unitary matrix U represents the single-qubit gate operation. In the following two sec-
tions we will specify U in more detail by discussing two possible realizations of a single-qubit
gate, i.e. the Hadamard transformation and the manipulation of a spin-1/2 quantum bit by an
oscillating field.

3.2 The Hadarmard Transformation as a Single-Qubit Gate

A well-known representative of a single-qubit gate is the Hadamard transformation defined by
the following unitary matrix

UH =
1√
2

(
1 1

1 −1

)
. (27)

The Hadamard transformation can be used to conveniently generate a superposition state out of
an eigenstate. This operation is often the first processing step in quantum algorithms, e.g. the
Deutsch-Josza algorithm [15]. Let us assume our qubit is in the ground state |0〉. Applying a
Hadamard transformation results in

1√
2

(
1 1

1 −1

)(
1

0

)
=

1√
2

(
1

1

)
. (28)

Thus, as illustrated in Fig. 6, we end up with the superposition state 1/
√

2(|1〉+ |0〉). One can

Fig. 6: Hadamard transformation (single-qubit operation) on a spin-1/2 particle in the ground
state. By applying the Hadamard transformation once again the initial spin orientation is re-
covered.
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easily verify that by applying a Hadamard transformation once again the superposition state
returns back to the ground state |0〉 (see Fig. 6).
Of course Hadamard single-qubit gates can also be applied to qubit registers. For simplicity,
let us consider a two-qubit register which is initially in the ground state |00〉. If we apply the
transformations UH,1 and UH,2 to the first and to the second qubit, respectively, we end up with

UH,2 UH,1 |00〉 =
1

2
(|00〉+ |10〉+ |01〉+ |11〉) . (29)

Thus by performing two simple one-qubit gate operation the ground state of a quantum register
|00〉 is transformed to a superposition of all four basis states. As mentioned above, to be able
to generate a superposition state is of outmost importance for quantum computation, since the
strength of its concept lies in the parallel processing of all states.

3.3 Single-Qubit Manipulation by an Oscillating Magnetic Field

When we discussed the Hadamard transformation as a representative of a single-qubit gate we
did not care how such a gate can actually be realized. Now we will explain how a single-qubit
gate can be put into action by switching on a Hamiltonian. Let us return to our prototype qubit,
i.e. the single electron with spin 1/2. By coupling the magnetic moment of the electron to an
external magnetic field B the spin state can be modified. The process is illustrated in Fig. 7.
The Hamiltonian describing this coupling was already given by Eq. (4). In contrast to the
previous case with a constant magnetic field Bz, now a magnetic field rotating in the xy-plane
with frequency ωp and amplitude B0 is applied for a certain period of time. Thus, in total the
magnetic field is given by:

B =

⎛
⎝B0 cosωpt

B0 sinωpt

Bz

⎞
⎠ (30)

By inserting B into Eq. (4) one arrives at the following explicit form of the Schrödinger equation

i�
∂

∂t

(
c0(t)

c1(t)

)
=

1

2
gμB

(
Bz Bx − iBy

Bx + iBy −Bz

)(
c0(t)

c1(t)

)
. (31)

Assuming the ground state |Q(t0)〉 = (1, 0) to be the initial state at t = t0 one finds the
following solution for the quantum bit after the oscillating field is applied for a period of time

Fig. 7: Coherent transitions of Zeeman-splitted electrons by applying a magnetic field rotating
in the xy-plane with frequency ωp. The level splitting is achieved by applying a constant field
Bz along the z-direction.
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Δt = t1 − t0:
|Q(t1)〉 =

(
cos(ΩΔt/2) exp(+iωpΔt/2)

i sin(ΩΔt/2) exp(−iωpΔt/2)

)
, (32)

with the characteristic frequency Ω defined by

Ω = |g|μBB0/� . (33)

In order to get some insight what happens to the qubit after the period of time Δt, one can
calculate the expectation values of the spin in the different directions:

〈sx〉 =
�

2
〈Q(t2)|σx|Q(t2)〉 =

�

2
sin(ΩΔt) sin(ωpΔt) (34)

〈sy〉 =
�

2
〈Q(t2)|σy|Q(t2)〉 =

�

2
sin(ΩΔt) cos(ωpΔt) (35)

〈sz〉 =
�

2
〈Q(t2)|σz|Q(t2)〉 =

�

2
cos(ΩΔt) (36)

One finds by looking at 〈sz〉 that in the course of time the spin oscillates with frequency Ω
between the ground state |0〉 (spin-up) and the excited state |1〉 (spin-down), e.g. after applying
the oscillation field for a period Δt = π/Ω the electron is transferred from the ground state |0〉
into the excited state |1〉. As can be inferred from Eq. (33), the time required to flip the spin is
determined by the amplitude B0 of the oscillation field.
The effect of the oscillation field on the qubit can best be visualized by making use of the
Bloch sphere. For the case where the oscillation field is applied for a period Δt = π/Ω the
spin is flipped from the top to the bottom pole, as illustrated in Fig. 8 a). However, the spin
is not simply flipped but rather precesses about the z-axis while turning downwards. The spin
precession is due to the second factors in Eqs. (34+35). The precession frequency is ωp.
If the oscillation field is only applied for a period Δt = π/2Ω one can infer from Eq. (32) that
a superposition state is obtained. The spin is now located in the xy-plane. If the amplitude
B0 of the oscillating field is properly adjusted one can for example transfer the |0〉 state to
the 1/

√
2(|0〉 + |1〉 state, as illustrated in Fig. 8 b). Note, that after performing this transition

and switching off the oscillating field the spin precesses about the z-axis with the precession

Fig. 8: (a) Flip of the spin-up state |0〉 (red arrow) to the spin-down state |1〉 (green arrow).
The trajectory of the spin is illustrated by the orange line. (b) Transition from the |0〉 state (red
arrow) to the superposition state 1/

√
2(|0〉+ |1〉) (green arrow). If the field is switched off after

the transition, the spin precesses clockwise in the xy-plane as illustrated by the green line.
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frequency ωp, thus the qubit does not keep its state in the course of time. Technically this is not
a big problem. For example, one can compensate this effect by working in a reference frame
rotating at with ωp [16].
So far, we only considered the ground state as the initial state. One can generalize the special
case discussed above by allowing any superposition state for the qubit. For this case the qubit
manipulation can be expressed as

(
c0(t1)

c1(t1)

)
= UR

(
c0(t0)

c1(t0)

)
(37)

with the corresponding unitary matrix given by

UR =

(
cos(ΩΔt/2) exp(iωpΔt/2) i sin(ΩΔt/2) exp(−iωpΔt/2)

i sin(ΩΔt/2) exp(iωpΔt/2) cos(ΩΔt/2) exp(−iωpΔt/2)

)
. (38)

Interestingly, the matrix UR can be decomposed in a product of two matrices

UR =

(
cos(ΩΔt/2) i sin(ΩΔt/2)

i sin(ΩΔt/2) cos(ΩΔt/2)

)(
exp(iωpΔt/2) 0

0 exp(−iωpΔt/2)

)

= Rx(ΩΔt)Rz(ωpΔt) .

We can interpret this outcome as a combination of two rotation of the spin, i.e. a rotation Rx

with the angle ΩΔt about the x-axis and a rotation Rz with the angle ωpΔt about the z-axis.
After the period Δt the qubit is transferred to

|Q(t1)〉 = Rx(ΩΔt)Rz(ωpΔt)|Q(t0)〉 .

In summary, spin rotation matrices can be used to generate any desired single-qubit gate. The
spin rotation is determined by the time and amplitude of the applied oscillating field.

3.4 Two-Qubit Gates

We now turn to quantum gates, which are applied to two quantum bits. A typical two-qubit gate
is the controlled NOT or exclusive OR (XOR) gate. In boolean computers the output is set to 1
if either the first or the second input is 1. If both are 1 the output is 0 again. The corresponding
circuit diagram for qubits can be found in Fig. 9. In an XOR gate, a target qubit |b〉 is flipped if

Fig. 9: Quantum circuit diagram of an XOR gate. The lower bit |b〉 (target qubit) is flipped if
|a〉 (source qubit) is set.
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a b a⊕ b
0 0 0
0 1 1
1 0 1
1 1 0

⇐⇒

|a, b〉 |a, a⊕ b〉
|00〉 |00〉
|01〉 |01〉
|10〉 |11〉
|11〉 |10〉

Table 2: Truth table of a XOR (CNOT) gate for a boolean and for a quantum computer.

a control qubit |a〉 is in the |1〉 state. As long as |a〉 is in the state |0〉 no action is taken on |b〉.
The corresponding truth table is given in Table 2. An important conceptual difference between
the the XOR gate in boolean and quantum computers is that in quantum gates, the number of
inputs and outputs are always identical. The quantum bits are both still present after the gate
operation.
The XOR gate is an unitary transformation on states spanned by a set of four basis vectors. If
we define the following set of basis vectors

|00〉 =

⎛
⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎠ , |01〉 =

⎛
⎜⎜⎜⎝

0

1

0

0

⎞
⎟⎟⎟⎠ , |10〉 =

⎛
⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎠ , |11〉 =

⎛
⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎠ , (39)

we can express the XOR gate by the unitary 4× 4 matrix

UXOR =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠ . (40)

The XOR gate can be used to produce an entangled state out of two formerly non-entangled
states. For this purpose we set the control qubit |a〉 (source-qubit) to a superposition state
1/
√

2(|0〉− |1〉) and the target qubit to |b〉 = |1〉. The input state is thus given by 1/
√

2 (|01〉−
|11〉), which is non-entangled, since it can be factorized in 1/

√
2(|0〉 − |1〉)⊗ |1〉. Applying an

XOR gate we obtain

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0

1/
√

2

0

−1/
√

2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

1/
√

2

−1/
√

2

0

⎞
⎟⎟⎟⎠ . (41)

Thus the result is an entangled state given by 1/
√

2 (|01〉 − |10〉).
The XOR gate can also be used as a measurement gate to obtain the output value of a calculation,
since it can reproduce the result of one input state on both output gates [17]. For this purpose
we set the target gate |b〉 to |0〉. As can be seen from the truth table of the XOR gate, both
lines at the output reproduce the state of the source gate |a〉. The output is either |00〉 or |11〉.
This process can be used to perform a non-demolition measurement of a qubit by generating
a second one in the same state, which is used for the measurement process. Furthermore, this
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configuration can be used to produce fanout, i.e. coupling the output to more than one inputs, if
a coupling to two gate inputs in the following calculation step is required.
The XOR gate is only one out of many possible two-qubit-gates. Another possible two-qubit
gate is the so-called controlled rotation (CROT) [18], which is described by the matrix

UCROT =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠ . (42)

Here, a rotation on the second qubit is performed if the control qubit is set to |1〉. The name
controlled rotation originates from the fact that in case the control qubit is set, the σz Pauli spin
matrix which describes a spin rotation about the z direction is applied to the target qubit.
One can show that any two-qubit gate can be transferred to the XOR gate by performing a se-
quence of single-qubit operation. In the case of a CROT gate this can be achieved by performing
single-qubit rotations on the target qubit |b〉 about the y-axis:

Ry,|b〉(θ) =

⎛
⎜⎜⎜⎝

cos θ/2 sin θ/2 0 0
− sin θ/2 cos θ/2 0 0

0 0 cos θ/2 sin θ/2
0 0 − sin θ/2 cos θ/2

⎞
⎟⎟⎟⎠ (43)

As can be easily verified, performing a θ = π/2 rotation before the CROT operation and finally
a rotation with θ = π/2 the XOR gate is recovered:

Ry,|b〉(−
π

2
)UCROTRy,|b〉(

π

2
) =

1
2

⎛
⎜⎜⎜⎝

1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 1 0 0
−1 1 0 0
0 0 1 1
0 0 −1 1

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎠ = UXOR (44)

It was shown that any possible quantum algorithm can be realized in the basis of only a single-
qubit gate and a XOR gate. However, for some physical realizations of a quantum computer
it is not always straightforward to realize a XOR gate, i.e. in case of a quantum computer
based on trapped ions a CROT gate is easier to implement. In order to prove that a certain
type of realization of a quantum computer can be used universally, it is sufficient to find a
transformation of an implemented two-qubit gate to a XOR gate. As shown above, for the
CROT gate this can be achieved by performing single qubit rotations.
If we take our spin-1/2 particles for the realization of a qubit, the exchange interaction between
two particles can be used to implement a two-qubit gate. The corresponding Hamiltonian for
two coupled electron spins can be expressed as:

H = Jσ1 · σ2 , (45)

where J is the exchange coupling parameter and σ1, σ2 are the spins operators of particle 1
and 2, respectively. In the famous proposal of Loss and Divincenzo [5] the single electrons
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Quantum system tswitch [s] τdec [s] Ratio

Electrons GaAs 10−13 10−10 103

Electrons Au 10−14 10−8 106

Trapped ions: In 10−14 10−1 1013

Optical microcavities 10−14 10−5 109

Electron spin 10−7 10−3 104

Electron quantum dot 10−6 10−3 103

Nuclear spin 10−3 104 107

Table 3: Typical times for quantum mechanical two-level systems, which are possible candi-
dates for a realization of a qubit [19].

representing the qubit are confined in a split-gate quantum dot structure. The two-qubit gate
operation is put into action by lowering the electrostatic barrier between both quantum dots.
The onset of electron tunneling between both quantum dots results in the exchange interaction
expressed by Eq. (45). Due to the coupling between both spins one qubit is changed as a
function of the state of the other one.

4 Decoherence

So far, we discussed a rather ideal quantum computer composed of qubit registers and a set
of quantum gates. However, reality is not that perfect. One important aspect, which has not
been addressed yet, is the decoherence of quantum systems. Decoherence occurs due to the
fact that a quantum system is not completely isolated from its environment. The quantum
dynamics of the surrounding setup couple to a certain extent to the states of a quantum computer.
Decoherence is a very serious problem, since the computational pathways which are separated
at the beginning of the calculation are only recombined at the very end. Thus, if something gets
wrong in between, the final result is completely meaningless.

The decoherence is characterized by the decoherence time τdec. Its inverse is a measure of the
coupling of a single qubit with its environment. In order to perform a successful computa-
tion with a quantum computer, the decoherence time must be much longer than the expected
operating time of the computation. The latter is determined by the number of computational
switchings and the time required to perform each of these steps. Typical values of the minimum
switching time tswitch, the decoherence time τdec and the resulting maximum number of steps
given by the ratio τdec/tswitch are summarized in Table 3 for various two-level systems [19].

Qubit states destroyed by decoherence can be recovered if error correction schemes are applied,
as was first found out by Shor [20]. The major ingredient is the introduction of redundancy.
The error correction relaxes somewhat the requirements resulting from the numbers given in
Table 3. However, the circuit itself becomes more complex, since additional qubits have to be
introduced.
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5 The Five DiVincenzo Criteria

In the previous sections different parts of a quantum computer were discussed in detail. How-
ever, the fact that all components in itself are working does not mean that the device made out of
these components can actually be used as a quantum computer. Exactly this issue was addressed
by DiVincenzo [21, 22], who set up a list of five criteria, the so-called DiVincenzo criteria. The
criteria are as follows:


 Existence of a well-defined extendible qubit array.


 It must be possible to define an initial state |00〉.

 A sufficiently long decoherence time is required (τdec/tswitch > 104).


 An universal set of quantum gates exist.


 A read-out of the qubit state must be possible.

Only if all criteria can in principle be fulfilled for an envisioned realization it makes sense to
follow this approach. All criteria given above have been discussed in detail in the previous
sections, except for the last one which is concerned with the read-out of the final state. For
the spin-1/2 particle a direct read-out of the spin state by detecting its magnetic moment is
difficult. For the quantum dot system, as proposed by Loss and DiVincenzo [5], a viable way
is to transfer the spin degree of freedom into a charge degree of freedom. The latter can be
accessed by electronic means.

6 Quantum Algorithms: A Brief Overview

In this section two different quantum algorithms will be discussed. Since most of the quantum
algorithms are quite complex, we will omit a detailed treatment of the computational steps.
The probably most-cited quantum algorithm is the factorization algorithm invented by Peter
Shor at IBM [1]. By using this algorithm it is possible to factorize large numbers with only a
polynomial increase of computational time with the number of digits (see Fig. 1). In contrast,
for digital computers the computational time increases exponentially with number size, so that
it is literally impossible to factorize large numbers, i.e. numbers of more than 100 digits. This
inability of digital computers is the reason why modern encryption schemes like the Rivest,
Shamir, and Adleman (RSA) system [13] are based on factorizing large numbers. The fact that
by employing Shor’s algorithm large numbers can in principle be factorized is therefore a real
threat for contemporary encryption methods.
In Shor’s factorization algorithm a method is used where a large number N is factorized by
finding a period of a sequence f(x) = ax mod N , where a is a randomly chosen small number
with no factors in common with N . From the period of this series the prime factors of N can
be extracted. However, for an ordinary computer it is as difficult to find the period of the series
as finding the prime factors directly. The basic trick of Shor’s algorithm is to find the period by
performing a discrete Fourier transformation on a quantum mechanical superposition state. In
practice only small numbers (number: 15) have been factorized so far, owing to the problem to
build large-size quantum computer systems [2].
Another very prominent quantum algorithm is the search algorithm of Grover [14]. Due to the
effective parallel computation in a quantum computer, Grover’s algorithm can search for an
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item in a data base by only a single query, whereas multiple queries are required in a classical
search algorithm. Once again, the speed of this algorithm is based on generating a superposition
state given by Eq. (11) to address all entries of the data base at the same time.
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1 Introduction

Quantum dots can be used to confine single electrons as discussed by M. Wegewijs in the lecture
”Spin and Transport in Quantum Dots”. The quantum computing concepts based on quantum
dots can be subdivided in two main branches: optical concepts and electrical concepts. In most
of the optical concepts, the two level system representing the quantum bit (qubit) consists of
exciton states. These are manipulated using polarized light. In electrical concepts, the spin
states of electrons are used as qubit and manipulation can be done all-electrically.
This contribution will concentrate on spin states of electrons for quantum information focusing
on the most important electrical concept known as ”Loss-DiVincenzo proposal” [1]. It has been
shown experimentally for this proposal that all of the ”DiVincenzo criteria” (for a general intro-
duction into Quantum Computing see lecture ”Fundamental Concepts of Quantum Information
Processing” by T. Schäpers) can be met as we shall see in the following.

2 The ”Loss-DiVincenzo” proposal

A few years after the first implementation of the CNOT quantum gate using hyperfine and
vibrational states of a 9Be+ ion in an ion trap as qubits [2], a row of proposals for a solid state
quantum computer appeared, based on cooper pairs [3], nuclear spins in silicon [4], and last but
not least electron spins in GaAs quantum dots [1]. Daniel Loss and David DiVincenzo proposed
a quantum computer based upon existing semiconductor technology.

Fig. 1: Scheme of the Loss-DiVincenzo proposal.The top gates are used to form quantum dots
as well as to tune the interaction between them. An AC magnetic field is used to manipulate
the electron spins. Back gates can draw the electrons into a layer with different g-factor, thus
changing their resonance frequency.

The scheme of this proposal is depicted in Figure 1. A two dimensional electron gas (2DEG)
is formed by a GaAs/GaAlAs heterostructure. Voltages applied to electric top-gates are used to
deplete certain regions of the 2DEG in such a way that a quantum dot with only a single electron
inside remains. In a magnetic field B0 = (0, 0, Bz) the otherwise degenerate Zeeman states | ↑〉,
| ↓〉 split up with energy difference EZee = gμB�B0, with Landé factor g = −0.44 for GaAs
and μB the Bohr magneton, and form the two level system used as a qubit. Initialization can
be achieved by allowing the electron spins to reach their thermodynamic ground state at low
temperature T, with |EZee| � kBT (with Boltzmann constant kB). However, this is a very slow
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process, because the relaxation rate from an exited spin state to the ground state has to be small
in order not to loose the information of the qubit. We will see later that also a scheme for fast
initialization exists.
The qubit states can be manipulated with an ac magnetic field applied perpendicular to B0 just
as in electron spin resonance (ESR). This ac magnetic field can be generated by passing an ac
current through a wire close to the quantum dots. In order to be able to carry out single qubit
rotations, the resonance frequency of the manipulated spin needs to differ from the resonance
frequency of the spins in the other quantum dots. This can be achieved by a B0 gradient along
the chain of quantum dots or by g factor engineering. For the latter, the electron is pulled into a
layer with a high g-factor by applying a voltage on a local back-gate. Thus, the energy splitting
between the spin states and therefore the resonance condition is changed.
The Hamiltonian used for gate operations in a system with N qubits is

H(t) =
N∑
i

gi(t)Bi(t)Si +
N∑
i<j

Jij(t)Si(t)Sj , (1)

with qubit sites i, j. The first term describes the single qubit gates as discussed above with
B(t) = B0(t) +Bac. The second term describes two qubit gates, with the exchange interaction
Jij used for the qubit coupling. Only adjacent qubits need to be coupled, since information can
be passed through the qubit chain with the SWAP gate. The coupling between two neighbor-
ing qubits, i.e. the potential barrier between two adjacent quantum dots, can be controlled by
voltages applied to the top-gates. Therefore, the ”Loss-DiVincenzo” proposal is in principle
scalable. Since GaAs quantum dots have been extensively studied and the spins can be initial-
ized in their ground state, the first two DiVincenzo criteria are fulfilled. In this lecture we will
see that the other criteria, namely the qubit read-out, a universal set of quantum gates and long
decoherence times are met as well.

3 Read-out of a single electron spin

In this section we will see how the electron spin state in a quantum dot can be measured. Two
read-out schemes exist, one for a single quantum dot with | ↑〉, | ↓〉 as qubit states, and one with
the singlet |S〉 and the triplet |T0〉 state of a two-electron quantum dot as qubit. Both schemes
have in common that the spin state is first converted into a charge state, which is then detected
by the current through an adjacent quantum point contact (QPC). In this way, the measurement
is decoupled from the qubit system and the back action of the read-out on the qubit state is
minimized.
Before we look at the two schemes in more detail, we will briefly discuss the QPC detection. A
QPC is a one-dimensional constriction in the 2DEG formed by top-gates (see inset Fig.2). Top-
gate voltages or other potentials close by define how many electrons can pass the constriction
at the same time, i.e. the number of available transport channels.
The conductance of a QPC shows a step-like behavior depending on the voltage applied to the
top-gates as shown in Fig.2. Transport channels are opened one by one, while the applied gate
voltage becomes more positive. Without external magnetic field the step hight is 2e2/h, since
the two spin states of an electron are degenerate. If this degeneracy is lifted by applying an
external magnetic field, additional steps appear at multiples of e2/h [5].
In close proximity to a quantum dot, a QPC can be used as noninvasive voltage probe [6] that
detects the number of electrons on the quantum dot. The QPC is operated in the middle between
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Fig. 2: Stepwise increase of the QPC conductance at T = 0.6 K with changing top-gate voltage
(from reference [5]). Inset: An example for a quantum point contact structure (adapted from
http://pages.unibas.ch/phys-meso/Pictures/pictures.html).

two current plateaus in order to obtain maximum sensitivity towards adding an electron to the
quantum dot or removing it. Today this technique has been extended on double quantum dots
measuring small signals of photon-assisted tunneling [7] and spin blockade [8].

3.1 Single shot read-out

In order to demonstrate the single shot read-out of a single electron spin, a quantum dot with
a QPC next to it was fabricated as shown in Fig.3a. It is important that the gate R is closed
completely, so that the current to the drain of the QPC is not influenced by a current through the
dot. The QPC is adjusted to its working point with the gate Q. Tunneling events occur between
the reservoir and the dot with rate Γ depending on the tunneling barrier influenced by gate L.

200 nm RL

Q

P

a) b)

source

re
s
e
rv

o
ir

drain

�

IQPC

Fig. 3: (a) Gate structure for a single quantum dot formed by gates R and L with adjacent QPC
between Q and R. The potential barrier on the right is very high and tunneling between the dot
and the reservoir occurs through the left barrier with rate Γ. (b) Tunneling events of a quantum
dot measured trough the current of a QPC for different potentials on P. The dot is empty (high
current) most of the time for the top trace while it is occupied (low current) most of the time for
the bottom trace. When the electrochemical potential of the dot is aligned with the Fermi level
of the reservoir, the electron tunnels back an forth. All images adapted from ref. [9].
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Since the read-out of a spin state is done via charge detection, we should first know how fast the
charge state can be measured. This has been shown in ref. [9]. There, the quantum dot is set near
to its N = 0 to N = 1 transition using gate P to tune the dot potential. The electron can then
spontaneously tunnel back and forth between the dot and the reservoir, and the QPC current
should exhibit a random telegraph signal (RTS) as shown in Fig.3b. The time the electron
spends in the dot, i.e. when ΔIQPC is in the low state, strongly depends on the position of
the dot potential relative to the Fermi level of the leads. The current through the QPC was
IQPC ≈ 30 nA with a bias voltage of Vbias = 1 mV, in agreement with the conductance of the
QPC at its working point GQPC = e2/h ≈ (30kΩ)−1. The shortest steps that clearly reached
above the noise level were about 8μs long. Tunnel events occuring on a shorter timescale will
be lost in the current noise of the QPC. Therefore, the spin-energy relaxation time T1, i.e. the
time after which a spin has flipped from its exited | ↓〉 state back to the ground state | ↑〉, of the
spin in the quantum dot has to be much longer than 8μs. Otherwise the information stored in
the qubit would be lost before it was even measured.
The single-spin-single-shot read-out was first demonstrated in the group of L. Kouwenhoven at
TU Delft [10]. To detect the spin state of an electron, first a magnetic field B0 has to be applied
so that the degeneracy of the Zeeman states is lifted. In order to tune the dot potential quickly,
voltage pulses with lengths of a few 100 ns are applied to gate P (Fig.3a). Figure 4 shows the
pulse scheme used for the single spin read-out as well as the response of the QPC.
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Fig. 4: (a) Scheme of the single shot read-out. On the top the voltage levels applied as pulses
on gate P (Fig.3a) are shown. The difference in the QPC current during the different stages
is shown on the bottom along with the tunnel events. The signal during the read-out depends
on the spin state (circle). In the case of ”spin down”, to additional tunnel events take place
and the signal follow the dotted line. (b) Single shot measurements of a spin state. The top
graph shows the trace of the QPC current for the ”spin up” situation, where no tunneling
events are measured during the read-out time tread. On the bottom, the ”spin down” case is
depicted. During tread, the threshold value of the QPC current (red line) is crossed indicating
two additional tunneling events. The time tdetect is the time it takes for a ”spin down” electron
to tunnel out of the dot and thus related to the rate Γ↓ All figures adapted from [10].

At the beginning the quantum dot potential is set to a low value, so that any remaining electron is
pushed out of the dot. Then, a positive voltage pulse is applied to put both spin states below the
Fermi level of the lead. The current of the QPC is changing as well, since it couples capacitively
to the gate P as well. As soon as either a spin-up or a spin-down electron from the reservoir
tunnels into the dot, the current of the QPC drops due the extra charge in the vicinity. The time
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one has to wait for an electron to enter is directly connected to the tunneling rate Γ = Γ↓ + Γ↑,
which can be influenced by gate L (Fig.3b).
The spin to charge conversion is done in the third part of the pulse pattern. The potential of
the dot is changed such that the spin-up ground state remains below the Fermi level of the lead,
while the excited spin-down state lies above it. No tunneling events will happen in the first case
(see Fig.4b, top), because the dot is in coulomb blockade. However, in the latter case, first the
spin-down electron will tunnel out before the ground state is filled again with a spin-up electron
from the lead. Therefore, two tunneling events will occur during the read-out time tread (Fig.4b,
bottom). Before a new cycle can be started, the potential of the dot is tuned so that both spin
states are above the Fermi level and held there until the spin-up electron now occupying the dot
has tunneled out.
In order to measure the relaxation time T1, the spin-down fraction is recorded for different
waiting times twait. During this time, a spin-down electron can relax to the ground state. The
longer this time, the smaller the spin-down fraction will be, following an exponential decay as
shown in Fig.5a. Fitting the data to α+C exp(−twait/T1) decay, a relaxation time of T1 ≈ 0.55
ms is obtained at B0 = 10 T. This is almost two orders of magnitude longer than the time
needed for the fast detection and the response of the QPC is thus quick enough.
Nevertheless, there is a finite probability α that a signal is measured during tread although a
spin-up electron was in the dot, for instance due to thermally activated tunneling or electrical
noise (”dark counts”). This probability can be extracted directly from the T1 measurement. It
is simply the saturation value of the exponential decay. Unfortunately, a similar evaluation is
not possible for the opposite case that occurs with probability β; the QPC current stays below
the threshold although a spin-down electron was in the dot. The correlation between these
probabilities is shown in the inset of Fig.5a.
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Fig. 5: (a) T1 relaxation measured with the single shot read-out. The probabilities for measur-
ing a spin-up as a spin-down and vice versa are depicted in the inset. (b) Their values depend
on the threshold set in the measurement (see Fig.4). The vertical red line marks the threshold
value with the highest visibility. Adapted from [10].

Two processes contribute to β which can be analyzed separately. First, a spin-down electron can
relax to the spin-up state before the electron tunnels out with probability β1 = 1/(1 + T1Γ↓).
Γ↓ can be obtained from a histogram of the detection time tdetect (see Fig.4b for definition).
In ref. [10] its value was found to be Γ−1

↓ ≈ 0.11 ms yielding β1 ≈ 0.17. Second, if the
spin-down electron is replaced within 8μs with a spin-up electron the resulting QPC step may
be too small to detect. The probability β2 of this event depends on the value of the threshold
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(red line in Fig.4b). It can be measured reversing the pulse sequence [10]. The empty levels
are tuned to the read-out postition (4a). At the beginning of this pulse, a | ↑〉 should tunnel
into the dot raising the QPC current above the threshold. The probability β2 is obtained from
the fraction of traces where this step is missed. The result is shown as 1 − β2 in Fig.5 as well
as the threshold dependence of α and 1 − β, the total spin-down fidelity is given by 1 − β ≈
(1− β1)(1− β2) + (αβ1).
The so-called visibility is a very important number for quantum computing, since it is a measure
for the probability of a correct qubit measurement. For the single spin read-out discussed here,
the visibility is

V = 1− α− β. (2)

The red line in Fig.5b marks the threshold value at which this expression has its maximum
(α ≈ 0.07, β1 ≈ 0.17 and β2 ≈ 0.15). Therefore, the fidelity for the spin-down and the spin-up
state is (1 − β) ∼ 0.72 and (1− α) ∼ 0.93, respectively [10]. The visibility of the single shot
measurement, however, is only 65%, i.e. the chance to get a wrong result is 35%. Of course, this
would be inacceptable for a computer, but for a proof of concept this is a good result, especially
when compared to other implementations. Repeating the same calculation several times can
already improve the accuracy. Lowering the electron temperature (smaller α) and a faster QPC
measurement (smaller β) will increase the visibility as well.
However, this read-out method suffers from other disadvantages. It is very sensitive to fluctua-
tions of the electrostatic potential, the Zeeman splitting has to be much larger than the thermal
energy, and high frequency noise can spoil the read-out due to photon-assisted tunneling, i.e.
when the ground state electron absorbs a microwave photon and gains enough energy to tunnel
out of the dot into the reservoir.

3.2 Singlet-Triplet read-out

This method circumvents the problems of the single shot read-out described before and is de-
scribed in ref. [11]. It discriminates between singlet |S〉 and triplet |T 〉 states of a quantum
dot and is therefore used as read-out for a two-electron quantum dot. Thus, the quantum dot is
tuned near to its N = 1 to N = 2 transition. The device geometry is similar to the structure in
Fig.3a.
The pulse sequence used for the read-out and relaxation time measurement is shown in Fig.6a.
First, the dot potential is tuned, so that the N = 1 to N = 2 transition is above the Fermi level
of the reservoir for both, the ground state |S〉 as well as the excited state |T 〉. The quantum dot
now contains one electron. Then, a pulse is applied and both states are pulled below the Fermi
level. After some time, an electron tunnels into the dot with ΓT for the triplet state and ΓS for
the singlet state. The electron tunnels out in the last step again with the rate corresponding to
its state.
For the spin to charge conversion, which is implemented with this step, it is required that the
tunneling rate of the triplet is much larger than the rate of the singlet (ΓT � ΓS). The tunneling
of an electron from the singlet state with ΓS = 2.5 kHz is slow enough to be measured. As long
as the dot remains occupied with two electrons, the current of the QPC will be below the starting
value. Only after one electron has left, the level will be at the value corresponding to N = 1
electrons in the dot. The tunneling of the triplet state, however, happens too fast to be detected
(ΓT ∼ 100 kHz) and the current of the QPC current reaches the original value right after the end
of the voltage pulse. A low pass filter of 20 kHz added to the electronic measurement assures
that the tunneling from the triplet state is not detected.
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Fig. 6: (a) Pulse sequence for the Singlet-Triplet read-out. The thicknes of an arrow depicts
the tunnel rate. During the detection time τdetect the QPC current drops only, if the state is a
singlet. (b) Visibility depending on the ratio of the tunneling rates and the relaxation time for
ΓS = 2.5 kHz. Adapted from ref. [11].

The visibility V as defined in equation (2) of this read-out depends on the tunneling rates ΓT
and ΓS , the relaxation rate T1, the time τ at which the number of electrons is measured. The
probabilities α and β (for definition see Fig.6) are

α = 1− e−ΓS ·τ (3)

β =
(1/T1)e

−ΓS ·τ + (ΓS − ΓT )e−(ΓS+1/T1)·τ

ΓS + 1/T1 − ΓT
. (4)

With (3) and (4) inserted in (2), the visibility depending on the ratio of the tunnel rates and the
relaxation rate is shown in Fig.6b. For values of the visibility V = 65% and of the relaxation
time T1 = 0.5 ms as from the experiment in the previous section the ratio of the tunnel rates
needed is ΓT/ΓS = 10 (marked by the red dot in Fig.6b).
The relaxation time can be obtained by measuring the triplet fraction for different waiting times
as done in ref. [11]. The parameters α and β can be extracted from the same measurement
(see Fig.7). The maximum visibility is 81% for optimized threshold (ΔIQPC = −0.4 nA) and
time τdetect = 70μs (blue dot in Fig.6). The relaxation time obtained in this experiment was
T1 = 2.58 ms for B = 0.02 T. This is much longer than the relaxation time measured before at
B = 10 T and a first indication that T1 depends on the magnetic field, which we will discuss in
more detail later.
The visibility reached with the read-out methods presented here might seem to be low. For a
working quantum computer this is true, but still there are ways for improvement, e. g., lowering
the electron temperature will reduce the ”dark counts” α and a faster charge detection will
reduce β [10]. A higher ΓT/ΓS ratio will yield a larger visibility for the singlet-triplet read-
out. The visibility reached so far, however, is already sufficient for first demonstrations of qubit
gates and for a proof of concept we can assume the read-out DiVincezo criterium to be fulfilled.

4 Manipulation of electron spins

After learning that gate pulses can be used to quickly tune the states of a quantum dot, it is
easy to understand how a fast initialization can be done. A magnetic field is applied, so that the
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Fig. 7: Measurement of the |T 〉 → |S〉 relaxation time [11]. The probabilities α and β as
defined in Fig.6b can be obtained as shown on the right.

spin states are split by the Zeeman energy. First, both levels are pulsed above the Fermi level
of the leads and the dot is emptied. Then, the levels are pulled down so that the spin-up level
is below the Fermi level but the spin-down state is still above the Fermi level. After a time τ
related to the tunneling rate, the spin-up level will be filled. The number of electrons in the dot
is measured with a QPC. Now we know our initial state to be | ↑〉 and we can start to manipulate
the spin state either by single qubit operations, i.e. single spin rotation using the first term of the
Hamiltonian in equation (1), or by interaction between two qubits, using the exchange coupling
J(t) of the second term, thus implementing a two-qubit gate like the

√
SWAP .

4.1 Single spin rotation

The state of an electron spin can be manipulated by electron spin resonance (ESR). If the spin
is irradiated with an AC magnetic field B1 with the same frequency as the Larmor frequency
of the spin, i. e. the frequency of the Zeeman splitting, the spin will rotate. The angle of the
rotation depends on the amplitude and duration of the B1 pulse. This angle determines what
kind of single spin gate is done, e.g., π (or 180◦) corresponds to a spin-flip if the input was an
eigenstate or, more generally speaking, it is a NOT gate. For more details about spin resonance,
see the lecture ”Donors for Quantum Information Processing” of M. Brandt or as an example
for a textbook ref. [12].
In order to manipulate the electron spin in a quantum dot, an AC magnetic field of at least about
1 mT has to be coupled locally to the dot. This is much more easily said than done, since the
electron temperature has to be kept very low (∼ 100 mK) and high frequency irradiation always
leads to dissipation of energy. The AC magnetic field is created by an AC current through a wire
close to the quantum dot (see Fig.8a), with a dissipation of 10μW for B1 = 1 mT and 250μW
for B1 = 5 mT, respectively. This requires a cooling power for the dilution refrigerator of about
300μW at 100 mK.
An ESR experiment could be done as follows. The spin is initialized in its ground state | ↑〉
in coulomb blockade while the level for the excited spin state | ↓〉 is split off by the Zeeman
energy EZee and aligned between the Fermi levels of the leads (Fig.8b). In a second step, the
AC magnetic field is applied, changing the spin state. Thus, the coulomb blockade is lifted
and an additional current peak appears at higher gate voltage (Fig.8c,d). However, many other
processes can lift the coulomb blockade as well. A current will flow independently of the ro-
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Fig. 8: (a) Quantum dot structure with a strip line close by that creates an AC magnetic field.
(b)-(d) Scheme for an ESR experiment. (e)-(f)The current due to ESR can be completely covered
by photon-assisted tunneling.

tation of the spin in the quantum dot, if the spins of the electrons in the leads have the same
resonance frequency as the spin of the electron in the dot, or if heat dissipation smears out the
state occupation at the Fermi level of the leads. Photon-assisted tunneling is another process
that can totally mask the desired signal, which is due to ESR. In this process, the electron in
coulomb blockade absorbs a photon and can tunnel directly to the drain (Fig.8e), thus lifting
the coulomb blockade for transport through the excited spin state (Fig.8f). This is due to high
frequency electric fields which cannot be totally suppressed. The influence of all these pro-
cesses can be cancelled or at least reduced if both spin levels are pulled deep into the coulomb
blockade regime by a voltage pulse. The Zeeman splitting has to be much smaller than the
energy difference between the upper spin level and the Fermi level of the leads. The spin is ma-
nipulated and afterwards the electrochemical potential of the dot is pulsed back to its original
position and the spin orientation is detected by either of the methods described in section 3.
The same concept can be used in a double quantum dot system with one electron in each dot
(see Fig.9a). Since the exchange coupling J is very small in this configuration, the electrons
can be treated as if they were separated. In this case, spin blockade as described in the lecture
”Spins and Transport through quantum dots” by M. Wegewijs can be used for initialization and
read-out of the system. The double dot is prepared in spin blockade, i.e. the spins in the two
dots are parallel. Then, the electrochemical potential of the left dot is tuned to be deep below
the transport window. An AC magnetic field rotates the spin and the electrochemical potential
is raised to its former level. If the spin state has been rotated to form a singlet with the electron
in the right dot, the spin blockade is lifted and a current flows. This sequence has to be repeated
many times to get enough statistics. The Rabi oscillation of this experiment by Koppens et al.
[13] is shown in Fig.9b. They could be observed up to pulse lengths of 1μs, giving a lower
bound for the decoherence time T2 in this system.
One should note that the read-out scheme applied in this experiment is only sensitive to parity
(parallel or antiparallel spin) and not a singlet-triplet read-out. Due to the nuclear field in GaAs,
the triplet |T0〉 and the singlet |S〉 are mixed and a |T0〉 state will be transformed into |S〉 lifting
the spin blockade. Without external magnetic field, |T+〉 and |T−〉 are also mixed, and no spin-
blockade can be measured.

4.2 The
√
SWAP operation

With regard to the requirement of a universal set of quantum gates for a quantum computer, we
have seen that single qubit rotations can be done. In addition to the single spin rotations only the
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(a) (b)

RF signal

gate pulse

initialization manipulation read-out

Fig. 9: (a) Scheme of the pulse sequence for the manipulation and read-out in a double quantum
dot. (b) Rabi oscillations observed experimentally (markers) and calculated (solid lines) for
different magnetic fields B1. The stronger the field, the faster is the spin rotation. Taken from
ref. [13].

CNOT gate is needed to form such a universal set. This was shown in ref. [14] and is discussed
in more detail in the lecture ”Fundamental Concepts of Quantum Information Processing” by
T. Schäpers. On the other hand, as shown in ref. [1], the CNOT gate itself can be constructed
from single spin rotations and the

√
SWAP operation with

UCNOT = ei(π/2)S
1
z e−i(π/2)S

2
z

√
USWAPe

i(π)S1
z

√
USWAP . (5)

Be aware that the operations have to be applied from right to left and that they do not necessarily
commute. The single spin rotations of the two spins i = 1, 2 by an angle θ about the axis
a = x, y, z are realized by ei(θ)S

i
a , with the Pauli spin matrices Sa. The SWAP operation

exchanges the information between two qubits, i.e. | ↑↓〉 is converted into | ↓↑〉 while | ↑↑〉 and
| ↓↓〉 do not change. With the basis

⎛
⎜⎜⎜⎝
| ↑↑〉
| ↑↓〉
| ↓↑〉
| ↓↓〉

⎞
⎟⎟⎟⎠ =̂

⎛
⎜⎜⎜⎝
|00〉
|01〉
|10〉
|11〉

⎞
⎟⎟⎟⎠ and USWAP =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠ (6)

√
USWAP =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0.5 + 0.5i 0.5− 0.5i 0

0 0.5− 0.5i 0.5 + 0.5i 0

0 0 0 1

⎞
⎟⎟⎟⎠ . (7)

Starting in the product base, i. e. exchange coupling J → 0, USWAP should exchange the spin
information between the two qubits (| ↑↓〉 → | ↓↑〉). The product base can be expressed as
coherent superposition of |S〉 and |T0〉:

| ↑↓〉 = (| ↑↓〉 − | ↓↑〉+ | ↑↓〉+ | ↓↑〉)/2 = (|S〉+ |T0〉)/
√

2 (8)

Now the exchange coupling J is switched on for a time tswap and with

∫ tswap

0

J(t)/� dt = π (9)

equation (8) is transformed into
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(|S〉+ e−iπ|T0〉)/
√

2 = (|S〉 − |T0〉)/
√

2 = (| ↑↓〉 − | ↓↑〉 − | ↑↓〉 − | ↓↑〉)/2 = −| ↓↑〉 (10)

This is the state that was supposed to be reached, and the exchange coupling is switched of
again. Note that there the final state has the wrong sign, but this corresponds to a ”global
phase” factor (φ = π), which can be ignored [15]. The beauty of this approach is that in order to
implement a

√
SWAP , the exchange coupling is simply turned off after the time tswap/2 [16].

This procedure has been successfully implemented by Petta et. al [17], and in the following we
shall see how it has been done.

�<0

�>0

�=0

(a) (b)

Fig. 10: (a) Double quantum dot structure with a QPC next to the right gate. The state of the
double quantum dot is detected by the current through the QPC (b). The occupation of the dot
is denoted by (m,n), with m (n) the number of electrons in left (right) dot. It can be tuned by
voltages VL, VR applied to the gates L and R. The figures are adapted from [17].

Since a two qubit gate is to be done, a double quantum dot system as in Fig.10a has to be used.
The occupation of the double dot is controlled by the voltages on the left (L) gate VL and right
(R) gate VR, respectively, with the so-called ”detuning” ε ∝ (VR − VL). The gate T, which
tunes the tunnel barrier between the two dots, is set to a value that gives a very weak the tunnel
coupling. Therefore, the exchange interaction is very small (J → 0) if the double dot is deep
in the regime where each dot is occupied with one electron (1,1). A QPC next to the right
dot serves as charge detector. It is tuned to be most sensitive in the regime, where either two
electrons are in the right dot and the left dot is empty (0,2) for positive detuning, or where one
electron occupies each dot (1,1) for negative detuning (see Fig.10b). The exchange coupling J
is tuned with ε along the line in Fig.10b and is negligibly small for ε < −2 mV.
Before the SWAP operation can be done, the two qubit system has to be initialized in the
| ↑↓〉 state. This is done in three steps as depicted in Fig.11a-c. The system is prepared in
the (0,2) singlet state |S〉 (Fig.11a). It cannot be in a |T0〉, since this state is split off by the
exchange coupling, which is large for positive detuning ε. Now, ε is changed to a negative
value, thus separating the two electrons. They still form a singlet state, since they were in an
eigenstate before. If there was no other interaction present, the electrons would remain in this
state forever. However, besides the external magnetic field B0 = 100 mT, which is the same
for both quantum dots, a nuclear magnetic field BN is present as well. This field mixes the |S〉
and the |T0〉 state. This mixing is different for the two spins since BN is different for the two
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dots. Since they are no longer coupled to each other, the spins dephase on a time scale of about
τmix ≈ 20 ns (Fig.11b) [17].

(a)

�>0�>0 �<0 �<0

singlet
preparation

singlet
separation

product state
initialization

measurement

(d)(b) (c)

(e)

Fig. 11: (a) Preparation of the double quantum dot in the (0,2) singlet state. (b) When the singlet
is separated swiftly, the |S〉 state dephases. (c) If the separation is done slowly compared to the
nuclear mixing time, the system is initialized in a product state. (d) The qubit state is measured
by projection into the |S〉 - |T0〉 base of the system. The (0,2) occupation can be reached
only if the electrons form a singlet. The qubit state before the measurement can be deduced
from the singlet probability. (e) Level scheme close to the (1,1)-to(0,2) transition depending
on the detuning. For large negative detuning, the |S〉 and |T0〉 states mix (blue background).
At detuning of about ε ≈ −1.2 mV the |T0〉 starts to split of from the |S〉 state due to finite
exchange coupling. The |S〉 mixes with |T+〉 at about ε ≈ 0.5 mV indicated by the green line.
All triplet states are much higher in energy than the singlet (0,2). The figures are adapted from
[17].

If the transition towards negative detuning is done on a much larger timescale (τA ≈ 1μs) than
this nuclear mixing time the spins still interact during the transition. This is called ”adiabatic
passage” and leads to a state with maximum mixing between |S〉 and |T0〉 (both have the same
probability amplitude). The phase is fixed and the spins form a product state as in eq. (8) and
in Fig.11c. After some time the state is projected by tuning back to ε > 0. If the state did not
develop, it will be projected back to |S〉 Fig.11d. However, if it evolved to | ↓↑〉 the system will
now form a |T0〉 state. Then the electron of the left dot cannot tunnel onto the right dot, because
the |T0〉 for the (0,2) configuration is too high in energy (Fig.11e).
The implementation of the SWAP gate is shown in Fig.12a. The two outer Bloch spheres show
the preparation and measurement of the spin states at positive detuning ε. Equations (8)-(10)
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are represented by the three central Bloch spheres. In order to initialize the two qubit system in
the | ↑↓〉, ε is quickly tuned below −0.5 mV to prevent mixing between the |S〉 and |T+〉 state
due to the nuclear magnetic field (green lines in Fig.11e and 12a). Then ε is slowly ramped
down further to provide the adiabatic passage necessary for the initialization.

(a)

(d)

(b) (c)

Fig. 12: (a) Scheme for the SWAP gate (b) Singlet probability PS for different detunings
during the exchange coupling and for different interaction times τE (c) Oscillations of the spin
system during exchange coupling at different detuning marked as dashed lines in (b). (d) The
oscillations are faster for weaker tunnel barrier (less negative voltage applied on gate T). The
figures are adapted from [17].

The detuning is then set to a level where the exchange coupling is larger or at least of the order
of the nuclear field strength. Depending on ε and on the exchange time τE the system is rotated
by an angle of θ = J(ε)τE/�. The angle of rotation θ is measured by the singlet probability (see
Fig.12 b-d). A full SWAP is applied for θ = π, 3π, 5π . . . and the singlet probability reaches
a minimum. The oscillations show that also rotations of θ = 1

2
π, 3

2
π, 5

2
π . . . can be done which

execute a
√
SWAP .

Combined with the single qubit rotations described in the previous section, a universal set of
quantum gates is available for the quantum dot implementation of a quantum computer. Note
that using ESR the single qubit phase gates in equation (5) cannot be carried out directly but
have to be constructed form qubit rotations about the x-axis and y-axis [18].

5 Relaxation mechanisms

The fastest
√
SWAP that could be done in [17] took t = 180 ps. This seems to be quite fast,

but is it fast enough to fulfill the last DiVincenzo criterion on our list? The time it takes for a
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gate has to be much shorter than the decoherence time T2. In order to be able to apply error
correction, at least 104 operations have to be done within T2. The timescales and origins of spin
relaxation in GaAs quantum dots will be discussed in this section.

5.1 Spin-energy relaxation

The flip of an exited spin state back to its ground state (| ↓〉 → | ↑〉) due to coupling with the
phonon bath is called spin-energy relaxation or longitudinal relaxation and usually labeled T1.
For a spin qubit the result of such a process is a complete loss of information. It can be caused
by modulation of the g-factor anisotropy due to vibrations of the crystal lattice or by relativistic
coupling between the electron spin and the electric field of an emitted phonon. However, it
turns out that the contributions of these direct processes to the spin energy relaxation are much
smaller compared to the relaxation caused by the mixing of spin and orbital states due to spin-
orbit (SO) interaction [19, 20].

+

+

x �EZee

Fig. 13: Without external magnetic field and in the absence of SO coupling, the spin states
up and down are degenerate. They split by the Zeeman energy if a magnetic field is applied.
Relaxation is not possible, because the direct contributions are very small and phonon coupling
is prohibited. A small admixture of different spin and orbital states due to SO interaction allows
phonon coupling.

The SO HamiltonianHSO can be derived from the Dirac equation (see lecture ”Electronic states
in solids” by G. Bihlmayer). It consists of terms of the form px,yσx,y. Since the stationary states
in a quantum dot are bound states with 〈px〉 = 〈py〉 = 0 due to the strong confinement in z,
HSO cannot couple different spin states of the same orbital d of the dot and

〈d ↓ |HSO|d ↑〉 ∝ 〈d|px, y|d〉〈↓ |σx,y| ↑〉 = 0. (11)

However, states that differ in both, the spin part as well as the orbital part, can be coupled [19].
If the Zeeman splitting is much smaller than the orbital splitting, the new eigenstates can be
obtained from perturbation theory [21]

|d ↑〉∗ = |d ↑〉+
∑
d′ �=d

〈d′ ↓ |HSO|d ↑〉
Ed −Ed′ −ΔEZee

|d′ ↓〉 (12)

|d ↓〉∗ = |d ↓〉+
∑
d′ �=d

〈d′ ↑ |HSO|d ↓〉
Ed − Ed′ + ΔEZee

|d′ ↑〉 (13)
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These new eigenstates (shown in Fig.13) can couple to electric fields. This leads to spin re-
laxation, but it also enables manipulation of the spin states by high frequency electric fields
[22].
Relaxation between these new eigenstates can be of extrinsic origin, e.g., due to fluctuations of
gate potentials or background charges. These and the influence of other noise sources can be
kept small with a careful design of the device and turn out to be much less important compared
to electric field fluctuations due to phonons. These can have two different origins. First, inho-
mogeneous deformations of the crystal lattice alter the band gap in space causing fluctuations
of the electric field. Second, in polar crystals such as GaAs they can be caused by homogeneous
strain due to the piezoelectric effect. It has been shown experimentally by studying spontaneous
phonon emission that 2D and 3D piezoelectric phonons play an important role in GaAs double
quantum dots [23].
The transition (relaxation) rate between the states |d ↓〉∗ and |d ↑〉∗ is given by Fermi’s golden
rule

1

T1
= Γ =

2π

�

∑
d

|∗〈d ↑ |He,ph|d ↓〉∗|2D(ΔE∗
Zee) (14)

with the renormalized Zeeman splitting ΔE∗
Zee, the phonon density of states D(E) at energy E

and the electron-phonon coupling Hamiltonian He,ph (ref. [21])

H�qj
e,ph = M�qje

i�q�r(b†�qj + b�qj) (15)

with electric field strength M�qj of phonon branch j (one longitudinal acoustic, two transversal
acoustic) and with wave vector 
q at position 
r of the electron. b†�qj and b�qj are the phonon
creation and annihilation operators. In the following we discuss the energy dependence of Γ
and therefore the influence of an external magnetic field.
(i) First of all, we have to consider the phonon density of states in eq. (14). Spin-flip energies
are much smaller than the energies of optical phonons and only (bulk) acoustic phonons are
considered. Since they follow a linear dispersion relation, the phonon density of states increases
quadratically with energy:

D(ΔEZee) ∝ ΔE2
Zee (16)

(ii) The electric field strength of a phonon M�qj scales as 1/
√
q for piezoelectric phonons and as√

q for deformation potential phonons with wavenumber q. In GaAs, the effect of piezoelectric
phonons dominates at energies below ≈ 0.6 meV [21]. At sufficiently small energies

M�qj ∝ 1/
√
q ∝ 1/

√
ΔEZee (17)

Since (15) enters (14) quadratically, this adds as a factor of 1/ΔEZee.
(iii) Substituting eqs. (12), (13) and (15) into eq. (14), a matrix element 〈d ↑ |ei�q�r|d′ ↑〉 is
obtained describing how efficiently different orbitals are coupled by phonons. This matrix ele-
ment vanishes for phonon wavelengths much shorter than the dot size ldot, because the electron-
phonon interaction is averaged out. The spin relaxation is fastest when the phonon wavelength
is comparable to ldot. For phonon wavelengths much larger than ldot, the dot potential shifts
uniformly up and down and different orbitals are no longer coupled efficiently. The phonon
wavelength is hcph/Eph and with the speed of sound in GaAs cph ∼ 4000 m/s this yields a
phonon wavelength λph ≈ 16 nm for a phonon energy Eph = 1 meV. The Zeeman splitting and
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therefore the phonon energy contributing to relaxation stays below ΔEZee < 200μeV up to a
magnetic field of B0 = 8 T. Thus, λph � ldot and the matrix element scales with

〈d ↑ |ei�q�r|d′ ↑〉 ∝ q ∝ ΔEZee (18)

This enters eq. (14) quadratically, adding a factor of ΔE2
Zee.

(iv) Without finite Zeeman splitting, the various terms obtained by expanding eq. (14) using
eqs. (12) and (13) cancel out [20], which is known as ”van Vleck”-cancellation. It is due to
the fact that the spin-orbit interaction obeys time-reversal symmetry. The SO induced rotation
during half a cycle of the electric field oscillation is reversed in the second half. Thus, no net
rotation takes place. Applying an external field B0 breaks the time-reversal symmetry, because
the SO interaction is of the same direction as B0 for one half of the cycle, while it is opposite
for the other half. This leads to a B2

0 dependence of the relaxation rate [20] and

ΓZee ∝ ΔE2
Zee. (19)

Taking the contributions of eqs. (16), (17), (18) and (19) together with (15) and (14), the
relaxation rate 1/T1 is proportional to B5

0 since Γ ∝ ΔE2
Zee · ΔE−1

Zee · ΔE2
Zee · ΔE2

Zee =
ΔE5

Zee. For temperatures T � gμBB0/kB the finite phonon occupationNph leads to stimulated
emission. It is accounted for by multiplying (14) with a factor 1 +Nph. The phonon occupation
is given by the Bose-Einstein distribution. Therefore, Nph ∝ kBT/ΔEZee, and the relaxation
rate is expected to follow a B4

0 dependence. This has been observed experimentally in [24]
where relaxation times up to T1 = 1 s have been observed as shown in Fig.14. The same
publication demonstrates the influence of the confinement on the SO interaction and thus on the
relaxation time by changing the size of the quantum dot.

(s
)

-1

B(T)
1 2 3 4 5 6 7

�

10
0

10
1

10
2

10
3

E =2.3 meVy
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Fig. 14: Spin-energy relaxation rates for two different confinement potentials. The markers are
data points, the solid lines a fit with theory showing the expected B4

0 dependence. The data set
for weaker confinement (yellow) and thus smaller SO interaction shows smaller rates. Adapted
from ref. [24].

Besides the SO coupling there is another mechanism leading to spin-energy relaxation. Near
zero field the electron spins and nuclear spins can flip-flop due to the hyperfine interaction. The
electron spin evolves about the nuclear field but the nuclei also evolve around the electron spin.
The field experienced by the nuclei leads to a shift of their resonance frequencies in nuclear
magnetic resonance (NMR), the so-called Knight shift [25]. Since it is averaged over many
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nuclei it can be taken as scalar and its strength is Ak ≈ 10μs−1 [21]. The Hamiltonian of the
hyperfine interaction is

HHF =
N∑
k

Ik
←→
AkS =

N∑
k

AkIkS =
N∑
k

Ak(I
+
k S

− + I−k S
+2IzkSz)/2 (20)

for N nuclei in the quantum dot, with S± and I± the raising and lowering operators of the
electron spin and the nuclear spin, respectively. Typically, N ≈ 106 in a GaAs lateral quantum
dot. This leads to electron nuclear spin flip-flops and thus electron spin relaxation on a timescale
of 10μs. The energy difference between nuclear spins and electron spins grows rapidly with
B0 and flip-flops are prohibited. The SO interaction remains as the only active spin-energy
relaxation mechanism at high magnetic fields.

5.2 Dephasing and decoherence

The spin-energy relaxation is due to SO coupling alone for B0 > 0. If this were true as well
for the phase relaxation or decoherence time T2 (also called ”transversal” spin relaxation), then
we would have T2 = 2T1 [26]. Unfortunately, this is not the case. Phase relaxation does not
necessarily depend on energy and fluctuations of the nuclear spins lead to decoherence of the
electron spin via the hyperfine coupling. In the following we will analyze this process in more
detail.
Electron spins experience a magnetic field due to the hyperfine coupling, which is called the
Overhauser field. With eq. (20) and (

∑N
k Ak


Ik)
S = gμB 
BN

S it is


BN =
N∑
k

Ak
Ik/gμB (21)

and of random, unknown value. Thus, the electron spin evolves in an unknown way. For fully
polarized nuclear spinsBN,max = 5 T in GaAs [27]. Under experimental conditions only a small
average polarization with Boltzmann statistics adds to the external field. Statistical fluctuations
of the N ≈ 106 nuclei of the quantum dot around this average, for spin 1/2 similar to N coin
tosses, lead to a root mean square value of the magnetic field of Brms = BN,max/

√
N ≈ 5 mT,

which has been confirmed experimentally [28].
The electron spin precesses about a magnetic field given by 
Btot = 
B0 + 
BN . The z-component
of 
BN changes the precession frequency. For Bz

N = 1 mT the precession rate is increased by
Δν = gμBB

z
N/h = 6 MHz and the electron spin picks up an extra phase of 180◦ within 83 ns

[21]. The influence of the other components Bx,y
N depends on their strength compared to B0.

The precession axis will be close to the x,y-plane for Bx,y
N � B0. In an experiment typical

values are B0 = 1 T and Bx
N ∼ 1 mT and thus, Bx,y

N  B0. The precession frequency changes
by Δν ≈ gμBB

2
N/2B0 = 3 kHz causing an extra phase of 180◦ after 166 ms. The precession

axis is changed by arctan (BN/B0) and therefore tilted by≈ 0.06◦. In most of the experiments
B0 ≥ 100 mT and only Bz

N is of relevance.
If Bz

N were constant and known, its influence would not be a source of decoherence. However,
BN is fluctuating, for instance due to dynamic nuclear polarization or flip-flops of two nuclear
spins with different hyperfine coupling Ak. The electron spin will pick up a random phase
depending on the value of the nuclear field. For a nuclear field that is randomly drawn from
a Gaussian distribution of nuclear fields with the standard deviation of σ =

√〈(Bz
N)2〉 (see

Fig.15a), the decay of the coherence will take the form exp [−t2/(T ∗
2 )2] with (after ref. [29])
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T ∗
2 =

�
√

2

gμB
√〈(Bz

N)2〉 . (22)

The dephasing time T ∗
2 will be 37 ns for a nuclear field of Bz

N = 1 mT. In the experiment
reported in ref. [17] and shown schematically in Fig.15b, T ∗

2 = 10 ns has been measured for the
dephasing between a separated |S〉 and a |T0〉 state corresponding to a field of Bz

N = 2.3 mT.
Note that the dephasing time T ∗

2 can be much shorter than the decoherence time T2. The effect
of the nuclear field can be compensated if it assumes an unknown but constant value during the
experiment, i.e. if the timescale of the fluctuations is very long compared to the timescale of
the experiment (see p. 5.2).

(a) (b)

Fig. 15: (a) One electron interacts with a single nuclear spin (top) or many nuclear spins with
a Gaussian field distribution (bottom). (b) Dephasing between a separated |S〉 and a |T0〉 state
due to different random value of Bz

N at the site of each electron. Taken from ref. [17].

The timescales of the nuclear field fluctuations depend on the interactions of the nuclei. The two
most important mechanisms in this respect are the electron-nuclear hyperfine interaction [30]
and the magnetic dipole interaction between the nuclei [31]. The first we already discussed in
connection with the spin-energy relaxation of the electrons. Eq. (20) is only effective at B0 = 0
for the electron spins. It is also most effective for nuclear spins under this condition. But the
hyperfine interaction can affectBz

N indirectly via virtual nuclear electron flip-flops between one
nucleus and the electron and the electron and another nucleus. This does not affect the electron
spin but leads to a flip-flop between two nuclei m and n, which changes Bz

N if Am �= An. As
discussed in section 5.1 for the electrons, the nuclei change on a 10μs timescale due to the
Knight shift. At large magnetic fields B0 this process will be suppressed.
In a strong external magnetic field, only the secular part of the magnetic dipole interaction
Hamiltonian HD has to be considered and

HD ∝ 
Im · 
In − 3IzmI
z
n = IxmI

x
n + IymI

y
n − 2IzmI

z
n = (I+

mI
−
n + I−mI

+
n − 4IzmI

z
n)/2 . (23)

The terms with the nuclear spin ladder operators I± vanish for coupling between different iso-
topes at high fields. Since the effective magnetic dipole interaction between neighboring nuclei
in GaAs is about (100μs−1) [32], Bx,y

N change on the same timescale given by IzmI
z
n in eq. (23).

The flip-flop terms affect Bz
N but they can be strongly suppressed if |Am − An| is larger than
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the coupling between two nuclei. Thus, Bz
N may evolve more slowly compared to the 100μs

timescale for the dipolar interaction alone.
All in all, the relevant interactions lead to moderate time scales of tnuc = 10 − 100μs for the
fluctuations of the nuclear magnetic field BN . At high B0, the timescale for fluctuations of Bz

N

is expected to be much longer. However, this has not yet been confirmed experimentally.
For spin evolution times smaller than tnuc, the influence of the fluctuations can be refocused
in a Hahn echo experiment as shown in Fig.16. After a dephasing time τS , a rotation by θ =
J(ε)τE/� = π around the z-axis of the Bloch sphere is carried out. Then the spins keep evolving
in the same direction as they did before the π-pulse, so that now they evolve back towards |S〉.
They reach their starting state after τS′ = τS . If there is a loss of signal, it is due to random
fluctuations during τS′ + τS + τE . The spin coherence in such an experiment Techo decays with
exp(−t3/tnucT

∗2
2 ) [33]. Taking T ∗

2 = 10 ns and tnuc = 10μs, this leads to Techo = 1μs. This is
indeed the timescale obtained from the experiment in Fig.16.

(c)

(a)

(b)

Fig. 16: (a) The Hahn echo pulse sequence as described in the text. All transistions are done
with rapid adiabatic passage so that the qubit stays all the time in the singlet-triplet base and
does not change to the product base. (b) Singlet probability PS as a function of detuning and
interaction time τE at fixed dephasing and rephasing time. The rotation angle around the z-axis
leads to an oscillation of PS with θ = J(ε)τE/�. (c) Decay of the echo amplitude. All figures
adapted from ref. [17].

6 Summary and outlook

In this lecture we have given an introduction to quantum computing with electron spins in
semiconductor quantum dots as qubits. We have shown that the qubit state can be measured with
an accuracy up to 81%. Single qubit rotations can be carried out using ESR locally coupled to
the quantum dot. Two qubit gates can be performed by tuning the exchange interaction between
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two electrons in neighboring quantum dots. In particular, the
√
SWAP operation has been

introduced as a universal quantum gate. Last but not least, the origins and timescales of spin-
energy relaxation and spin decoherence were discussed. The spin-energy relaxation time can
be as long as T1 = 1 s, depending strongly on the magnetic field B0 and on the spin-orbit
interaction. Decoherence occurs due to fluctuations of the nuclear magnetic field. Its lower
bound is found so far to be T2 ≈ 1.2μs. Within this time, a fast

√
SWAP of 180ps can be

carried out almost 7000 times. Thus, the decoherence time seems to be sufficiently long and all
DiVincenzo criteria are fulfilled.
Why then do we not already have a quantum computer? First of all, the universal gate is the
CNOT and composed of two

√
SWAP and three single spin rotations (see eq. 5). With

today’s technique the latter alone take about 600 ns. They could be performed faster using a
stronger B1 field for the manipulation. However, this also increases the coupling of the electric
field eventually masking the ESR effect. Materials with a larger g-factor would provide better
coupling to the magnetic field and for g ∼ 2 also the SO interaction would be small. The
latter would improve the spin-energy relaxation time as well. The dephasing time itself should
increase significantly in materials with less or without nuclear spins. Currently investigated as
alternatives which could provide these properties are for instance quantum dots in SiGe 2DEGs
or in carbon nanotubes.
Compared to the yet too short decoherence time, other limitations seem to be minor challenges.
The visibility of the read-out still needs to be improved and also a gate geometry which would be
scalable to hundreds or thousands of qubits needs to be developed. Although the semiconductor
quantum dots remain a promising implementation for a solid state quantum computer, still a lot
of work is to be done.
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1 The case for silicon 
The quest to realize hardware for quantum information processing, and in particular for 
quantum computation, has motivated many research groups to assess the usability of the 
physical objects they study for this purpose. This has brought together experimentalists 
working on rather diverse topics such as ion traps, quantum optics, superconducting 
electronics and semiconductor physics with theoreticians developing quantum algorithms and 
studying decoherence processes.  
 
It is beyond the scope of this brief introduction into donor-based qubits to fully compare the 
benefits and challenges of the different quantum bits or qubits investigated so far. DiVincenzo 
has compiled a set of requirements which can be used as a guideline for such a comparison 
[1]. In particular, a scalable physical system with well characterized qubits is needed, with the 
ability to initialize and to measure them. A universal set of quantum gates, allowing the 
manipulation of a single qubit as well as the controlled interaction of two qubits is required. 
In addition, the time needed to perform gate operations has to be much smaller than the time 
during which the qubits lose their coherence. And finally, one should be able to transmit 
qubits between distant locations. So far, nuclear spins have been used most successfully to 
demonstrate that quantum algorithms really work [2]. However, these groundbreaking studies 
have been limited to small molecules with little more than a handful of spins and qubits. 
Magnetic moments, both associated with nuclei and electrons, are also present in 
semiconductors. It is therefore an interesting question whether scalable spin-based qubit 
systems can be realized in semiconductors, where in conventional microelectronics memory 
chips with more than 109 classical bits can be fabricated.  
 
Several different approaches exist to form electron spin qubits in semiconductors, such as the 
spins of electrons in electrostatically-defined or self-organized quantum dots, the spins of 
electrons bound to donors or the spins of electrons bound to defects or defect complexes. 
Useful nuclear spin qubits in semiconductors are in particular the nuclears spins of the donor 
atoms or of the atoms involved in defects and, if the semiconductor host material can be 
isotopically engineered, also the nuclear spins of the host atoms. To somewhat summarily go 
through the DiVincenzo criteria for spins in semiconductors, all qubit concepts mentioned 
above have been realized, and single qubit read-out, single qubit manipulation via magnetic 
resonance [3] as well as controlled coupling of qubits has been demonstrated for many of the 
concepts, but certainly not all. A general challenge of all solid state-based qubits including 
spins is the transfer of qubit states over long distances and it has to be noted that in this 
respect all solid-state qubit systems have not yet lived up to their originally presumed 
promise. 
 
Which solid-state spin qubit system should therefore be pursued? As has been noted by 
DiVincenzo, it may still be counterproductive to even ask this question at the present stage of 
research into semiconductor qubits [1]. To identify possible strengths of particular spin 
systems, let us however compare the times T1 and T2 of different spin systems in 
semiconductors which characterize the lifetime and the coherence time of qubits, respectively. 
T1 is used in the Bloch equations to describe the relaxation of a magnetization back to the 
equilibrium. During this relaxation, the energy of the spin system changes and therefore this 
relaxation is also called spin-lattice relaxation. In contrast, T2 accounts for processes which do 
not change the energy of the spin system such as spin-spin scattering.   
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For electron spins in electrostatically-defined quantum dots fabricated in III-V compound 
semiconductor heterostructures, a T1 of 0.85 ms [4] and values for T2 longer than 1 µs [5] 
have been reported at temperatures of about 100 mK. For electrons in self-organized III-V 
quantum dots, values for T1 up to 20 ms have been found at 1 K [6]. This comparison has to 
be taken with a grain of salt, since both T1 and T2 very sensitively depend on the temperature 
and the magnetic field. 
 
The most systematic investigation of the spin properties of donors has been performed in 
silicon. For the electron spin of phosphorus donors at 1.25 K, a T1 of 3000 s has been reported 
[7]. As in the case of quantum dots, a strong dependence on the temperature T is observed and 
T1 is found to vary proportional to T -7 between 2.5 and 4.2 K. As expected for spin-spin 
interaction, T2 is found to depend on the P concentration and T2 times as long as 4 ms have 
been observed at 7 K [8]. For the corresponding nuclear spin I=1/2 of the 31P nucleus, a T1 
exceeding 10 hours was reported at 1.25 K [7]. More recently, values of T2 for phosphorus 
nuclear spins of nearly 2 s have been measured at 7 K [9].  
 
Although the wave functions of electrons in quantum dots and at donors differ dramatically 
and therefore a direct comparison of the relevant relaxation and decoherence mechanisms is 
difficult, there is one key difference in the host materials: As shown in Tab. 1, all stable 
isotopes of the elements of groups III and V of the periodic table have a nuclear spin. In 
contrast, the elements of group IV have stable isotopes with no nuclear spin. In fact, isotopes 
of group-IV elements with a nuclear magnetic moment have a low abundance, so that Si 
crystals with a natural isotope composition contain only about 4.7 % of 29Si with I=1/2. 
Therefore, cross relaxation processes between the electron and the nuclear spin systems are 
less important in C, Si and Ge and can in particular be engineered by artificially changing the 
isotope composition, e.g. by either reducing or enhancing the 29Si concentration in Si crystals. 
Detailed experiments as a function of the isotope composition indeed show that the presence 
of 29Si decreases both the effective T1 and T2 of donors in silicon [8][10]. 
 

Group III Group IV Group V 
10B  3  19.9 % 
11B  3/2  80.1 % 

12C  0  98.9 % 
13C  1/2  1.1 % 

14N  1  99.6 % 
15N  1/2  0.4 % 

27Al 5/2  100 % 28Si  0  92.2 % 
29Si  1/2   4.7 % 
30Si  0  3.1 % 

31P  1/2   100 % 

69Ga 3/2  60.1% 
71Ga 3/2  39.9 % 

70Ge 0  21.2 % 
72Ge 0  27.7 % 
73Ge 9/2  7.7 % 
74Ge 0  35.9 % 
76Ge 0  7.4 % 

75As 3/2  100 % 

113In 9/2  4.3 % 
115In 9/2  95.7 % 

119Sn 1/2  8.6 % 
120Sn 0  32.6 % 
and eight other isotopes 

121Sb  5/2  57.2 % 
123Sb 7/2  42.8 % 

 
Tab. 1: Stable isotopes of the elements of the main groups III, IV and V, their nuclear spin 

and natural abundance.  
 
The above discussion, to my opinion, is a clear case for using group-IV elements to construct 
the host material for spin qubits. Indeed, first experiments are under way to transfer the 
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investigation of spins in electrostatically-defined quantum dots to Si/SiGe heterostructures 
[11] with the ultimate aim of nuclear-spin free heterostructures such as 28Si/28Si70Ge. 
However, a particular benefit of group-V donors as qubits in contrast to electrons in quantum 
dots is the nuclear spin of the donor atom, which due to the very long T1 and T2 times given 
above might very conveniently be used as qubit memory.  
 
Why silicon, and not diamond, where the so-called NV-center, a defect complex formed by a 
N donor and a vacancy, shows T2 times of up to 240 µs at room temperature [12][13] and 
single spin read-out has been demonstrated? This question is more difficult to answer. Read-
out of the NV-center is performed optically. In contrast, most read-out concepts investigated 
for donors in silicon are based on electrical measurements which in principle are more easily 
integrated into existing microelectronics, incidentally also based on Si, rather than optical 
detection schemes. The comparatively shallow donor level of P in Si of 45 meV below the 
conduction band, on the other hand, is easily thermally ionized, so that in bulk Si the use of P 
donors for quantum information processing will be limited to temperatures below 30 K. In 
nanostructures, however, the donor becomes deeper and could therefore be used at higher 
temperatures as well. Another possibility to increase the accessible temperature range could 
be double donors such as Se, which have a much deeper donor level.  
 
In conclusion, the possibility to isotopically engineer group-IV materials and the long spin 
lifetimes and coherence times of nuclear spins in these materials render donor states or donor-
defect complexes in C, Si, Ge, their alloys and heterostructures well worth being studied as 
qubits. After a brief summary of the theoretical description of the interaction of electron spins 
with nuclear spins, we will discuss two concepts for donor-based quantum logic devices and 
methods used to position single donor atoms. Finally, we will look into experiments on how 
to read-out the spin state of phosphorus donors via spin-to-charge conversion at the Si/SiO2-
interface.    
 

2 Coupling of electron spins and nuclear spins 
2.1 The spin Hamiltonian 
The analysis of the complete Hamiltonian of donor or defect states in a semiconductor matrix 
is very complex. For a description of the spin properties only, this difficulty is circumvented 
by the concept of a spin Hamiltonian H, which explicitly includes only spin states and 
operators, e.g. 
     ,+ += ISSSS  H

rrrrrr
ADgBì B
ˆˆˆ   (1) 

with the Bohr magneton µB = 9.274015×10−28 J/G, the magnetic field B
r

, and the electronic 
and nuclear spin operators S

r
and I

r
. The parameters ĝ , D̂ , and Â  are in general spatially 

anisotropic matrices with at least the symmetry properties of the orbital wave function of the 
paramagnetic state. By convention, ĝ represents the Zeeman interaction of the electronic spin 
S
r

with the magnetic field, D̂  the fine structure interaction, and Â the hyperfine interaction 
between the electronic and a nuclear spin.  
 
To separate the spin and real space operators in such a way, it must be assumed that a ground 
state wave function can be factorized as the product of a spin state and some non-degenerate 
many-particle orbital wave function. The time-independent Schrödinger equation 

!=! !EH  for the spin states !  and their eigenenergies !E can often be solved 
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analytically. In more complex spin systems, they must be calculated numerically or via 
perturbation theory. The orbital parts of the wave function and spatial operators like crystal 
field and spin-orbit interaction are integrated out and appear only implicitly in the spin 
Hamiltonian via effective numerical parameters such as the effective g-tensor ĝ , whose 
deviation from the free electron’s g-factor g0=2.002319 stems from spin-orbit coupling 

SLH
rr

!=so  treated by second order perturbation theory [14]. The form of the spin 
Hamiltonian is found either ad hoc, i.e. phenomenologically, motivated by symmetry 
considerations, or by a perturbative expansion of the full Hamiltonian [15].  
 
2.2 Matrix representation 
Spin operators S

r
, which are used in various combinations to form the spin Hamiltonian, have 

the general quantum-mechanical properties of an angular momentum [16] 
    mSSm )1( +=2S

r
 (2) 

   mmmz =S  (3) 

    ( ) 1)1()1( ±±!+=±=± mmmSSmim yx SSS   . (4) 
These equations are valid for spin S = 1/2 electrons as well as for many-electron systems with 
higher values of S. A set of basis vectors for the 2S+1-dimensional spin space is defined by 
unit vectors for the orthonormal states m with the eigenvalues m=−S, … , S of the operator 

zS . The spin operators zyx ,,S  take the form of matrices with dimension (2S + 1) × (2S + 1). 
For a spin-1/2 system, these are the well-known Pauli matrices, which may be combined in a 
vector notation of operators to ( )zyx SSSS ,,=

r
 to describe the anisotropic properties of 

spins. The matrix forms of the spin operators for all higher values of S are defined by Eqs. (2) 
to (4). In short form, all non-zero matrix elements mn y,zx,S  of the operators y,zx,S  can be 
summarized as 

    )1()1(
2
1

1, ±!+"= ± mmSSmn mnxS  (5) 

     )1()1(
21, ±!+"= ± mmSSimn mny mS  (6) 

     mmn mnz ,!=S   . (7) 
With a spin Hamiltonian built from linear combinations of such matrix operators, the 
Schrödinger equation becomes a simple matrix equation, whose eigenvalues can be calculated 
from the characteristic polynomial ( ) 0det =iE-1H , where 1 is the unity matrix, and )(BEi

r
is 

one of the eigenvalues of the matrix equation. The corresponding eigenvector i!  defines 

the spin eigenstate for iE  as a linear combination ! "=#
m imi m of the pure basis vectors 

of zS . These basis vectors m  of zS are usually the eigenstates of the spin Hamiltonian in the 
limit of very high magnetic fields along the z-axis, where all other perturbations can be 
neglected. 
 
A system of several spins, e.g. one electronic spin S and one nuclear spin I, requires a total of 
(2S + 1)! (2I + 1) orthogonal eigen-vectors. The orthonormal basis vectors is mm ,  of the 
product space may again be organized as unit vectors, now with a combined index (ms,mi), 
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which takes all values (−S,−I), (−S,−I+1), … , (S,I). The matrix elements 
iszyxzyxis mmnn ,,, ,,,, IS of the electronic and nuclear spin operators are defined according to 

Eqs. (5) to (7) also in this product space. The operators zyx ,,S leave the nuclear spin states 
unaffected and are represented by the unity matrix elements mini,!  for the nuclear spin, and 
vice versa zyx ,,I  leave the electronic spin states unaffected and are represented by the unity 
matrix elements msns,! for the electronic spin, i.e. 

     szyxsminiiszyxis mnmmnn ,,,,, ,, SS !=  (8) 

     izyximsnsiszyxis mnmmnn ,,,,, ,, II !=  (9) 
with the operators on the right-hand side as defined in Eqs. (5) to (7). 
 
2.3 Diagonalization procedures 
The spin Hamiltonian matrix needs to be diagonalized in order to obtain its eigenenergies iE  
and eigenvectors i!  [17]. In cases where it is not possible to solve the matrix Schrödinger 
equation analytically, approximate solutions from perturbation theory, or exact numerical 
solutions for one set of matrix elements at a time must be obtained. These calculations are 
somewhat simplified, if the magnetic field is oriented along the z-axis of the spin 
Hamiltonian, as typically the Zeeman term dominates the eigenenergies of the spin. For other 
orientations of the magnetic field, this can be achieved by a rotation of the coordinate system 
of the spin operators SS

rr
R̂=! [17]. In the new coordinate system, the other possible 

interactions then introduce only small off-diagonal elements to the spin Hamiltonian. 
 
The case of a phosphorus donor with S=1/2 and I=1/2, H can be solved analytically by 
inspection. Neglecting the weak nuclear Zeeman interaction, the spin Hamiltonian is 
    ( )zzyyxxBB AgBìAgBì ISISISSISS  H +++=+=

rrrrrr
ˆˆˆ  (10) 

with the external magnetic field ( )BB ,0,0=
r

 along the z-direction, the isotropic g-factor 
gg 1=ˆ , and the isotropic hyperfine interaction AA 1=ˆ . The basis vectors is mm ,  of the 4-

dimensional product basis of zS and zI  in this example are 
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0
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0
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1   . (11) 

The matrix form of this spin Hamiltonian is given by 

   

!!
!
!
!
!
!
!
!

"

#

$$
$
$
$
$
$
$
$

%

&

+
µ

'

'
µ

'

'
µ

+

+
µ

+

=

42
000

0
422

0

0
242

0

000
42

ABg

ABgA

AABg

ABg

B

B

B

B

H    . (12) 

The off-diagonal elements A/2<<µBBg can be neglected for small hyperfine couplings 
compared to the Zeeman interaction. In this case, Eq. (12) is already approximately diagonal, 
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which means that the diagonal elements and the basis vectors of Eq. (11) are a first-order 
approximation to the eigenenergies and eigenvectors of the system. In this regime, both S and 
I are quantized along the external magnetic field. These first-order eigenenergies are shown as 
a function of B in the energy diagram of Fig. 1a). 
 

 
Fig. 1: Breit-Rabi diagrams a) of the first-order solutions and b) of the exact solutions of 

the spin Hamiltonian of Eq. (12) with the electronic spin S = 1/2, the nuclear spin I 
= 1/2, and the hyperfine interaction A. For better comparison, the first-order 
solutions are included in b) with dashed lines. The energy levels are labelled 
according to the basis states is mm ,  which are eigenstates of H at µBBg>>A. For 
µBBg<<A, I tends to be coupled with S to an effective angular momentum J = S − I, 
… , S + I. The vertical lines indicate the two strongly allowed ESR transitions for a 
microwave energy hν = 2A. In (b), also the weakly allowed transitions are 
indicated.  

 
According to the dipole selection rules, the allowed electron spin resonance (ESR) transitions 

are those with 
2
1,

2
1

2
1,

2
1

±!"#$±+  with Δms=±1 and Δmi =0. For a given transition 

energy ΔE = hν, where h is the Planck constant, these two transitions appear at the magnetic 

fields gAhB Bµ!
"

#
$
%

& ±'= /
2

in the first-order approximation. With the characteristic polynomial 

of the inner 2 × 2 block matrix, the exact energy eigenvalues E1, … , E4 can be calculated 
analytically without approximations over the complete magnetic field range 

    BgAE Bµ±+=
2
1

4
1

4,1  (13) 

    ( ) 22
3,2 2

1
4
1 ABgAE B +µ±!=    . (14) 
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The characteristic anti-crossing between the 
2
1,

2
1
m± levels for small external fields is 

shown in Fig. 1 b). In the low-field regime, the eigen-vectors 3,2E  are symmetric and 

antisymmetric combinations of the 
2
1,

2
1
!  and 

2
1,

2
1

!  basis vectors. As a consequence, the 

2
1,

2
1

2
1,

2
1

m!"#$±+  transitions are not completely “forbidden” in the low-field regime, 

as indicated with the smaller dots in Fig. 1 b). Physically, the system is then best described via 
a coupled angular momentum J = S − I, … , S + I for µBBg<<A. For A > 0, the J = 0 singlet 
state with opposite nuclear and electronic spin orientation has lower energy than the 
“ferromagnetically” coupled J = 1 triplet state. 
 

3 Device concepts 
The original concept to use the electron spin and the nuclear spin of phosphorus donors in 
silicon as qubits goes back to Kane [18][19]. A device similar to the one envisaged by him is 
shown in Fig. 2. It consists of two phosphorus donors placed in isotopically pure 28Si to 
suppress decoherence by the 29Si nuclear spins present in natural silicon. Each donor is 
positioned below a separate gate, denoted A gate. In between the two donors and their 
respective A gates, a second gate denoted J is placed. The device is expected to operate at a 
temperature T of about 100 mK and at a magnetic field higher than 2 T, so that the electron 
spins will be fully polarized.  
 

       

SiO
2

28Si substrate

Readout

A J A

Control gatesControl gates

20 nm
31P 31P

 
 
Fig. 2: Kane concept for a quantum logic element based on the nuclear spins of 31P donors 

in isotopically pure 28Si. 
 
With the help of the A gate, the wave function of the donor electron can be manipulated, 
pulling it towards the Si/SiO2-interface or pushing it away from it. The hyperfine interaction 
A between the two spins present in a single 31P donor, the electron spin S and the nuclear spin 

I, is given by the so-called Fermi contact hyperfine interaction 2
0 )0(

3
2

!µµµ= nnB ggA , 
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where gn is the nuclear g-factor of 31P, µn the nuclear magneton and 2)0(! the probability 
density of the electron donor wave function at the position of the nucleus [20][21]. Changes 
of the wave function due to a Stark effect should therefore lead to a variation of the hyperfine 
interaction. If electron spin resonance with Δms=±1 is excited at the position of one of the 
hyperfine-split resonances, say mi=+1/2, for a certain bias voltage at the A gate, changes of 
that bias voltage will lead to that particular electron spin transition going off resonance. 
Exciting the corresponding nuclear magnetic resonance (NMR) with Δmi =±1 effectively 
given by the hyperfine interaction A, a change of the bias voltage will similarly switch on or 
off the nuclear spin transition. Thereby, while exciting ESR or NMR globally, via the 
application of gate voltages either the electron or the nuclear spin can be addressed locally. 
This allows the realization of single qubit operations or gates. In his original proposal, Kane 
envisaged the use of the nuclear spins a qubits. A coupling of two nuclear spins at 
neighboring donors and therefore a two-qubit gate is possible via the electron spins at the 
respective donors. Their exchange interaction and thereby also the interaction between the 
nuclear spins are controlled in Fig. 1 by the coupling gate J influencing the overlap of the 
electronic wave functions. Since the exchange coupling, which dominates the spin-spin 
interaction of neighboring 31P electrons, depends exponentially on the distance of the donor 
atoms, the accurate placement of the donors is quite crucial in this respect. To be able to 
effectively influence the coupling by a J gate, distances of about 5 to 10 Bohr radii are 
expected to be necessary.  
 
The read-out of the electron spin state can similarly be discussed with the help of Fig. 2. For 
this, the gate voltages are adjusted such that the electron would be transferred from one donor 
to the other. Let us assume that we want to read-out the spin on the left and that the spin on 
the right is in a well known state such as spin down ms=-1/2. The final state will be a double 
occupied donor state 31P-, which according to the Pauli principle has to be in a total S=0 
singlet state. The transfer of the electron between the donors can therefore only take place 
when the left electron is in a spin up state initially, or, more correctly, if the two electron spins 
also initially form a singlet. The Pauli principle therefore governs the charge transfer rate, so 
that the spin information is transferred into a charge information. Adiabatically changing the 
coupling of the two electron spins furthermore allows to convert the nuclear spin state into the 
spin symmetry of the electron spin pair, thereby facilitating the read-out of the nuclear spin. 
Finally, Kane suggests to use sensitive capacitive techniques such as radio-frequency single-
electron transistors (rf-SETs) to determine the charge state of the read-out donor, the right 
donor in our case.   
 
The effect of electric fields E on the hyperfine interaction of donors has been investigated in 
detail using 121Sb [22]. Relative changes of the g-factor of Δg/g=-1x10-5 µm2/V2 E2 and of the 
hyperfine interaction of ΔA/A=-3.7x10-3 µm2/V2 E2 have been found The application of high 
electric fields is limited by field ionization, so that only about 3 kV/cm can be used. This 
restricts the relative change in hyperfine interaction to about 3x10-4. The vicinity of the 
Si/SiO2-interface will increase the applicable field somewhat, but still the Stark effect on the 
hyperfine interaction is limited.  
 
The main advantage of the Kane concept based on the nuclear spins of the 31P is their long 
coherence. The nutation rate with which spins can be flipped is given by hBg Bnut /1µ=!  or 

hBg nnnut /1µ=! , where B1 is the strength of the microwave or radio-frequency magnetic field 
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used to drive the ESR or NMR, respectively. For the same B1 fields, electron spins can be 
manipulated much faster than nuclear spins, allowing a higher clock speed in a possible 
quantum processor and simultaneously tolerating smaller T2. 
 
 

       

SiO
2
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g J g

Control gatesControl gates

31P 31P

Si0.40Ge0.60

Si0.15Ge0.85

Si0.23Ge0.77

small g factorlarge g factor

 
 
Fig. 3: Proposal by Vrijen and coworkers on a quantum logic element based on donors 

placed at the interface of two epitaxial layers of SiGe with different alloy 
composition.    

 
Vrijen and coworkers suggested an alternative concept for a donor-based quantum logic 
element using the electron spins of donors placed at the interface of two different 
semiconductor materials as qubits (Fig. 3) [23]. The full miscibility of Si and Ge as well as 
the existence of stable nuclear spin-free Si and Ge isotopes renders the SiGe alloy system 
particularly interesting for this approach. Indeed, the g-factor of donors in Si is about 1.998, 
while in Ge a g of 1.563 is found. Therefore, placing a donor at the interface of two 
isotopically pure 28Si and 70Ge layers, or rather two isotopically pure Si1-xGex alloys with 
alloy compositions such that the donor level is at the same energy in both layers, one might 
influence the g-factor via pushing or pulling the donor wave function from one material to the 
other with a gate now labeled g to a larger degree than by the Stark effect discussed for 
donors in pure Si above. However, it must be noted that the electrons will reside in different 
valleys in the two layers, since the conduction band minima of Si are near the X point in the 
Brillouin zone, while the band minima in Ge are at the L point. The effect of an effective 
intervalley scattering performed by the application of an electric field in the Vrijen concept in 
particular on T2 remains to be investigated. Nevertheless, in addition to a possibly much 
higher change in the g-factor, the more shallow donors in Ge-rich SiGe alloys also have larger 
Bohr radii, so that the qubits have to be farther apart than in the pure Si design by Kane and 
the requirements for the accuracy of the donor placement can be less stringent.    
       

4 Fabrication of single-donor devices 
One of the main challenges in the realization of donor-based quantum logic devices is the 
accurate placement of single donors. As outlined above, the distance of the donors both to the 
Si/SiO2-interface and to the neighboring donors should be typically of the order of 20 nm. The 
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main approaches to realize such a position of single donor atoms are implantation and 
lithography. 
 

 

 

Fig. 4: Implantation of single 
donors. Adapted from 
[24].  

  
A schematic diagram of a single-dopant implantation set-up is shown in Fig. 4 [24]. The 
silicon substrate itself is used as a particle detector. Phosphorus ions being implanted will 
generate electron-hole pairs, which are separated in the applied electric field. Using 
appropriate electronics, the current pulse thus generated by a single ion implantation event 
can be detected. If a low flux of incident ions is used, a beam blanker can be activated quickly 
enough after the observation of an implantation event to prevent further ions from reaching 
the substrate, allowing single ion implantations. As sketched in Fig. 4, lithographically-
defined masks can define the location of the implantation. When pairs of dopants are to be 
formed, the approach based on two neighboring openings in the mask shown in Fig. 4 will 
provide such dopant pair structures with a probability of 50%. Alternatively, atomic force 
microscopy (AFM) tips, which have a channel in the tip through which the ions can be 
implanted, have been used as moveable implantation masks [25], reducing the risk of double 
implantation through a single opening in the lithographically-defined mask of Fig. 4.      
 
Shallow implantations with a typical depth of 20 nm can be obtained with phosphorus ion 
energies of the order of 10 to 20 keV. However, the scattering between the incident ion and 
the atoms of the Si substrate lead to straggle. At a primary energy of 14 keV for singly 
negatively charged P ions, the exact position of the P atom in the Si substrate after 
implantation varies by about 11 nm in the distance to the substrate surface and by about 8 nm 
in the directions perpendicular to that. Together with the diameter of the mask openings, this 
straggle leads to a variation of the distance between P atoms e.g. forming a quantum logic 
element as sketched in Fig. 2 by several Bohr radii. 
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Fig. 5: Lithography of single donors 
by local desorption of 
hydrogen atoms induced by 
scanning tunneling micros-
copy. Adapted from [26].   

 
An alternative, but experimentally even more challenging approach is the use of lithography 
based on scanning tunneling microscopy (STM) sketched in Fig. 5 [26][27][28]. The 
fundamental idea is to fabricate a hydrogen-terminated surface and, with the help of an STM 
tip, to locally remove this atomic analog to a photoresist. The surface Si atoms not terminated 
by hydrogen are very reactive, and PH3 molecules brought onto the surface will bind to them, 
which allows to position single phosphorus atoms with the atomic precision of STM. It only 
remains to form an epitaxial Si cap layer, followed by growth of a SiO2 barrier and the 
fabrication of the gate contacts. However, Si tends to move with the growth front at the 
temperatures usually used for high quality epitaxial growth, which would significantly reduce 
the accuracy of the P placement in the final device structure. Using an intermediate growth 
step at room temperature, followed by a rapid thermal anneal and a high temperature 
overgrowth, the “straggle” in the P position can be reduced to below 1 nm,  a value smaller 
than the Bohr radius of effective mass donors in Si. However, it should be noted that also in 
the case of STM lithography, every P donor pair formed will have such a different overlap of 
the wave functions that the relevant voltages at the J gates in Fig. 2 for the switching of the 
electronic spin-spin interaction will have to be adjusted separately for each pair. Apart from 
devices for quantum information processing, the STM-based lithography summarized also 
allows the fabrication of other interesting and novel devices for “atomic electronics” in 
general.           
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5 Read-out of electron spin states 
The second main challenge is the read-out of single donor spins. While this has been 
demonstrated for electrostatically-defined [4] and self-organized quantum dots [29] as well as 
for the NV-center in diamond [30], the successful determination of both the electron and the 
nuclear spin state of single donors is subject to intense work by several groups. 
 
5.1 Silicon rf-SETs 
In parallel to the fabrication of single dopant devices, significant progress is being made in the 
development of techniques for the sensing of single charges in Si devices, an integral step in 
the measurement of spin states. As an example, Fig. 6 a) and b) show a radio-frequency single 
electron transistor (rf-SET) formed at the Si/SiO2-interface of a nearly undoped Si substrate 
[31]. Between the source and drain contacts, an n-type channel with a low electron density is 
formed. Via two gate electrodes B1 and B2, an island can be controllably created in the 
middle of the channel. The radio-frequency reflectance of the device, a measure of the source-
drain conductance, shows clear Coulomb diamonds in Fig. 6 c), demonstrating the possibility 
to measure the change of the number of charges on the islands on a single-electron level. The 
particular detection via rf reflectance allows charge measurements with a bandwidth as high 
as 2 MHz, comparable to that of mature aluminium rf-SETs. These results suggest that the 
quantum logic element as well as the charge detector required for the spin read-out could be 
fabricated as an integrated device from Si.       
 

     
 
Fig. 6: a) Scanning electron microscopy top view and b) schematic side view of a Si rf-SET. 

c) Coulomb diamonds demonstrating the single electron sensitivity of the device. 
Adapted from [31]. 

 
5.2 Spin-to-charge conversion at the Si/SiO2-interface 
So far, we have discussed the read-out of the electron spin state via a spin-to-charge 
conversion process involving two neighboring 31P donor states. However, any paramagnetic 
state can be used as a partner to read-out the donor spin state. To be able to manipulate the 
qubits, the donors have to be near to the gate electrodes, which are insulated from the silicon 
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substrate via an oxide. At the interface of the silicon and this oxide, defects such as 
unsaturated Si “dangling” bonds occur naturally in concentrations of typically between 1011 
and 1013 cm-2, depending on the exact oxide growth conditions. By passivation with hydrogen 
in a forming gas anneal or via compensation, the density of these defects can be reduced. 
However, they can also be used very conveniently as the partner required for spin-to-charge 
conversion [32]. 
 
Figure 7 shows a spin-dependent recombination process involving a 31P donor electron and 
the dominant Si/SiO2-interface defect named Pb0 [33]. As in the case of the charge transfer 
between neighboring P donors discussed above, the recombination step can only proceed if 
the 31P-Pb0 pair is initially in a singlet spin configuration. In this case, a negatively charged 
Pb0

- state is formed. If mobile charge carriers are present such as electrons and holes generated 
by illumination, an electron will be trapped by the positively charged 31P and a hole by the 
negatively charged Pb0 center, leading to a reduction of the carrier densities and to a reduction 
of the conductivity. The symmetry of the spin pair and therefore also the electron spin state of 
the donor can thus be detected by changes in e.g. the photoconductivity. 
 
 

    
 
Fig. 7: Spin-to-charge conversion at the Si/SiO2-interface.    
 
To demonstrate the feasibility of this electrical read-out scheme of the electron spin state, let 
us look at an ensemble of 31P-Pb0 pairs. Due to the spin-allowed recombination, most 31P-Pb0 
singlet pairs will have recombined in thermal equilibrium, most 31P-Pb0 pairs remaining will 
be in a triplet configuration. Turning triplets into singlets via electron spin resonance of either 
the 31P or the Pb0 (which is possible when the 31P-Pb0 coupling is small), pair recombination is 
increased [3]. Continuous resonance excitation will lead to a continuous oscillation of the 
ensemble being dominantly in the triplet or singlet configuration and, simultaneously, an 
oscillation of the 31P-Pb0 recombination rate. The observation of these Rabi oscillations in the 
conductivity will be a clear demonstration of this spin read-out concept. However, the RC-
timeconstants of the samples typically studied do not allow the direct monitoring of these 
oscillations. To overcome this limitation, two technical tricks summarized in Fig. 8 are 
currently used [34].  
 
Figure 8 a) shows the oscillation of the recombination during the application of a microwave 
pulse exciting electron spin resonance of either partner in the spin pair. After the pulse, the 
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spin system is most-likely in a non-equilibrium state determined by the symmetry of the 31P-
Pb0 pairs and will relax back into equilibrium. Governed by different time constants including 
the singlet- and triplet recombination times and the RC-timeconstant of the detection system, 
a current transient will be observed during this relaxation. The amplitude of this current 
transient, however, is proportional to the deviation of the singlet/triplet content of the spin 
pair ensemble at the end of the microwave pulse from thermal equilibrium (Fig. 8 b), so that 
measurements of this transient long after the excitation of the spin resonance has finished 
provide the wanted information on the spin orientation [34]. To further improve the signal-to-
noise ratio of these experiments, the current transient is integrated over a certain time 
window, yielding a charge Q as the primary physical quantity measured (Fig. 8 c).  
           

 
Fig. 8: Measurement of the recombination rate at the end of the microwave pulse exciting 

the electron spin resonance of 31P-Pb0 pairs. 
 
 

 

Fig. 9: Rabi oscillations of the 
31P-Pb0 recombination 
at the Si/SiO2-inter-
face observed by 
electrically detected 
magnetic resonance 
(EDMR). 
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The result of such pulsed electrically detected magnetic resonance (EDMR) experiments are 
shown in Fig. 9 as a function of the length of the microwave pulse τp for a sample containing 
about 1010 P donors in a 15 nm thin Si layer capped with a native SiO2, corresponding to a 
phosphorous concentration of about 1017 cm-3. At three different magnetic fields, clear 
oscillations of Q are found [32]. The resonances at 346.1 and 350.3 mT are the hyperfine split 
signature of the 31P donor. The difference in the magnetic fields of the two resonance 
positions is A/µBg as shown in Fig. 1. The resonance at 347 mT is caused by the Pb0 centers. 
Final proof that indeed Rabi oscillations induced by magnetic resonance are observed comes 
from the reduction in the Rabi oscillation frequency hBg Bnut /1µ=!  upon lowering of the 
microwave power 2

1BP w !µ used (Fig. 10).  
  

        

Fig. 10:  Dependence of the Rabi 
oscillation frequency on 
the microwave power 
used. 

 
 
5.3 Decoherence  
Spin coherence can be studied with a variety of different techniques, including the 
measurement of the spin resonance lineshape and intensity as a function of microwave power 
and dynamical variables such as the rate with which the magnetic field is changed. These 
approaches can be summarized by the term “passage effects”. Alternatively, so-called echo 
techniques can be used [35]. The coherence time T2 can e.g. be determined via a Carr-Purcell 
echo experiment, which consists of a pulse sequence denoted by π/2-τ1-π-τ2, where π/2 and π 
denote the rotation angle of the spin system induced by resonant microwave pulses and τ1 and 
τ2 are the free evolution periods between the pulses [36]. Such a Carr-Purcell echo is shown in 
Fig. 11 a) for an ensemble of identical spins (e.g., the spins of phosphorus donors) plotted in a 
Bloch sphere, starting, e.g., with the spin ensemble in the down eigenstate ms=-1/2. The 
microwave pulses are assumed to rotate the spins around the x-axis of the Bloch sphere. The 
echo develops in the x-y plane of the Bloch sphere, giving rise to a pulse in the transverse 
magnetization at τ1=τ2, which is easily detectable in conventional ESR. However, the 31P-Pb0 
spin-to-charge conversion process is sensitive to the singlet-triplet symmetry of a spin pair, 
which is not changed by the formation of an echo in the transverse magnetization. A 
successful detection of such echoes via charge transport therefore requires so-called echo 
tomography [37], where after the second free evolution period τ2 a final π/2 pulse rotates the 
spin system back into singlet or triplet eigenstates of the pair, shown in Fig. 11 c) in more 
detail. For τ2<τ1 and τ2>τ1, no echo has developed in the x-y plane so that after the final π/2 
pulse, the spins of the ensemble point to all directions in the x-z plane of the Bloch sphere. 
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Both triplet and singlet configurations will therefore be found in ensembles of the 31P-Pb0 spin 
pairs under these conditions. However, for τ2=τ1, an echo has developed, so that after the final 
π/2 pulse, the 31P spin ensemble is in the original ms=-1/2 down eigenstate again. If the Pb0 
partner in the spin state is in its ms=-1/2 state, we find only the triplet configuration for the 
31P-Pb0 spin pairs. Therefore, echoes can be formed also in the singlet-triplet symmetry of spin 
pairs and are accessible to purely electrical detection. 
 
We can predict the experimental signature of the echoes. The pulse sequence π/2-τ1-π-τ2-π/2 
contains microwave pulses with a total length of 2π. Ideally, we therefore expect a value of Q 
after a Carr-Purcell echo sequence with τ2=τ1 equal to the Q found after a rotation by 2π in a 
Rabi-flop experiment shown in Fig. 11 b). For τ2<τ1 and τ2>τ1, the spin-pairs are not in the 
steady-state configurations. Rather, the ensemble of spin-pairs will contain singlet and triplet 
configuration in about equal contributions and therefore a larger Q corresponding to Rabi 
oscillations by 3π/2 and 5π/2 is expected as the result of such Carr-Purcell sequences. A 
quantitative comparison of Q observed on the high-field 31P resonance at 350.3 mT during the 
echo in Fig. 11 d) to the Q observed in the Rabi oscillation in Fig. 11 b) demonstrates that the 
echo amplitude ΔQ is indeed as large as expected. 

a) c)

b) d)

a) c)

b) d)

 
 
Fig. 11: Application of echo tomography to the Carr-Purcell method to measure the 

coherence of 31P-Pb0 spin pairs via charge transport. b) and d) show that the echo 
amplitude ΔQ can be understood quantitatively from the amplitude of the Rabi 
oscillations.   

 
 
To determine the echo decay time and therefore the effective coherence time, the echo 
sequence is measured as a function of τ1 and τ2. In all cases, the echo is observed at τ2=τ1 and 
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its intensity decreases monoexponentially for longer values of τ with a characteristic time 
constant of about 1.7 µs both for echos detected on the 31P and the Pb0 resonance [37]. We 
have already mentioned the much longer values for T2 observed in bulk crystals of 
isotopically pure 28Si with low 31P concentrations [8]. In bulk natSi with a donor concentration 
of 1017 cm-3 as in our samples, the T2 determined by magnetization echo experiments is 
already reduced to about 10 µs [38]. The presence of the Si/SiO2-interface is also expected to 
lead to a reduction of the coherence [39], as has been shown experimentally for implanted Sb 
donors [40]. However, EDMR experiments using pulses at different microwave frequencies to 
induce spin flips of both partners in the 31P-Pb0 pair are able to measure the singlet 
recombination time. A quantitative comparison of the singlet recombination time and the 
effective echo decay time shows that the coherence of the 31P-Pb0 is limited by the lifetime of 
the spin pair, rather than by spin-spin scattering. The observation of spin echos in the charge 
transport opens the possibility to apply pulse sequences such as DEER and ESEEM including 
free evolution times to study spin-spin interactions in these devices, allowing the 
determination of the coupling between the electron spins at 31P and Pb0 or between the donor 
electron spin and the nuclear spins of 29Si, respectively, and ultimately the realization of 
entanglement between these spins.  
 
5.4 Outlook 
The results discussed above show that, at least for ensembles, the read-out of the electron spin 
state via 31P-Pb0 pairs is feasible. This observation opens up a wealth of opportunities: Using 
the A gates in Fig. 2, it can be envisaged that by changing the gate voltages the coupling 
between the donor wave function and the read-out spin at the Si/SiO2-interface can be varied, 
which would allow the selective addressing and reading of the single 31P spins [41]. Electrical 
detection of spin resonance, but not yet actual spin read-out has already been achieved on 
samples containing as few as 50 P donors [42]. Furthermore, several different approaches for 
the electrical read-out of the nuclear spin state are being discussed. Irrespective of the possible 
use of this particular read-out scheme or even the use of donors for quantum information 
processing, these studies allow a more detailed understanding of the complex charge carrier 
and spin dynamics in semiconductor nanostructures.   
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1 Introduction

These lecture notes cover the topic quantum algorithms on an introductory level. We assume
that the reader is familiar with the basic concepts of quantum mechanics (see for instance [8]).
Instead of getting lost into details we tried to present the underlying ideas in a comprehensible
manner. The only exception is Grover’s algorithm which has been described more thorough
in order to achieve a deeper understanding of the workflow of a typical quantum algorithm.
Suggestions for further readings are given in the references.
Throughout the concept of these lecture notes especially [4, 5] have been heavily used.

1.1 Why quantum computation?

According to Moore’s law [1] the number of transistors of an integrated circuit, with respect
to minimum component costs, doubles approximately every 18 – 24 months. Up to now, this
exponential growth has not saturated and by simply extrapolating this behavior the space for
storing a single bit of information will scale down to the atomic size around 2020. At that point,
quantum effects will become unavoidably dominant and instead of pushing the silicon-based
transistor to its physical limits it might be more reasonable to exploit the principles of quantum
mechanics in an intrinsic way.
The power of quantum computation is due to typical quantum phenomena, such as the superpo-
sition of quantum states and entanglement. There is an inherent quantum parallelism associated
with the superposition principle. In simple terms, a quantum computer can process a large num-
ber of classical inputs in a single run. On the other hand, this would lead to a large number of
possible outputs. It is the task of quantum algorithms to amplify the desired output by inter-
ference of all states. To be useful, quantum computers require the development of appropriate
quantum algorithms. In specific cases — like the factoring of numbers (Shor’s algorithm ) or
the searching of an unstructured data base (Grover’s algorithm) — a remarkable speedup in
comparison with classical solutions can be achieved. We discuss the most prominent examples
of such algorithms in the following chapters.

1.2 Complexity classes

Complexity theory addresses the question how difficult it is to solve a given mathematical prob-
lem. Problems are classified according to the increase of time, a classical computer would need
to solve the task, in dependence of the “size” of the task. For example, the size can be the
number of bits that define the problem.
We say that a problem belongs to the computational class P if it can be solved in polynomial
time, i.e. in a number of steps that is polynomial in the input size. Instead, the computational
class NP is the class of problems whose solution can be verified in polynomial time. It is clear
that P is a subset of NP. Here we find all the problems whose solution can be easily verified and
that are also easy to solve. It is an open problem whether P �= NP. If this were the case, there
would be problems hard to solve but whose solution could be easily checked. For instance, the
integer factoring problem belongs to the class NP, since it is easy to check if a number m is
a prime factor of an integer N , but no algorithm is known that allows efficiently to compute
the prime factors of N on a classical computer. Therefore, it has been conjectured, though not
proven, that the integer-factoring problem does not belong to the class P.
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2 Deutsch’s algorithm: constant or balanced function?

Deutsch’s problem illustrates the computational power of quantum interference. We consider a
black box called the oracle which evaluates the function f : {0, 1} → {0, 1}. There are four of
such functions which are listed in the following table:

x f0 f1 f2 f3

0 0 0 1 1
1 0 1 0 1

Those functions can be classified according to a global property: two of them are constant (f0

and f3) and two balanced (f1 and f2). The problem is to decide whether a given function is
constant or balanced. On a classical computer this task requires two queries of the oracle. A
quantum computer can solve the same problem with only one oracle query:
We need one ancillary qubit |y〉. On a quantum level the oracle corresponds to a unitary trans-
formation Uf

Uf |x〉|y〉 = |x〉 |y ⊕ f(x)〉 (1)

where⊕ denotes addition modulo 2. That is, the second qubit is flipped if and only if f(x) = 1.
In the case that the second qubit is in a superposition we obtain

1√
2
|x〉 (|0〉 − |1〉) Uf−→ 1√

2
|x〉 (|0⊕ f(x)〉 − |1⊕ f(x)〉)

=

{
1√
2
|x〉 (|0〉 − |1〉) if f(x) = 0

1√
2
|x〉 (|1〉 − |0〉) if f(x) = 1

= (−1)f(x) 1√
2
|x〉 (|0〉 − |1〉) . (2)

Both qubits remain in their primary state with (−1)f(x) acting as a global phase factor. For a
superposition of both qubits we obtain

1
2
(|0〉+ |1〉)(|0〉 − |1〉) Uf−→ 1

2

(
(−1)f(0) |0〉+ (−1)f(1) |1〉) (|0〉 − |1〉)

= (−1)f(0)

2

(|0〉+ (−1)f(0)⊕f(1) |1〉) (|0〉 − |1〉) . (3)

The relevant information is now coded in the relative phase of the superposed states of the first
register. By applying a Hadamard operation we get

(−1)f(0)

2

(|0〉+ (−1)f(0)⊕f(1) |1〉) (|0〉 − |1〉) H−→ (−1)f(0) |f(0)⊕ f(1)〉|1〉 (4)

which corresponds to |0〉|1〉 if f is constant and |1〉|1〉 in the case that f is balanced. Therefore,
a global property of the function f(x) has been encoded in a single qubit after a single call of f .
This is because a quantum computer can evaluate both f(0) and f(1) simultaneously. The main
point is that these two alternative “paths” are combined by the final Hadamard gate, giving the
desired interference pattern. The interference is constructive for the outcome f(0) ⊕ f(1) and
destructive for the alternative outcome.
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3 Grover’s algorithm: how to seek a needle in a haystack?

Imagine that you have a telephone number of a person who is living in your town and you want
to find out whose number it is by just using your telephone book. The best you can do classically
is to go through the names one by one until you find the corresponding number. If the phone
book contains N entries, you would have to check N/2 numbers in the mean. Fortunately,
a quantum search can do better: in 1996 Lov Grover could show [10] that only

√
N queries

are needed. Furthermore, Grover’s algorithm is known to be optimal [11], i.e. no classical or
quantum algorithm can solve the problem (of searching an unstructured database) faster. Since
the quantum algorithm does not lie in a different complexity class than the best classical one1,
the speedup is still quadratic.
The underlying idea of Grover’s algorithm is to start with a superposition of all states and
amplify the amplitude of the state searched for step by step by repeatedly applying a certain
sequence G of operations. After a fixed number k of iterations the amplitude of this state has
gained a value close to 1, which means a measurement yields the searched element with a high
probability.
For simplicity2 let us assume that we have an unstructured database that contains N = 2n

different elements. We label the items as {0, 1, . . . , N − 1} and x0 is the element searched for.
The result of the quantum search process is stored in a register |x〉 which yields the index x0

with a high probability when measured. In addition a single ancillary qubit |y〉 is needed to
store the result of the oracle query. The oracle O computes the n-bit binary function

f : {0, 1}n → {0, 1} , (5)

defined as

f(x) =

{
1 if x = x0 ,

0 otherwise.
(6)

Grover’s algorithm in detail:

• Start with the state
|x〉|y〉 = |00 . . . 0〉|1〉 . (7)

• Apply H⊗n+1 (n+ 1 Hadamard gates) =⇒ equal superposition of all basis states:

|00 . . . 0〉|1〉 → 1√
2n

2n−1∑
x=0

|x〉 1√
2
(|0〉 − |1〉) (8)

• Evaluate the oracle function3 |x〉|y〉 O−→ |x〉|y ⊕ f(x)〉.
This flips the sign of the |x0〉 amplitude:

1√
2n+1

2n−1∑
x=0

(−1)f(x) |x〉 (|0〉 − |1〉) (9)

1Both grow polynomial in time with the number of database elements.
2Grover’s algorithm does also work with partially identical elements, but this issue is a little bit more compli-

cated (see e.g. [2]). In the case 2n−1 < N < 2n the database can be filled up with distinguishable items so that
Ñ = 2n holds.

3⊕ means addition modulo 2 which corresponds to a XOR operation.
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• Let us define the Grover iteration G, with G = IMO, where O denotes the oracle query
and

IM = −H⊗n(1− 2 |0〉〈0|)H⊗n = −(1− 2 |S〉〈S|︸ ︷︷ ︸
R|S〉

) (10)

is often referred to as the “inversion about the mean4”. The uniform superposition |S〉 is
given by |S〉 ≡ H⊗n |0〉 = 1√

2n

∑2n−1
x=0 |x〉 and the operator5 R|S〉 mirrors a given state at

the hyperplane perpendicular to |S〉 (cf. section 3.1).

• Now apply IM (remember: we have already used O, so one Grover iteration G is now
completed).

• (For N > 4):6 Apply G several times until a measurement of |x〉 gives x0 with maximal
probability7.

• Perform a measurement of the first register in the computational basis, giving outcome
x = x̄. If f (x̄) = 1 the search was successful, otherwise repeat the algorithm.

3.1 Geometric visualization

The underlying idea of Grover’s algorithm gets much clearer in terms of a geometric interpre-
tation. Since this visualization goes back to the fact that geometrically a reflection operator
induces a mirroring, let us start with a short warm-up.

Preliminary consideration: reflection operator and mirroring Consider a bidimensional
space spanned by the vectors {|x0〉 ,

∣∣x⊥0 〉} and a generic vector |ψ〉 = α |x0〉 + β
∣∣x⊥0 〉. The

action of the reflection operatorR|x0〉 = 1− 2 |x0〉〈x0| on |ψ〉 isR|x0〉 |ψ〉 = −α |x0〉+ β
∣∣x⊥0 〉.

Therefore, R|x0〉 changes the sign of the |x0〉 amplitude. Geometrically this corresponds to a
mirroring at the axis

∣∣x⊥0 〉, that is, at the hyperplane perpendicular to |x0〉 (see Fig. 1).

Next, let us prove that −R|S〉 = R|S⊥〉 holds. We consider a generic vector |u〉 = μ |S〉 +

ν
∣∣S⊥〉. Application of R|S〉 yields −μ |S〉 + ν

∣∣S⊥〉 while R|S⊥〉 |u〉 = μ |S〉 − ν
∣∣S⊥〉 =

−R|S〉 |u〉. As a result, the “inversion about the mean” operator IM in eqn. (10) can be written
as

IM = R|S⊥〉 . (11)

Grover’s algorithm begins with the uniform superposition state (8)

4The operation IM applied to a general state
∑

x αx |x〉 yields
∑

x [−αx + 2 〈α〉] |x〉, where 〈α〉 ≡∑x αx/N
is the mean value of the amplitudes αx.

5A projection Operator P = |a〉〈a| satisfies P2 = P . Since (1− P)2 = 1− P , the right side of this equation
is also a projection operator. In contrast, 1− 2P is a reflection operator, (1− 2P)2 = 1, which changes the sign
of the projection onto |a〉.

6In the case N = 4 we are already done. This means that quantum mechanically we can search an unsorted
data base containing 4 different elements with a single query. Classically we can handle only 2 different items with
one question (e.g. by asking: “Is this the element that I want?”). As a remarkable coincidence nature uses also four
different nucleotide bases to code the genetic information in DNA. This gave rise to the speculation that quantum
search processes might be involved on a genetic level [12].

7The exact number of iterations k will be derived in section 3.1.
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˛
˛x⊥

0

¸

|x0〉

|ψ〉

R|x0〉 |ψ〉

Fig. 1: The reflection operator R|x0〉 flips the sign of the |x0〉 amplitude: R|x0〉(α |x0〉 +
β
∣∣x⊥0 〉) = −α |x0〉+ β

∣∣x⊥0 〉. This mirrors |ψ〉 at the
∣∣x⊥0 〉 axis.

|ψ0〉 ≡ |S〉 = 1√
2n

2n−1∑
x=0

|x〉 (12)

(for simplicity, we drop the second register whose value will not change during the rest of the
algorithm). Since the plane spanned by {|S〉 , |x0〉} can also be generated by8 {|x0〉 ,

∣∣x⊥0 〉}, we
have

|ψ0〉 ≡ |S〉 = sin θ |x0〉+ cos θ
∣∣x⊥0 〉 (13)

where θ denotes the angle between the vectors
∣∣x⊥0 〉 and |S〉. As illustrated in Fig. 2, the oracle

O mirrors |ψ〉 at
∣∣x⊥0 〉 and afterwards the result O |ψ〉 is mirrored at |S〉 by virtue of IM . Since

both mirrorings take place in the same plane the result of the whole operation is a rotation.
Fig. 2 demonstrates that the Grover iteration G rotates a generic vector |ψ〉 by an angle of 2θ
towards the searched element |x0〉. After j steps of Grover’s iteration the n-qubit state is given
by

|ψj〉 ≡ Gj |ψ0〉 = sin((2j + 1)θ) |x0〉+ cos((2j + 1)θ)
∣∣x⊥0 〉 (14)

since all rotations take place in the primary plane. The process must stop after k steps, where k
is such that |ψk〉 is very close to the marked state |x0〉. This is the case when sin((2k+1)θ) ≈ 1.
The smallest integer k that fulfills this condition is determined by

(2k + 1)θ ≈ π

2
, (15)

which implies

k = round

(
π

4θ
− 1

2

)
, (16)

where round specifies the nearest integer. Since we started from the uniform superposition
state (12) we have

sin θ = 〈x0|ψ0〉 =
1√
N
, (17)

which leads to the following relation between the number of Grover iterations k and the volume
of the database N :

k = round

(
π

4 arcsin(1/
√
N)
− 1

2

)
(18)

8In fact, this condition defines
∣∣x⊥0 〉.
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˛
˛x⊥

0

¸

|S〉

|x0〉˛
˛S⊥¸

|ψ〉

G |ψ〉

O |ψ〉

2θ θ ˛
˛x⊥

0

¸

|S〉
|ψ〉

G |ψ〉

O |ψ〉

2θ

β

β
θ α

α

Fig. 2: Left figure: Geometric visualization of the Grover iteration G. The oracle query O
mirrors |ψ〉 at

∣∣x⊥0 〉 (which is achieved by R|x0〉). The “inversion about the mean” IM mirrors
O |ψ〉 at the uniform superposition |S〉, by virtue of R|S⊥〉 or the application of −R|S〉 (cf.

eqn. (10)). Right panel: Since θ = β − α, we have 2θ = β + θ − α. Thus, �(|ψ〉 ,G |ψ〉) = 2θ
so that the Grover iteration G rotates |ψ〉 by 2θ towards |x0〉.

For largeN the approximative behavior arcsin(1/
√
N) ≈ 1/

√
N holds and we can demonstrate

the quadratic speedup of Grover’s algorithm

k = round

(
π

4

√
N − 1

2

)
= O

(√
N
)

(19)

in contrast to classical algorithms in which the number of database queries grows likeO(N).

4 Shor’s algorithm: factoring of numbers

In 1994 Peter Shor — employed by the US company AT&T Labs Research — published a quan-
tum algorithm which allows to compute the prime factors of a given number with an exponential
speed up [13]. The time needed by a classical computer to solve this problem grows exponen-
tially with the number of digits. For instance, to factorize a number with 130 digits about 1018

operations are needed. If we assume 1012 floating point operations per second (1 Tflops) this
would take 42 days. In the case we would double the number of digits to 260 the calculation
would consist of about 1025 operations which would last 1 million years. In practice it is not
possible to solve the task. On the other hand, the verification of the result is trivial, we just have
to multiply the numbers. This asymmetry is the crucial point that makes to RSA encryption
scheme so successful.

4.1 An illustrative example

Let us examine an illustrative example: 15 is the product of the prime numbers 3 and 5. In this
case it is possible to find the factors by trial and error: first we try 2 as a factor which fails. Next
we try 3 and succeed. If we denote the number we want to factorize by N , it takes

√
N trials to
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find the factors in the worst case. According to the binary representation of the number, which
we assume to have L digits, this corresponds to 2L/2 attempts which means that the time for
this simple algorithm grows exponentially with the number of digits. The best algorithm known
grows like eL/3. In contrast, Shor’s algorithm grows polynomial in time like L3.
It has been known that the factorization of a number is connected to the period of a certain
function of that number. Unfortunately, the period finding of of a given function is also ex-
ponentially time consuming. However, quantum mechanically this can be done in polynomial
time.
In the following we will focus on the underlying idea of Shor’s algorithm. For further details
see eg. [2]. The factorization of N is equivalent to the period finding of

f(n) = yn mod N , (20)

where y is an arbitrary fixed number y < N which does not divide N and n ∈ N. Let’s
reconsider the example N = 15. We choose y = 7 which yields f(n) = 7n mod 15. The
following table shows f(n) in dependence on n:

n 1 2 3 4 5 6 . . .

f(n) 7 4 13 1 7 4 . . .

In this case we have the period r = 4. Once the period of f(n) has been found, we can calculate
factors of N = p · q according to

p = gcd
(
yr/2 + 1, N

)
q = gcd

(
yr/2 − 1, N

)
, (21)

where gcd denotes the greatest common divisor. In case of our example we get

p = gcd
(
74/2 + 1, N

)
= gcd (50, 15) = 5

q = gcd
(
74/2 − 1, N

)
= gcd (48, 15) = 3 (22)

and thus 15 = 5 · 3. Finally, we remark that the computation of the gcd is only of polynomial
complexity (already 300 B.C. Euclid found an algorithm for this task).
Classically, the period finding of f(n) is as hard as the factoring of N itself. Fortunately,
quantum mechanics helps in this case. As in Grover’s algorithm we need a second register. We
start with the uniform superposition

|0〉|0〉 → 1√
2L

2L−1∑
x=0

|x〉|0〉 . (23)

In the next step the value of the function f is calculated and stored in the second register. Since
we started from an uniform superposition state all function values are calculated in a single step

1√
2L

2L−1∑
x=0

|x〉|0〉 → 1√
2L

2L−1∑
x=0

|x〉|f(x)〉 . (24)

In a third step we carry out a measurement on the second register. As a result of this measure-
ment the first register will be in a superposition of states with the periodicity searched for. The
period can be extracted with a special technique called fast quantum Fourier transformation.
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In the case N = 15 and a = 7 we have

|0〉 |0〉 → |1〉 |0〉+ |2〉 |0〉+ |3〉 |0〉+ . . . . (25)

due to the initialization process (for simplicity we omit the normalization factor). In the next
step the value of the function f(x) is written in the second register

→ |1〉 |7〉+ |2〉 |4〉+ |3〉 |13〉+ |4〉 |1〉+ |5〉 |7〉 . . . . (26)

Now we measure the second register. Since all of the amplitudes occur with equal probability
we get 7, 4, 13 or 1. Let us assume that the result is 7. In this case the first register corresponds
to

|ψ〉 ∝ |1〉+ |5〉+ |9〉+ . . . . (27)

Those states differ by 4 which is the period we are looking for. The period can be extracted by
the fast quantum Fourier transformation.
The crucial point is that the period manifests itself as a global property of the wave function.
This global feature can efficiently be read out. This leads to the remarkable exponential speed
up in comparison to classical algorithms.

4.2 The factorization algorithm

Let p and q be prime numbers and let N = pq. We want to factor N into a product of p and q.

1. Take a positive integer y less than N randomly. Calculate the greatest common divisor
gcd(y,N) by the Euclidean algorithm. If gcd(y,N) �= 1, we are extremely lucky: y is
either p or q, and we are done. Suppose gcd(y,N) = 1.

2. Define fN : N → N by n → yn mod N . Find the smallest r ∈ N, such that yr = 1
mod N . The number r is called the order or period. It is known that this takes exponen-
tially large steps in any classical algorithm, but is takes only polynomial steps in Shor’s
algorithm. A quantum computer is required only for this task, and the rest can be executed
on a classical computer.

3. If r is odd, it cannot be used in the following steps. Go back to step 1 and repeat the
above steps with different y until an even r is obtained. If r is even, proceed with step 4.

4. Since r is even, it holds that

(yr/2 − 1)(yr/2 + 1) = yr − 1 = 0 mod N. (28)

If yr/2+1 = 0 mod N , then gcd(yr/2−1, N) = 1; go back to step 1 and try with different
y. If yr/2 + 1 �= 0 mod N , yr/2 − 1 contains either p or q, and we proceed with step 5.
Note that the number yr/2 − 1 cannot be a multiple of N in the latter case. If this would
be the case, it would lead to yr/2 = 1 mod N , which contradicts the assumption that r is
the smallest number which satisfies yr = 1 mod N .

5. The number
d = gcd(yr/2 − 1, N) (29)

is either p or q, and factorization is done.
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4.3 Step 2: Period finding with a quantum computer

Given N , choose q = 2L between N2 and 2N2. Choose a random y < N and begin with an L
qubit register in the state |0〉. A Hadamard operation on this register yields

1√
q

q−1∑
a=0

|a〉 .

Compute ya mod N and store the result in a second register

1√
q

q−1∑
a=0

|a〉 |ya mod N〉 .

This can be done efficiently eg. by repeatedly squaring mod N to get y2i
and multiplying se-

lected ones corresponding to the binary expansion of a. Now perform a measurement on the
second register; suppose the result is z

z = yl mod N for some least l

also
yl = yjr+l mod N ∀j

Thus, the measurement will select values

a = l, l + r, l + 2r, . . . , l + Ar

whereA is the greatest integer less than (q−l)/r. Notice that l ≤ r and q ∼ O(N2)⇒ A ∼ q/r.
After the measurement we find the first register in the state

|φl〉 =
1√
A+ 1

A∑
j=0

|jr + l〉 .

We consider now the simple case in which r devides q exactly9 so that A = q/r − 1 and

|φl〉 =

√
r

q

q
r
−1∑

j=0

|jr + l〉 =

q−1∑
a=0

f(a) |a〉

with

f(a) =

{ √
r/q (a− l) is a multiple of r

0 otherwise
.

After application of the quantum Fourier transform we obtain

|φl〉 →
∑

c

f̃(c) |c〉

9The general case is technically more involved but it is based on the same ideas.
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Fig. 3: The figure shows the amplitudes f(a) and the Fourier transformed ones. Note that the
initial shift l disappears due to the translational invariance property of the QFT.

where f̃(c) is the discrete Fourier transform of f(a)

f̃(c) =

√
r

q

q/r−1∑
j=0

exp

(
2πi(jr + l)c

q

)

=

√
r

q

⎡
⎣q/r−1∑

j=0

exp

(
2πi

jrc

q

)⎤
⎦

︸ ︷︷ ︸
=0 or q/r iff c is a multiple of q/r

exp

(
2πi

lc

q

)

f̃(c) =

{
1√
r
exp(2πilc/q) c is a multiple of q/r

0 otherwise

With c = jq/r the final state reads

1√
r

r−1∑
j=0

exp

(
2πilj

r

) ∣∣∣j q
r

〉
.

Thus a measurement (on the first register) of the states labeled by jq/rwill yield a multiple λq/r
with λ = 0, . . . , r−1 chosen equiprobably. The initial shift l disappears due to the translational
invariance property of the QFT. After the measurement we know a value c satisfying c/q = λ/r
(q is also known). If gcd(λ, r) = 1, we can determine r by canceling c/q down to an irreducible
fraction. Since λ is chosen at random, it can be shown that

Prob(gcd(λ, r) = 1) ≥ 1

log r

holds for large r. Thus, repeating the computation O(log r) < O(logN) times guarantees a
success probability close to one and hence an efficient determination of r.
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1 Introduction 
Hard Disk Drives (HDD) are a key component of today’s technology that empowers our 
information age. They are a core non-volatile memory device technology that finds 
widespread use in computers, data centers and home electronics, with more than 500 million 
units produced annually. The actual non-volatile memory inside the HDD is based on the 
ferromagnetic hysteresis effect and thus, HDDs are a prime example of magnetics technology. 

 
Fig. 1: HDD and some of its core applications in computers and digital video recorders 
 
The present material will give a general introduction into HDDs and their magnetic core 
components, trying to relate fundamental aspects of magnetism to this very important real-
world application. In chapter 1, the overall device function and technology is discussed, while 
chapters 2 – 4 are reserved for a more detailed view at the key magnetic components: 
Magnetic Recording Media (2), Magnetic Write Heads (3) and Magnetic Sensors as Read 
Heads (4). 
 
1.1 General Functionality of Hard Disk Drives 

 
Fig. 2: Basic HDD elements 
 
Figure 2 shows a picture of an (opened up) HDD. The largest part of the interior is made up 
by the disk (or by several of them stacked on top of each other) that gives the HDD its name. 
The disk itself is made of ultra-smooth glass or metal that is covered by a thin magnetic film, 
which is the Magnetic Recording Media layer. It is this thin magnetic overcoat to top of the 
disk surfaces that is the actual magnetic storage device, in which information is stored as a 
sequence of magnetic bits or domains. As we will see later the Magnetic Recording Media 
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layer is not a single film out of one magnetic material, but a very specific layer stack or 
sequence out of several different materials to enable the storage of magnetic bit patterns with 
the required density and stability. 
 While the long-term storage of information performed by the disk is the key functionality 
of HDDs, this can only be achieved if the information can be “written” into the Magnetic 
Recording Media in the first place and later be “read” back. Therefore, the HDD contains a 
Magnetic Write Head and a Read Head, which are both located on an arm element that can be 
moved over the disk as shown in figure 2. To achieve today’s storage capacity, the 
information must be written (and read back) with ultra-high density, i.e. in the form of 
extremely small magnetic bits. It is the Magnetic Write and Read Heads that define the size of 
the magnetic bits, and therefore they have to be extremely small, as we will discuss later on. 
 The arm, on which the Recording Head sits, can move over the disk to address different 
parts of the disk. However, this movement is a 1-dimensional movement only. So, to make 
the entire 2-dimensional disk surface accessible for information storage, the disk rotates at 
typical speeds in between 4,200 to 15,000 revolutions per minute. Only with these rather high 
rotation speeds can sufficiently high linear speeds be achieved that are necessary to enable 
high data rates for write-in and read-out of information. The basic HDD operation mode is 
given by first moving the Recording Head to a fixed radial position and then writing or 
reading a track of magnetic bits to or from the Magnetic Recording Media layer on the disk, 
as shown schematically in figure 3.  

 
Fig. 3: Schematic of recorded track 
 
Given its mechanical movements, the HDD is not a solid-state device in the traditional sense 
(having no mechanical movements), but rather a hybrid technology that uses solid-state 
physics and technology, namely ferromagnetism, within a mechanically operated device. This 
aspect of HDD technology may be best illustrated by the slider, the lithographically fabricated 
device that contains both the Magnetic Write and the Magnetic Read Head, as shown in 
Figure 4. In addition to the magnetic components designed onto the backend of the slider 
(shown on top in figure 4), it also has a lithographically defined Air Bearing Surface on the 
bottom (shown on the left side in figure 4), which makes it into a tiny (mechanical) airplane 
that flies at constant height over the disk surface, and is lifted my means of the air flow 
pressure due to the rotating disk. Present day technology allows products to operate at less 
than 10 nm flying height.  
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Fig. 4: Recording Head Slider 
 
As mentioned already above, a HDD drive can contain more than one disk. Laptop HDDs can 
have 1 or 2 disks (even though there are some specialized devices, that contain 3 disks), while 
normal desktop drives may have from 1 to 5 disks. Generally, the disks have Magnetic 
Recording Media on both sides and two Recording Heads are used per disk, one for each side. 
 
1.2 Longitudinal vs. Perpendicular Recording 
For the first 50 years of their existence, i.e. from the first commercial drive build by IBM in 
1956 until to about 2005/06, HDDs operated exclusively with the so-called longitudinal 
recording technology. The term longitudinal refers hereby to the in-plane direction of the 
magnetization within the Magnetic Recording Media parallel to the disk. To magnetize the 
Magnetic Recording Media in this direction, a magnetic Write Head is used, that basically is a 
magnetic ring head with a gap as shown on the left hand side of figure 5. The magnetic field 
that extrudes from the gap has a large longitudinal component, which makes it very suitable to 
switch the magnetization of the material in the disk, allowing it to “write” a longitudinal 
Magnetic Recording Media.  

 
 

Fig. 5: Longitudinal vs. Perpendicular Recording 
 
The big drawback of this longitudinal recording is the fact that only the fringe fields of the 
magnet gap can be utilized for magnetic recording, because the disk is located adjacent but 
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outside the magnet gap. The magnetic fields available in this geometry are substantially lower 
than the deep gap field that can be achieved inside the gap of the ring magnet itself. This is 
very relevant for magnetic recording because achieving high field values is important. As we 
will see in the following chapters, specifically in chapter 2.3., the size of the available write 
field sets an upper limit to the magneto-crystalline anisotropy KU of the material that can be 
used for the Magnetic Recording Media. A reduction of KU in turn will cause a reduction in 
stability for the magnetic state, i.e. the magnetic bit pattern, which needs to be avoided. On 
the other hand, only very limited improvements of the saturation magnetization for the ring 
head material can be expected in the future. Today’s FeCo-based alloys can achieve a 
saturation flux density BS in the range of 2.4 Tesla, but this appears to be somewhat of a 
fundamental limit as no materials with substantially higher BS are available for recording head 
applications. Alternative methods to generate high magnetic fields, such as superconducting 
coils, etc. have not been practical (because, these Tesla-sized magnetic fields have to be 
generated with frequencies of several GHz to achieve the required data rates). 

Given the above mentioned situation, perpendicular recording provides a fundamental 
advantage, as seen on the right hand side of figure 5, because the Magnetic Recording Media 
are moved through the gap of the Write Head, making the larger deep gap fields available for 
recording. The term perpendicular recording describes the fact that the recording media 
magnetization and the magnetic write field are oriented perpendicular to the plane of the 
Magnetic Recording Media and disk. While this type of magnetic recording technology has 
been pursued since at least the 1970s [1], a move towards it only happened in late 2005 when 
the first large-scale manufacturer started to move major parts of its product portfolio over to 
perpendicular recording. Presently, the technology shift towards perpendicular recording is 
almost complete and no new products using longitudinal recording have come onto the 
market since 2007. The reason why it took so long to implement perpendicular recording 
technology is two-fold. For one, until about 2003 longitudinal recording technology kept on 
improving so fast that no alternative technology was necessary [2] and secondly, 
perpendicular recording is more complex in its component design as we will see in the 
following chapters. In reality, the geometry shown in figure 5 for perpendicular recording is 
not even schematically correct, because it would not be feasible to actually move a disk 
through the physical gap of an electromagnet with the required speed and precision. The 
figure only serves as an illustration of the high magnetic fields available for magnetic 
recording in this perpendicular geometry. 
 
1.3 State-of-the-Art Performance Levels 
Figure 6 shows a comparison of the first commercial HDD, which IBM started to produce in 
1956 in comparison to the latest class of laptop type products that were released by Hitachi 
GST at the end of 2008 [3]. The key driver of the technological improvement that is 
responsible for the wide applicability of HDDs today, is the so-called areal density, that 
describes how many bit can be stored per surface area. As one can see, today’s products 
achieve 375 Gbits/in2 (Gigabits (= billion bits) per square inch), meaning that each bit is only 
(41 nm)2 in size. This number represents an improvement of about 200,000,000 times if 
compared to the original IBM RAMAC product. Following in the footsteps of this areal 
density improvement are the data rate, the size and number of components needed to reach a 
certain capacity point, and last but not least the price reduction, which makes the HDD a 
widely applicable device today. 
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Fig. 6: Products now and then 
 
As the areal density plays such a pre-eminent role for HDD technology and is the most 
commonly cited benchmark for technology achievements, we will briefly discuss here, how 
this quantity is actually determined and tested. Figure 7 shows a schematic picture of a 
recording media. One can see two tracks of bits that were written into this material, which 
extend from left to right. The region between these tracks is displayed as a gray area, which 
symbolizes a not yet defined demagnetized state. Hereby, it is important to mention that 
Magnetic Recording Media materials exhibit a fully magnetized remanent magnetization state 
even for perpendicular recording media, because they would otherwise not be suitable for the 
purpose of non-volatile data storage. In the picture shown in figure 7, each bit has a bit length 
B and a width W across the track that is significantly larger than B. Typical cross-track to 
down-track width ratios are of the order of 4 – 6 for conventional magnetic recording.  

  
Fig. 7: Schematic of areal density measurement 
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To test the areal density, one first writes multiple tracks of a preprogrammed linear density 
LD = B-1 at a fixed distance from each other, which is called the track pitch TP. Subsequently, 
one reads the center track back and tests if the original bit pattern can be retrieved (typically, 
this has to be done with less than one error in 105 -106 bits. For such “error rates” one can 
recapture the original information, because magnetic recording uses a bit pattern coding 
scheme that has sufficient redundancy to compensate such error occurrences). One also tests, 
what distance one can move the Read Head to the side of the track center and still recover the 
initial signal sequence. The maximum distance where data recovery is still possible is called 
Off-Track Capability. As one reduces the track pitch, adjacent patterns start to overwrite each 
other from the sides, so that the off-track capability is being reduced. The demonstrated track 
pitch is now defined as the track pitch value, at which the off-track capability becomes too 
small for reliable operation. The cut-off is typically defined as a fixed percentage of the track 
pitch itself, such as 20 - 40% for typical products and 10% for many technology 
demonstrations that are published in the literature [4]. Once the achievable track pitch has 
been measured in this way, one can determine the achieved areal density AD as 
 

      

! 

AD =
LD

TP
   (1). 

 

2 Magnetic Recording Media 
As already mentioned above, the core function of the Magnetic Recording Media is the long-
term preservation of information as a magnetic bit pattern. But besides this core functionality 
several other aspects of Magnetic Recording Media deserve mentioning. One of them is the 
required smoothness, mechanical hardness and chemical stability to allow for stable operation 
with Recording Head flying heights of less than 10 nm. Therefore, Magnetic Recording 
Media contain a non-magnetic overcoat layer and a lubricant. They also exhibit ultra-smooth 
surfaces with RMS roughness values of 1 nm and below.  
 In contrast to many other devices and components in the electronics world, the media disk 
is used as a whole and is not diced up such as silicon based electronic chips, for instance. 
Thus, it requires especially high uniformity and process control. The usage profile also 
demands very low production costs, because the disks themselves are not being miniaturized 
or changing in size with every new generation of HDDs, only the magnetic bits on them are. 
 
2.1 Basic Properties 
From the above discussion of the HDD, it is clear that Magnetic Recording Media have the 
core functions of  
 

(i) allowing for the creation of very small magnetic bit structures 
(ii) conserving these bit structures for a long time (typically 10 year stability is 

required) 
(iii) produce a field pattern that allows for a non-destructive read-back of the bit 

pattern and recovery of the input information 
 
While the down-track bit sizes are nowadays already smaller than 20 nm, one needs to realize 
that the required bit placement precision is actually much more stringent than the bit length 
itself, typically only 10% of that value, i.e. approximately 2 nm. This placement precision 
together with the condition that this placement has to be stable for years under normal 
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environmental conditions such as varying temperatures as well as small magnetic fields from 
the surroundings of the HDD, makes it evident that domain walls in Magnetic Recording 
Media will have to be very narrow and precisely pinned.  
 One efficient way to pin domain walls as well as make them narrow [5] is by introducing 
geometric constrictions into the magnetic material. This causes a pinning because the total 
energy contained in a domain wall is proportional to its length, so that a shorter wall has less 
energy than a longer wall, simply because the elevated energy density inside the domain wall 
only occurs within the ferromagnetic material and vanishes outside. Magnetic Recording 
Media take this concept to the extreme by completely decoupling the magnetic building 
blocks from each other. The result is a granular magnetic structure such as the one displayed 
in figure 8, which shows a electron microscopy picture, in which the grains appear dark and 
the grain boundaries light (the different gray-scales of the grains itself are caused by the 
crystalline grain axes distribution). Such a structure cuts the domain wall width effectively to 
the size of a grain boundary, which is of the order of only 1 nm. The placement precision of a 
bit in such a structure however, is not limited by the grain boundary width, but rather by the 
randomness of the grain locations. Nonetheless, due to the averaging effect of multiple grains 
across the track one can nowadays achieve bit pattern placement precision of better than 2 nm 
[6].  

 
Fig. 8: Recording Media grain structure 
 
 Fundamentally, there are two ways to produce the required granular magnetic structure. 
One way is to actively structurize the media layer, so that it has a predefined pattern. This is 
basically the concept of patterned media, which are presently considered as the follow-on 
technology to conventional Magnetic Recording Media. At the present time, they are not cost 
competitive and will have to overcome numerous fabrication and system level design 
challenges, but they have a fundamental advantage related to (ii), i.e. they are very much 
superior in conserving the magnetic bit pattern. This will be discussed further in chapter 2.3. 
and 2.4. 
 The other pathway to reach the type of media structure shown in figure 8 is by using 
materials, processes, and layer stacking sequences that can be directed in such a way that a 
precise lateral granular structure forms itself. In particular segregation of non- or only weakly 
soluble materials is used to cause a segregation dynamics that guides materials into the 
desired granular shape. This basic process has been utilized for the fabrication of Magnetic 
Recording Media for the past decades and still is the leading industrial technology, as it was 
successfully adapted to the ever-increasing technical demands. The structure shown in figure 
8 was fabricated like this.  
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 Another aspect that is relevant for the basic functionality of magnetic materials is the 
crystal orientation of the grains. Magnetic Recording Media use magnetic materials that have 
uniaxial magnetic anisotropy with the magnetic easy axis along the crystalline c-axis, so that 
each grain has only two stable magnetization directions, which is best suited for the purpose 
of binary information storage. Correspondingly, it is important that all magnetic grains are 
aligned so that they behave in a similar fashion magnetically. Thus, one not only needs a well-
defined uniform grain structure for Magnetic Recording Media, but HDD technology also 
requires the grains to be uniformly aligned, in particular have a c-axis orientation along the 
surface normal for today’s perpendicular recording. To achieve this it is necessary to devise 
an adequate growth sequence of Template Layers, as shown schematically in figure 9, that 
provide the right base for the actual Magnetic Recording Layer to grow while forming 
uniformly sized, well segregated and well oriented magnetic grains. Typical grain orientation 
distributions for high performance recording media have a standard deviation from perfect 
alignment of only 2 – 4 degrees today. 

 
Fig. 9: Basic Recording Media stacking sequence 
 
2.2 Soft-Magnetic Underlayer (SUL) for Perpendicular Recording 
In chapter 1.2., it was mentioned that the geometry shown in figure 5 for perpendicular 
recording was not even schematically correct, because it is not possible to move a disk 
through the gap of a macroscopic recording head with nm flying height precision and create 
magnetic tracks and bits that require nm-scale positioning precision as well. Figure 10 shows 
what is done instead to emulate the existence of a real ring head: one places a Soft-magnetic 
Under Layer (SUL) below the recording layer. This SUL can now channel the magnetic flux 
from the main write pole back to the return pole, which leads to a concentration of flux under 
the main pole, i.e. the desired high magnetic field for magnetic recording. Under the return 
pole the magnetic flux is much less concentrated and results in perpendicular magnetic fields 
that are too low to the switch the Magnetic Recording Media grains or perturb the magnetic 
bit pattern. Thus, only under the main write pole of the recording head is the Magnetic 
Recording Media really written. So, overall the SUL functions as a magnetic mirror that 
produces a magnetic image of the real recording head and causes a magnetic flux pattern as if 
there really were a closed magnetic ring head with the recording layer in its gap. 
 From the above-described functionality, it is clear that the SUL needs to be as close to the 
magnetic Write Head as possible so that the magnetic flux can be channeled most effectively 
and the highest possible magnetic field can be reached. Thus, it has to be placed right below 
the Magnetic Recording Layer and therefore has to become part of the Magnetic Recording 
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Media itself. So, in perpendicular recording, Magnetic Recording Media have two functional 
magnetic layers, the actual Magnetic Recording Layer and the SUL that is part of the 
magnetic recording head circuit. For the SUL, one typically uses high moment amorphous 
alloys with a total thickness of up to several 100 nanometers. 

 
Fig. 10: Perpendicular Recording Media with SUL 
 
2.3 Thermal Stability 
As discussed in chapter 2.1., the grains in Magnetic Recording Media are separated from each 
other to allow for a precise placement of narrow bit transitions. But this individual 
addressability of each grain comes at a high price, namely that each grain has to be 
magnetically stable by itself as well. As for any finite magnetic system, the magnetization 
state of a recording media grain is not completely stable, but will switch after a certain 
amount of time. As long as the switching probability is so low that it does not affect operation 
during the lifetime of a HDD, this is not a problem. Today’s HDD are, however, not far from 
the point where thermal stability is a serious problem, an effect known as the super-
paramagnetic limit [7]. Super-paramagnetism is a fundamental effect of ferromagnetic grain 
assemblies that behave effectively like a paramagnet above a certain temperature, because 
their magnetic moments flip back and forth faster than the observation speed. 
 To estimate the relevance of this effect, one generally makes the assumption that within 
one grain all spins are aligned with each other. This is a sensible simplification, because the 
strong exchange coupling within each grain will keep all spins aligned on the typical nm 
length scale of Magnetic Recording Layer grains. Under the assumption of spin alignment, 
one can then treat the magnetic grain as a single macro-spin S, whose total energy depends 
only on the uniaxial anisotropy constant KU, its magnetization orientation angle θ and the 
total grain volume V. Specifically one finds that the activation energy necessary for 
magnetization reversal without an external field applied is simply given as [8] 
 
      

! 

EA = KU "V    (2) 
 
Correspondingly, the average lifetime τ of a predefined magnetic grain state can be estimated 
[9] to 
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! 

"#1 = f $ exp(#
KU $V

kB $ T
)  (3) 

 
with f being the attempt frequency that typically is in the several to several ten GHz range, 
and kB and T being the Boltzmann constant and the temperature, respectively. It is evident 
that the size of KUV is a crucial material parameter, responsible for the thermal stability of 
magnetic bit patterns and for the non-volatility of HDD recorded information. This stability 
concern now clashes with (a) the ever-decreasing bit size, because smaller bits require smaller 
grains, i.e. smaller V. On the other hand KU cannot be increased as already discussed in 
Chapter 1.2., because the magnetic switching field HS of a grain with saturation magnetization 
MS in the above macro-spin model [10] is found to be 
 

      

! 

HS = 2
KU

MS

   (4) 

 
i.e. directly proportional to KU, which means that KU can only be increased if larger magnetic 
fields are made available for the write process. This need for higher magnetic fields was a key 
driving force behind the recent technological transition from longitudinal to perpendicular 
recording. Due to this transition and other technological advances, one can now achieve 
recording densities that are more than a factor of 10 larger than what was predicted just over 
ten years ago to be the “fundamental” super-paramagnetic limit of magnetic recording [11]. 
 
2.4 Modern Materials Designs 
One of the recent ideas to improve HDD technology and Magnetic Recording Media beyond 
the above mentioned limitations are the so-called Exchange Spring media that are 
schematically shown in figure 11. In this structure, the single Magnetic Recording Layer is  
 

 
Fig. 11: Exchange Spring Layer media 
 
replaced by a tri-layer stack of a Base Recording Layer (BRL) on the bottom, made from hard 
magnetic material, and the Exchange Spring Layer (ESL), made from a soft magnetic 
material, on top. In between is a Coupling Layer that allows for a tuning of the ferromagnetic 
coupling strength between BRL and ESL. Upon optimizing the ferromagnetic interlayer 
coupling strength, which can be adjusted by varying the CL thickness d, the magnetization 
reversal of such a grain proceeds via a non-uniform process. Such a process requires only a 
reduced field strength and partially circumvents the switching field considerations and 
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limitations discussed in 2.3. The validity of this concept has recently been demonstrated in 
real recording media, by achieving better writability (shown on the right hand side of figure 
11) and an overall improved media performance in an optimized structure [12]. The name 
Exchange Spring media comes from the fact that until one switches the magnetically hard 
BRL, the magnetization rotation of the ESL is fully reversible and can snap back like a spring. 
 A much more radical deviation from conventional Magnetic Recording Media are the so-
called patterned media, which are schematically shown in figure 12. Here, every pattern or 
quasi-grain has a predefined position, which is generally lithographically defined. This has the 
key advantage that every quasi-grain can carry a bit, because its position is known and can be 
individually addressed in the write process. About 30 - 50 grains are needed in conventional 
media per bit, because the grains are randomly distributed and multiple grain averaging is 
needed. With this alternative technology, one can in principle achieve more than 10 times 
higher storage densities, because every quasi-grain can be made from magnetic materials with 
strong lateral exchange coupling that can very easily fulfill the stability condition according to 
equation (2). The main drawback of patterned media is the fact that the previously 
unstructured and therefore cheap media disk has now to be made by means of a lithographic 
process with very small tolerances. Solving this problem as well as related technological 
issues such as the non-planar disk topography, the need for absolute write synchronization 
etc. are presently a major research effort in the HDD industry. It is anticipated by many that 
an eventual technological transition to patterned media might occur at the 1 Tbit/in2 density 
point.  

 
Fig. 12: Patterned Recording Media  
 
An intermediate step towards patterned media technology is the so-called discrete track 
medium (DTM), which is a hybrid technology of conventional recording media and patterned 
media. Here, only the tracks are lithographically pre-defined, while the tracks themselves are 
made from conventional recording media. Such structures have basically the same limitations 
as conventional recording media because the data storage is still done by encoding magnetic 
bits into multiple random grains, but they do have the advantage that many serious write and 
read-back problems that are caused by the track edges are suppressed. In comparison to 
patterned media, DTM have the advantage that the lithography demands are less severe and 
other technology changes, such as the disk topography are easier to handle. 
 

3 Magnetic Write Heads 
Similar to Magnetic Recording Media discussed in Chapter 2, Magnetic Recording Heads 
have to fulfill a large number of technical specifications that are not directly related to their 
core magnetic functionality but are crucial for the purpose of reliably writing and reading 
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information. For instance, the head assembly including the air bearing surface have to be 
designed in such away that they not only fly precisely with less than 10 nm flying height 
above the disk surface, but also allow for a rapid and precise lateral shift of the entire 
assembly to any random track without triggering mechanical oscillations. Hereby, they have 
to settle with nm precision on the target track in a millisecond time frame. These aspects of 
the head assembly go beyond the scope on this description and will not be considered here.  
 
3.1 Basic Functionality 
The key function of the magnetic Write Head is the creation of a very strong, but locally 
confined magnetic field inside the Magnetic Recording Layer that allows for the 
magnetization reversal of the media grains. To produce a dense bit pattern along the track as 
the disk runs underneath it, the recording head must also be able to switch the field direction 
very rapidly. Typical data rates for server type HDDs are reaching several Gbit/s nowadays, 
which illustrates that a magnetic Write Head reversal must occur within only several hundred 
picoseconds.  
 Figure 13 shows a schematic of a Write Head. While this schematic is for a longitudinal 
Write Head, it is not fundamentally different for a perpendicular Write Head. We can see the 
two main magnetic layers, top and bottom, that are connected by a magnetic connector 
element, around which a lithographically defined copper coil is placed. The magnetic circuit 
is opened at the write pole gap to allow the magnetic flux to exit the Write Head and produce 
an outside field. The core difference between this picture and a perpendicular Write Head are 
that for perpendicular recording: (i) the write pole is thinner, which allows the flux to exit 
along the pole axis, i.e. right along the perpendicular magnetization axis of the disk, and (ii) a 
larger gap between top and bottom pole, which prohibits the direct flux from the write pole to 
the return pole and forces the magnetic flux through the SUL as shown in figure 10. This 
enhances the achievable field and properly aligns it with the preferred magnetization axis of 
the adjacent disk. 

 
Fig. 13: Magnetic Write Head schematic; courtesy of Jeff Childress (Hitachi GST) 
 
To achieve the most precise bit structure, it is actually advantageous not to define the bit in 
the center of the recording head where the magnetic field is the highest, but at one of the 
edges, the so-called write field edge, where the magnetic field has the highest gradient. Here, 
the lateral separation of grains that switch and grains that do not switch is most precisely 
defined, assuming that the total magnetic field at this write field edge is exactly tuned to 
match the switching field of the Magnetic Recording Layer. This is one of the core design 
criteria for magnetic Write Heads. Typically, magnetic Write Heads reach field gradients of 
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several 100 Oe/nm nowadays. Given this system design and operation, magnetic grains on the 
disk are actually reversed multiple times as they enter into the magnetic Write Head region, in 
which the Write Head field is larger than HS. This region is called “magnetic write bubble”. 
The magnetic state of grains and the resulting magnetic bit pattern is defined the moment the 
grains leave this write bubble due to the mechanical movement of the disk. 
 
3.2 Modern Designs 
While the above discussion of the magnetic write bubble of a recording head explains the 
timing of the actual recording process along the track direction, one has to consider that there 
is also a cross-track extension and shape of this write bubble. Fundamentally, the recording 
head geometry ought to be designed in such a way that also this cross-track direction of the 
write-bubble is as sharply defined as possible, allowing for adjacent tracks to be brought 
together very closely and to achieve a high areal recording density.  
 While this is a challenge in itself even under the best of circumstances, the problem is 
worse if one considers that the entire disk has to be addressed by one recording head. As 
already shown in figure 2, the recording head assembly sits on an arm that can be moved 
across the disk to define or find any arbitrary track position. As one moves the head from the 
inside to the outside, the write pole is aligned well with the azimuthal track direction for only 
one specific track diameter in a simple rotating arm. For other tracks there is a misalignment 
skew that becomes extreme at the inner and outer track radius. This skew now causes the 
problem that the Write Head becomes effectively wider as can be seen in figure 14. Worse 
than that, substantial parts of the written track are not useable, but constitute the so-called 
erase band. Here, only the front part of the write bubble crosses the media, while the actual 
writing edge never crosses these regions. The result is that adjacent tracks will be erased 
(therefore the name erase track) in this range, but no useful information is written here, 
because of the very poorly defined field gradient, with which these disk segments leave the 
write field bubble. 

 
Fig. 14: Trapezoidal Write Head 

 
 As also shown in figure 14, this problem can be suppressed by using a trapezoidal pole 
shape with the trapezoidal angle being larger than the maximum skew angle that will occur 
for the inner or outermost track position. In this way it is insured that the trailing edge, which 
is designed to do the actual magnetic write process, is indeed the one writing the entire track 
width, hereby suppressing (all or most of) the erase band. The key drawback of the 
trapezoidal pole shape is that its accurate fabrication and production is very challenging, as it 
needs to be done with nm scale precision.  
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3.3 Technology Challenges 
While there are many challenges related to the Write Head and its purpose, namely to produce 
a strongly confined high magnetic field by means of a tiny magnetic write pole, we highlight 
here two aspects that have a nearly fundamental character: the write-pole shape anisotropy 
and the saturation magnetization of the pole material. 
 Given its purpose the Write Head pole has a needle or tip like shape. Correspondingly, the 
magnetostatic self-energy is such that this tip tends to produce a magnetic state that generates 
a not insignificant magnetization along the pole axis even if no write-coil current is applied. 
This causes the Write Head to produce a substantial magnetic field, even if the head is not 
intended to write, i.e. during read back operation or in the idle state, which can compromise 
already written information directly or reduce the long-term stability as an accumulative 
effect. Upon further reduction of the Write Head pole size in future product generations, this 
effect is expected to get increasingly worse, because the build-up of a stray-field free stable 
magnetic configuration is becoming less likely for ever shrinking lateral dimensions, because 
such structures require more and more exchange energy. One possible way to circumvent this 
problem, or at least delay its onset is the lamination of the Write Head material; i.e. making it 
out of multiple segments that are not exchange coupled with each other, which allows for a 
reduction of the exchange energy associated with the desired flux-compensated magnetization 
state [13]. 
 To achieve continued increases in areal density, one would want to further increase the 
magnetic field gradient of the Write Head, so that the down-track position of the magnetic bits 
could be better defined. As this gradient is associated with the trailing write pole edge, it is 
fundamentally defined by the edge geometry and the saturation magnetization of the Write 
Head pole material. Thus, to achieve further advances, an increase in the saturation 
magnetization of the pole head material would be most desirable. However, such progress 
appears to be most unlikely, because already today recording heads use materials that have 
some of the highest known saturation magnetization values and progress in terms of finding 
materials with higher saturation magnetizations has been virtually non-existent. So, only the 
geometry can be utilized to achieve higher field gradients by using write pole shields to 
produce artificially enhanced magnetic field gradients (a) along the track: trailing-edge shield, 
(b) across the track: side shields, or (c) both: wrap around shield. While these geometries do 
improve the overall field confinement and give a better-defined write field bubble, they do 
come at the cost of a reduced total field strength, because they guide flux away from the SUL 
pathway. They also require substantially more complex fabrication processes.  
 

4 Magnetic Sensors as Read Heads 
As their name indicates, Magnetic Read Heads are being used to read out the information that 
was previously written onto the Magnetic Recording Layer by the Write Head. Because the 
magnetization pattern is not directly accessible for external observation, the magnetic stray-
field that is generated by the bit-pattern is used for this purpose. Thus, the Read Head is in 
essence a magnetic field sensor (in the early days of HDD technology, it was actually a flux 
change sensor that measured the flux changes caused by the stray fields above the rotating 
disk). Generally, the detection of magnetic fields or flux changes by a nearby Read Head does 
not perturb the magnetic bit pattern itself, so that the read process is non-destructive, which is 
an important fact and advantage of this non-volatile storage technology. 
 Over the years, the Read Head technology has undergone several major changes, each of 
which had a very significant impact on the overall HDD performance. This can be seen from 
figure 15, in which the historic development of HDD areal recording density is shown. In 
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particular the 1st Magneto-Resistance (MR) head, based initially on the Anisotropic Magneto-
Resistance (AMR) effect, and the subsequent introduction of the Giant Magneto-Resistance 
(GMR) head had a major impact and led to an accelerated technology improvement with 
annual growth rates of up to 100% for the areal density. Interestingly, the recent transition 
from longitudinal to perpendicular recording did not impact the Read Head technology very 
much, because the field sensing requirements are very similar in both cases despite the rather 
different field patterns that are produced by the Magnetic Recording Media. 

 
Fig. 15: Achieved areal density vs. time; courtesy of Jeff Childress (Hitachi GST) 
 
4.1 Basic Functionality and Requirements 
HDD Read Heads have to be very localized probes to allow for the recovery of the original 
information by means of measuring the bit pattern magnetic stray-fields. Otherwise, the 
various local field contributions would compensate each other and no relevant information 
could be retrieved from the spinning disk.  
 Figure 16 shows a schematic of the recording head and emphasizes the core Read Head 
components in their relation to the underlying track pattern on the disk. As one can see, the 
MR sensor of the Read Head is indeed very small to allow for the generation of a read-back 
signal that is able to identify every single bit. The cross-track width of the MR sensor is made 
smaller than the written track width, so that (a) a slight misalignment away form the track 
center still allows for a reliable operation and (b) the edge segments of the written tracks are 
avoided, because they generally are not straight. They are therefore not in alignment with the 
Read Head edges and would produce a considerable noise contribution to the Read Head 
signal. Typical ratios of read width (RW) to write width (WW) are 50 – 80 %. 
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Fig. 16: Basic Read Head geometry; courtesy of Jeff Childress (Hitachi GST) 
 
 In the down-track direction, magnetic Read Heads need an even better resolution than in 
the cross-track direction because the bit length is significantly smaller than the track width. 
This down-track resolution is achieved by two geometric features of the Read Head. First, the 
active sensing layer in the MR sensor is thin and only the field that actually penetrates the 
sensing layer will generate a signal. However, the sensing layer also has a considerable height 
above the surface (perpendicular to the plane shown in figure 16), because this dimension is 
determined by the lithographic resolution just as RW is. Therefore, magnetic fields coming 
from bits farther up and down the track would penetrate the MR sensor and compromise its 
resolution. To limit this effect, magnetic shields are introduced as the second down-track 
geometric feature in magnetic Read Heads. They are actually more important for the down-
track resolution than the sensing layer thickness itself. These shields are made from a soft 
magnetic material and absorb any magnetic flux from outside the gap area, so that only the 
magnetic fields generated inside the shield distance TG (see figure 16) actually reach the 
sensing layer. As a rule of thumb, TG should not exceed two times the bit length [2].  

The fact that TG can be larger than the bit length at all is enabled by the signal 
processing that is used in HDDs to analyze the Read Head signal of several bits 
simultaneously. This allows for a de-convolution of overlapping fields from neighboring bits. 
For the signal processing to work reliably, however, it is important that the MR sensor is 
linear in its field characteristics and does not saturate during operation. While the sensor layer 
itself is optimized in this regard, one also uses the so-called hard bias in HDD Read Heads to 
enable sensor linearity and stability. This hard bias uses a fully magnetized hard magnetic 
material, shown in green in figure 16 that produces a magnetic field in the cross-track 
direction. This field gives the sensing layer a preferred magnetization direction and causes a 
sufficiently stiff field response of the sensor to prevent signal saturation. Also the bias field 
from the hard bias layer suppresses the formation of domains in the sensing layer, which 
would otherwise cause Read Head instabilities. The yellow segments, shown in figure 16 are 
the electrical leads of the sensor. 
 
4.2 Magneto Resistance Effects 
While Magneto-Resistance (MR) effects and their physical origin are discussed in great detail 
elsewhere in this course, they are addressed here only very briefly to ensure a consistent use 
of terminology. In HDDs, three MR effects are or were relevant: the anisotropic magneto-
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resistance (AMR), the giant magneto-resistance (GMR), and the tunnel magneto-resistance 
(TMR). 
 The AMR describes the fact that the resistance of a ferromagnetic material depends on the 
angle between the direction of the magnetization and the direction of the electrical current, 
generally showing a sinusoidal angular dependence. The effect can be several percent in size 
and enabled a major simplification of HDD technology. Instead of the use of pick-up coil 
circuits to sense magnetic flux changes of a passing bit pattern, AMR sensors allowed the 
direct measurement of stray fields by a single magnetic film in a layered sensor stack. 
Correspondingly, technology improvements accelerated substantially with the introduction of 
the AMR Read Head in the early 1990s, as can be seen in figure 15. 
 The GMR, first discovered simultaneously, but independently by P. Grünberg and A. Fert 
in 1988 [14], describes the fact that the resistance of adjacent ferromagnetic films, separated 
by a non-magnetic conducting layer, depends strongly on the relative orientation of the 
magnetization directions in these layers. While the GMR relies on a more complex structure 
than the AMR, it is also a much larger effect that can reach several hundred percent. 
Therefore, GMR sensors replaced AMR sensors in the late 1990´s and started an era of 
tremendous advances in HDD technology with unprecedented growth rates for areal density 
in subsequent years. 
 The TMR is very similar to the GMR, except that the non-magnetic layer that separates 
the two adjacent ferromagnetic layers is an insulator. Thus, only tunnel currents can flow in 
between the two ferromagnetic layers, and their amplitude again depends on the relative 
orientation of the magnetizations. The effect is large and can reach several hundred percent, 
which makes it desirable for Read Head applications. It was introduced into products starting 
in 2005.   
  
4.3 GMR Sensors 
Figure 17 shows a schematic drawing of a GMR sensor stack. Center part of this stack is the 
ferromagnetic free layer (FL). It is this layer that responds to external magnetic fields 
(generated by the bit pattern) by rotating its magnetization away from its equilibrium position 
parallel to the cross track direction in the disk plane. Together with the metallic spacer layer 
(SL) and the reference magnetic layer (RL) it constitutes the basic GMR trilayer stack, that is 
responsible for the GMR effect in these sensors. The magnetization direction of the RL is kept 
fixed during operation of the Read Head, so that a change in the FL magnetization orientation 
will simultaneously change the magnetization angle between FL and RL and therefore cause a 
GMR change. Using constant current operation conditions, the magnetization rotation in the 
FL therefore produces a voltage change, which is the read-out signal. In this way, the stray 
field patterns associated with the magnetic bits in the Magnetic Recording Media are 
transformed into an electrical signal sequence that correspond to the originally stored data set.  
 As mentioned above, it is important that the voltage vs. field characteristic of the sensor is 
linear. Given that the GMR effect has a sinusoidal angular dependence, one therefore needs a 
base operation point for the GMR sensor, in which the magnetizations of the FL and the RL 
are perpendicular to each other. For this purpose, the RL magnetization is perpendicular to the 
disk plane. 
 We will now address the question, how the reference layer magnetization is fixed. This 
can be done most effectively by attaching an Anti Ferromagnetic (AFM) layer, the so-called 
pinning layer, to the RL. It is well-known that AFM layers in contact with ferromagnets can 
produce an exchange anisotropy (also called exchange bias effect), which stabilizes one 
particular magnetization direction, i.e. pins the adjacent ferromagnet in this very direction 
[15]. This is done in GMR sensors by using PtMn and IrMn as typical AFM materials. 
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Fig. 17: GMR sensor 
 
However, as one can see from figure 17, the RL is not directly attached to the AFM, but 
rather coupled by means of anti-ferromagnetic interlayer exchange coupling [16] to another 
ferromagnetic layer, the pinned magnetic layer (PL), which is the one attached to the AFM. 
The interlayer exchange coupling is typically mediated by means of an ultra thin Ru layer 
(APL) that provides sufficient anti-parallel coupling strength between the RL and the PL [17]. 
This more complex GMR sensor stack is utilized to suppress the magnetic fields generated by 
the RL. Due to its role as the GMR reference electrode, the RL needs to be in a uniform 
magnetization state. However, such a state also generates a substantial magnetic field and 
correspondingly biases the FL, which would cause a loss of dynamic range and deviations 
from linearity. To avoid this, one uses the RL/APL/PL tri-layer structure. Due to the anti-
parallel magnetization orientation of the RL and PL, it can be designed in such a way that 
there is no net magnetic field bias onto the FL. The GMR effect itself, however, is dominated 
by the interface magnetization regions directly adjacent to the SL, which means that only the 
RL and not the PL magnetization contribute to the GMR sensor signal. Therefore, the 
magneto-electric GMR functionality is not altered by the addition of APL and PL, and only a 
more stable operating point is facilitated by them. 

The GMR layer stack is completed by under layers (UL) on the bottom and cap layers 
(CL) on top, both of which have no operational function. The UL have the purpose of 
providing the right template for high-quality layer growth in the fabrication process and the 
CL allow for the protection of the FL against chemical contamination from adjacent materials. 
The complete GMR Read Head furthermore comprises electrical leads and the hard bias layer 
that connect from the side, as well as the top and bottom gap insulator layers that insolate the 
GMR sensor electrically from the top and bottom magnetic shields. 
 
4.4 CIP vs. CPP Geometry 
The GMR sensor discussed in the previous section and displayed in figure 17 has the so-
called Current-In-Plane (CIP) geometry, in which the current flows through the plane of the 
sensor. This is in contrast to the so-called Current-Perpendicular-to-the-Plane (CPP)  
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Fig. 18: CIP vs. CPP geometry; courtesy of Jeff Childress (Hitachi GST) 
 
geometry, in which the current flows perpendicular across the plane of the GMR sensor. Both 
geometries are schematically compared in figure 18. They each have advantages and 
disadvantages that are widely discussed in the literature [2]. So, far only CIP-GMR sensors 
have been used in products. The core drawback of the CPP-GMR sensor is that for today’s 
typical sensor dimensions it produces a rather low total resistance because its cross section 
(perpendicular to the current) is large and its length (along the current path) is small. Thus, 
parasitic resistances such as the one coming from the leads are rather large in comparison to 
the resistance of the active sensor element and reduce the achievable total resistance change. 
Also, the total resistance of such devices is presently too small to produce the required signal 
levels in the mV range for acceptable current densities. However, as the dimensions of Read 
Head sensors continue to shrink in the future, the geometry will start to favor the CPP over 
the CIP design for GMR sensors, so that they are expected to show up in products at about the 
500 Gbit/in2 - 1 Tbit/in2 density point. 
 
4.5 TMR Sensors 
Despite the disadvantages discussed above for the CPP-GMR sensor, the CPP sensor 
geometry also has key advantages. For instance, in CPP geometry the magnetic shields can be 
directly utilized as electrical leads for the sensor. Correspondingly, the in CIP-geometry 
necessary adjacent insulation layers can be removed, which simplifies the fabrication process.  
Furthermore, one has to realize that in the CIP geometry that is shown in figure 17, all the 
layers of the GMR sensor stack carry a current in parallel. Thus, the secondary GMR sensor 
layers: UL, AFM, PL, APL, and CL effectively constitute a resistor, which shunts the “real” 
GMR sensor consisting of FL, SL, and RL. This shunting reduces the GMR effect that can be 
utilized as a signal. In the CPP geometry, shunting is avoided, even though the secondary 
GMR sensor layers will still contribute a parasitic resistance.  

The TMR Read Head sensor utilizes these core CPP geometry advantages together 
with the large TMR effect, which made it a viable product technology for the past few years 
[18]. Figure 19 shows a schematic of the TMR Read Head. As one can see, the basic stack 
structure is identical to the CIP-GMR head shown in figure 17. The only crucial difference is 
the fact that the SL is now made from a non-conducting layer (typically MgO) that is thin 
enough to allow for a substantial tunnel current in between FL and RL. The resistance of such 
structures containing a tunnel barrier is now high enough to avoid the previously discussed 
problems of the CPP geometry at today’s sensor dimensions. Therefore, TMR sensors are 
presently the technology of choice for commercial Read Heads in HDDs. However, it is 
expected that as dimensions shrink further, the sheet resistance of tunnel barriers will be too 
high for practical sensor operations, at which point the above mentioned product transition 
towards CPP-GMR sensors is anticipated.  
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Fig. 19: TMR sensor 
  
To complete the discussion of figure 19, one should mention that the TMR Read Head also 
contains a hard bias layer (not shown), just as the CIP-GMR head in figure 17. The difference 
is that this hard bias layer is now electrically isolated from the sensor stack, because it does 
not function as part of the electrical contact anymore. However, it fulfills the identical 
magnetic purpose as in the case of the CIP-GMR sensor. One should also clarify that a CIP-
TMR sensor is not possible, because in the CIP geometry the insulating SL would simply 
isolate the parallel metallic conductivity of the FL and RL from each other, making their 
conductivity independent from their relative magnetization orientation. Also, the transport 
mechanism would be purely metallic without any tunneling effect. 
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1 Introduction 
 
Everything in the digital world is based on the binary number system. Numerically, this 
involves only two symbols: 0 and 1. Logically, we can use these symbols or we can equate 
them with others according to the needs of the moment. Thus, when dealing with digital logic, 
we can specify that: 
 
0 = false = no , 1 = true  = yes 

 Using this two-valued logic system, every statement or condition must be either "true" or 
"false;" it cannot be partly true and partly false. While this approach may seem limited, it 
actually works quite nicely, and can be expanded to express very complex relationships and 
interactions among any number of individual conditions. It makes it possible to design and 
build circuits that will remain indefinitely in one state unless and until they are deliberately 
switched to the other state. This makes it possible to construct a machine (the computer) 
which can remember sequences of events and adjust its behavior accordingly. 

Digital logic may be divided into two classes: combinational logic, in which the logical 
outputs are determined by the logical function being performed and the logical input states at 
that particular moment; and sequential logic, in which the outputs also depend on the prior 
states of those outputs. Both classes of logic are used extensively in all digital computers. 

Since both types of logic circuits begin with logic gates to combine logical input signals in 
various ways to produce the desired outputs, we will begin on the next page by seeing how 
the basic logic gates work: While each logical element or condition must always have a logic 
value of either "0" or "1", we also need to have ways to combine different logical signals or 
conditions to provide a logical result. For example, consider the logical statement: "If I move 
the switch on the wall up, the light will turn on." At first glance, this seems to be a correct 
statement. However, if we look at a few other factors, we realize that there's more to it than 
this. In this example, a more complete statement would be: "If I move the switch on the wall 
up and the light bulb is good and the power is on, the light will turn on." If we look at these 
two statements as logical expressions and use logical terminology, we can reduce the first 
statement to:  

Light = Switch 

This means nothing more than that the light will follow the action of the switch, so that when 
the switch is up/on/true/1 the light will also be on/true/1. Conversely, if the switch is 
down/off/false/0 the light will also be off/false/0.  
 
Looking at the second version of the statement, we have a slightly more complex expression: 
Light = Switch and Bulb and Power 
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1.1 Defintion of logic elements 
 

When we deal with logical circuits (as in computers), we not only need to deal with logical 
functions; we also need some special symbols to denote these functions in a logical diagram. 
There are three fundamental logical operations, from which all other functions, no matter how 
complex, can be derived. These functions are named and, or, and not. Each of these has a 
specific symbol and a clearly-defined behavior, as follows: 
 

 

  

The AND Gate implements the AND function. With the gate 
shown to the left, both inputs must have logic 1 signals 
applied to them in order for the output to be a logic 1. With 
either input at logic 0, the output will be held to logic 0. 
There is no limit to the number of inputs that may be applied 
to an AND function, so there is no functional limit to the 
number of inputs an AND gate may have. However, for 
practical reasons, commercial AND gates are most 
commonly manufactured with 2, 3, or 4 inputs  

 

  

The OR Gate is sort of the reverse of the AND gate. The OR 
function, like its verbal counterpart, allows the output to be 
true (logic 1) if any one or more of its inputs are true. 
Verbally, we might say, "If it is raining OR if I turn on the 
sprinkler, the lawn will be wet." Note that the lawn will still 
be wet if the sprinkler is on and it is also raining. This is 
correctly reflected by the basic OR function. 

 

 
  

The NOT Gate, or Inverter is a little different from AND 
and OR gates in that it always has exactly one input as well 
as one output. Whatever logical state is applied to the input, 
the opposite state will appear at the output. 
The NOT function is necessary in many applications and 
highly useful in others. A practical verbal application might 
be: The door is NOT locked = You may enter 
 

In terms of microelectronic devices, the simplest realization of logic circuits consists of 
diodes and resistors: The so called Diode-Logic (DL): 
 

 
Fig. 1: A diode based logic 
gate for an AND function 
in positive and a NAND 
function in negative logic. 
The threshold voltage for 
the current in forward bias 
is assumed to be 0.7V. 
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Many more realization of logic functions with standard electronic components are on the 
market today, The two most common are the Transistor-Transistor-Logic (TTL) and 
Complementary Metal Oxide Semiconductor (CMOS) circuits: 
 
 

 
 
Fig. 2: NAND Gates with transistors (TTL, left) and with complementary MOSFETs (CMOS, 
right). 
 
In terms of applications, logic circuits are nowadays not only used in the processor units of 
computers. Large markets are open for the integration of simple logic circuits on “smart 
cards”, where the magnetically stored security code is replaced by a processing unit (RISK 
processors, for example) with a logic function. 
 
The next level of complexity is reached in, e.g., hand held devices, where PIN and other 
personal codes are used for securing only authorized use. For this, logic based on SRAM and / 
or FLASH is used.  
 
The main disadvantages of these systems are either a relatively high power consumption and 
non volatility (CMOS) or a relatively expensive technology mix in as, e.g.,  the case of 
SRAM and FLASH. 
 
Magnetic systems are used already for decades for data storage in hard disk drives and tapes. 
Here, the hysteresis of the magnetization is used for storing data: 
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Fig. 3: A magnetic hysteresis curve and 
the explanation of the related parameters. 
 
 
 
 
 
 
 
 
 
 
 

 
 
The two stable states at H=0 (see fig. 3) can be used to store digital information. This is 
realized in thin ferromagnetic films on hard disks and tapes. 
 
The idea to also process data with magnetic systems is quite old: Back in the late 1960’ies and 
early 1970’ies, ideas to process information with magnetic bubbles have been discussed and 
realized [1]. These magnetic systems, however, failed to become a major tool for data 
processing due to the enormous success of the semiconductor based microelectronics. 
 
Today, however, the integration of computers into every day’s life requires smaller, more 
powerful but less power consuming processing units. According to the ITRS roadmap, 
devices based on Si-only technology will face serious obstacles hindering downscaling and 
power reduction within a few years. Parallel data processing, faster interactions between logic 
functions and memories, and re-configurable logic functions are needed in particular for 
applications that require image processing. 
 
In modern Magnetic Logic the direction of the magnetisation in sub-micron patterned 
ferromagnets is identified with Boolean logic 1 or 0. The input changes the magnetisation of 
one structure and the output – i.e. the logic function – is then defined by the layout and the 
magnetisation states of the subsequent structures. As first demonstrated by groups in England 
[2] and Germany [3], Magnetic Logic promises low power non-volatile computing, "on the 
fly" re-programmability, massively parallel character and ultrafast operation and thus has the 
potential to become a key technology for logic circuits. Magnetic Logic could also bring 
together real time reconfiguration and universal memory - key success factors compared to 
other semiconductor techniques for re-configurable logic. 
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1.2 The approaches to Magnetic Logic 
 
Three complementary approaches to Magnetic Logic (ML) will be discussed here:  
 

- In Approach 1, magnetic dots are neighbouring each other closely and thus have a 
dipolar interaction. Thus magnetizing one of these dots will influence the neighbours. 
With a proper arrangement, information on the magnetic state of one dot can 
propagate along one or several chain(s) of these patterns and finally be detected by 
optical or electronic means. This approach was named “Quantum cellular Automata” 
[2].  
 

- In Approach 2, driving magnetic domains in a circuit enables to convert input 
currents creating a magnetic field on one end of the circuit into an output represented 
by the magnetic state of the nanostructure at the other end. The sense of rotation - 
clockwise or counter-clockwise - gives control over the flow of information [3]. This 
scheme can be highly parallel and of low cost. Readout can be performed by optical 
means, or magnetic GMR- or tunnelling elements, which directly convert the magnetic 
state into an electrical signal. 
 

- In the Approach 3, the logic gates are built from these magnetic tunnelling junctions 
that are arranged in a bridge type configuration. The logic input switches the 
magnetisation of one electrode. The output produced by the magnetic states of the 
nano-structured elements is the voltage drop across the gate which can be programmed 
to be logic e.g. NAND, AND, NOR by setting the magnetizations of reference cells, 
thereby promising the ability to perform re-configurable computing [4]. 
 
 

In any approach to logic operations, two routing functions are also required for complex logic 
circuits: a fan-out structure, which makes two identical copies of an input signal; and a cross-
over structure, which allows two signals to pass over each other without interference. 
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2 The Quantum Cellular Automata 
 
A Quantum Cellular Automata (QCA) is a nanostructure-compatible computation paradigm 
that uses arrays of quantum-dot cells to implement digital logic functions. As it was shown in 
[5], a configuration of single electron transistors can be QCA and shows the ability to perform 
logic operations. These devices, however, only work at very low temperatures. 
 
The group of R. Cowburn and co-workers demonstrated [3] experimentally that QCA 
architectures using relatively large ferromagnetic dots (~100 nm) can be made to work at 
room temperature.  
Each QCA network (see fig. 4) consists of a single large input dot followed by a chain of 
69 small circular dots (diameter 110 nm), placed on a pitch of 135 nm. The dots were made 
by e-beam lithography from a magnetically very soft material (“Supermalloy”).  

 
 
Fig. 4. Scanning electron micrographs of the left 
(input) region of two of the room temperature 
magnetic QCA networks. The large dot at the left end 
is the input dot. 
  

 
By definition,  a logic 1 is signaled when the dot's magnetization vector points to the right, and 
a logic 0 when it points to the left (note, that the magnetization wants to point along the chain 
due to magnetostatic interactions). The classical magnetostatic interactions are then used to 
propagate information along the chain of dots. The system is thus binary, because only right- 
and left-pointing magnetization states are stable states. 
 
The elongated shape of the input dot at the left end of the chain (fig. 4) increases its shape 
anisotropy and thereby the switching field. Thus the input dot is still able to influence the 
neighboring circular dots but remains unaffected by them. 
 
For propagating information, the state of the input dot is set by an external magnetic field 
pulse and remains stable thereafter. Then, the magnetization of the neighboring circular dot 
will switch, influencing the next one. Thus the information will propagate along the chain 
until the last dot at the very right end of the chain has switched. 
 
Probing the information can be performed by, e.g., the magneto-optical Kerr effect, where the 
polarization state of light gives information about the magnetization.  The fact that the signal 
shown in fig. 5 has an amplitude of ~±60 shows that almost the entire chain (69 dots) is 
switching. Thus, the magnetization direction of the single input dot determines the magnetic 
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state of all other dots. Signal propagation along the length of the chain is thus clearly 
occurring.  
 

 
 
Fig. 5. Room temperature experimental results from the magnetic QCA networks shown in fig. 
4  for the input dots set to 1, calibrated in number of dots switching within one network. The 
width of the edge transitions is not due to the temporal response of the magnetic QCA 
networks but rather the distribution in switching fields, combined with the finite switching 
time of the applied oscillating field.  
 
 
In this approach, a very simple magnetic QCA network was chosen as proof of the principle 
that logic operations and information propagation can be performed at room temperature. In 
this particular network, the first circular dot acts as an AND gate, where the oscillating clock 
field is one input and the elongated dot is the other input. The circular dots 2 to 69 act as 
output interconnects.  
 
There is, in principle, no physical problem in splitting the magnetic soliton running along the 
chain into two channels, and so fan-out of signals should also be possible. Simulations show 
that NOT functions, concatenated gates, and crossing chains are also possible. 
 

3 The domain wall approach to Magnetic logic 
An alternative to propagate pure spin information without moving charge was presented in 
[3]: A magnetic logic architecture referred to as "domain-wall logic" was developed which 
uses no transistors and exhibits very little heating caused by data switching. A domain wall is 
a mobile interface between regions of oppositely aligned magnetization. Submicrometer 
planar nanowires made from a soft magnetic material such as Permalloy (Ni80Fe20) are 
excellent conductors for domain walls [6], because the high shape anisotropy of the nanowire 

forces the magnetization to align with the long axis of the wire. Such domain walls can be 
propagated through complex networks of nanowires under the action of an externally applied 
magnetic field. This field rotates in the plane of the device and acts as both the clock and the 
power supply. 
 
The main operating mechanism for processing the information of the spin system is the 
reversal of the magnetization direction in a cusp-shaped planar nanowire (see fig. 6A to E). If 
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a logical "1" is defined as the magnetization pointing in the direction of propagation of 
domain walls and a logical "0" as the opposite, the cusp in effect performs the logical NOT 
operation. 
 
In order to implement any arbitrary logic function, additional basis functions must be 
implemented. At least function with two inputs, such as AND or OR, is required to 
complement the NOT function so that any computational calculation can be performed. 
 
 

 
 
 
 
 
 
 

Fig. 6. (A) Schematic of an all-metallic ferro-
magnetic NOT gate and directions of elliptical 
magnetic field components, Hx and Hy. (B to E) 
Diagrams describing the operating concept of 
NOT-gate magnetization reversal by illustrating 
successive magnetization directions (arrows) and 
domain wall positions (thick line) within a NOT 
gate that undergoes domain wall injection and is 
subject to a rotating magnetic field. 
F: An experimental realization of this circuit; the 
details of the cusp performing the NOT operation 
is shown in G. The graphs in H show the 
oscillating fields Hx and Hy and the magneto-
optical signals at points I and II of the device 
shown in F. 

F 

G 

H 
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In fig. 6 F-H, an experimental realization of this basic circuit for the domain wall logic is 
shown: A narrow Permalloy (Ni80Fe20) wire is patterned by e-beam lithography on a Si 
substrate to a rectangle, where in the lower rim, the cusp is integrated (fig. 6 G). The 
observation of the processing of the spin information can be done again by magneto-optical 
Kerr effect. Here, the laser was placed on two spots marked by I and II in fig. 6 F. In the 
results shown in fig. 6 H, a clear inverted magnetization direction is resolved when going 
from spot I to spot II. Thus the cusp between these two spots acts as a NOT function for the 
domain wall coming in from the left side. 
 
This basic circuit thus demonstrates the capability of performing logic operations with domain 
walls moving around in a system of magnetic nanowires. More sophisticated circuitries where 
constructed (see fig. 7), showing also the crossing, fan in and fan out functionalities [3]. 
 

Fig. 7. (A) Focussed Ion Beam image of a magnetic nanowire network with one NOT gate, 
one AND gate, two fan-out junctions, and one cross-over junction. MOKE measurements 
were made at positions I and IV, indicated by asterisks, and positions II and III denote the 
inputs to the AND gate. Also indicated are the directions of field components (Hx and Hy) 
and the sense of field rotation (Rot). (B) MOKE traces describing the operation of the 
magnetic circuit within a counterclockwise rotating field with amplitudes Hx

0= 75Oe and 
Hy

0= 88Oe and dc offset of Hx
DC =  –5 Oe. Experimental MOKE measurements from 

positions I and IV of the circuit are shown. Traces II and III are inferred from trace I and 
show the magnetization state of the AND gate’s input wires. (from [3]). 
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Thus four basic functions (NOT, AND, fan-out, and cross-over) operating simultaneously 
under the action of a single global applied rotating magnetic field have been demonstrated in 
the domain wall approach. Using these basic functions, any logic circuit can be implemented 
using complex combinations of the four basis functions. 
 
For a fast and reliable readout, however, magnetoresistive elements need to be integrated in  
minimum feature size (35). One additional drawback is the outer magnetic field needed for 
operating the logic gates. Here, the domain-wall propagation by spin transfer [7] may 
ultimately overcome these inefficiencies. 
 

4 Magnetic Tunnel Junction Logic 
 
The last approach to be discusse is the use of magnetic tunnel junctions for creating logic 
circuits [4]. Such junctions are already under development for several years for the Magnetic 
Random Access Memory (MRAM) or sensors. The realization of a logic based on the same 
principles and technologies as the –potentially universal- memory MRAM is of large interest, 
because it opens the way to a common technology platform for storing and computing data. 
Moreover, magnetic logic gate arrays can be field programmable, leading to field 
programmable logic gate arrays (FPGAs). Such FPGAs are programmable ”on the fly” and 
thus open also a path to fast reconfigurable computing11.  
 
The general concept of using MTJs for logic operations is visualized fig. 8. 

 
 

Fig. 8: Left: The simplest logic gate consisting of only one tunneling cell (MTJ). The inputs 
are the clock- and the wordline and optionally a current carrying line heating the cell. The 
output is the voltage drop across the MTJ. 
Right: The Stoner astroid of a idealized soft layer relevant for the switching with two 
perpendicular field pulses from the clock- and the wordline. b) and c) The time dependence of 
the currents on clock- and wordline, respectively and d) the output voltage Vout if only the 
combination of clock- and wordline field can switch the magnatization. 
 
 
A current flowing through one (or more) magnetic tunnel junction(s) causes a voltage drop 
Vout. Because the resistance of the MTJ depends on the relative orientations of the 
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magnetizations of upper and lower electrode, this Vout will change, when one of the electrodes 
switches its magnetization (indicated by the double arrow in fig. 8). Generally, the resistance 
is higher in the antiparallel magnetization state as compared to the parallel one. Switching of 
the magnetization can be accomplished by several means. The simplest is driving current 
through word- and clock lines close to the MTJ. These currents create a magnetic field which 
can switch the magnetization of the MTJs soft electrode. Other possibilities are heating the 
MTJ so that also the hard electrode can be switched magnetically. 
 
A scheme of operation of this simplest logic gate with only one MTJ is shown in fig. 8 (right): 
Because the switching condition of the magnetization of the soft layer is given approximately 
by the Stoner asteroid, only the simultaneous presence of both currents on clock- and 
wordline causes switching if appropriate values for the currents are chosen. Thus the output 
voltage Vout will change only if both currents are present. If the MTJ is switched by this 
procedure to the high resistive state (antiparallel magnetizations), then Vout represents the 
logic “AND” relation between the clock- and word-current. In the reversed case of switching 
from the high to the low resistive state, the function is “NAND”. Thus in this simplest 
version, already two functions can be realized and by using the clockline current, also clocked 
operation of this circuit is possible. 
 
In an extension of this scheme, Ney et al. [8] discussed a concept, where only one tunneling 
junction can form a programmable logic gate with more than these two functions, if it is 
possible to also switch the hard (fixed) magnetic electrode. This could be accomplished by, 
e.g., using the heating line sketched in fig. 8. 
 
Here, we concentrate on the first approach using a bridge type circuit consisting of four 
tunneling junctions (fig. 9). 

 
 
Fig. 9: Schematic circuit of a field 
programmable logic gate array 
consisting of two input MTJs and two 
reference MTJs. The value of the 
current driven through all MTJs is Io 
as shown. The output Vout is the 
voltage difference between the input 
and the reference chain. 
 
 
 
 
 

The preparation of sub-µm logic gates with four MTJs as shown in fig. 9 requires a series of 
relatively sophisticated e-beam processes. First, the MTJs are patterned followed by the 
preparation of the upper contact lines of the MTJs. Then, the clock- and word lines are 
prepared with insulating 100nm thick SiO2 separating both the contact lines of the MTJs as 
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well as clock- and wordline. After that, the complete structure is covered by a TaOX 
protection layer (5nm). The chips with four nominally identical logic gates are then cut and 
wire bonded in a conventional chip socket. In our layout, each MTJ can be also characterized 
individually in order to evaluate variations of the resistance and the TMR within one gate. 
 
Examples for the result of this procedure are shown in fig.’s 6a and 6b: A complete logic gate 
consisting of four electrically connected MTJs as already shown in fig. 9 (fig. 6a) and one 
individual tunneling cell with a size of about 200nm x 100nm (fig. 6b). Provided all 
lithography steps are successfully done, the properties of the MTJs do not change with respect 
to their expected resistance and TMR within the margins found already on extended samples. 

 

 
 

 
Fig. 10: a) SEM image of a field programmable logic gate made by subsequent e-beam 
lithography steps. The burried magnetic tunnel junctions are indicated by black ellipses. Io is 
the current running through the upper (input) and the lower (reference) MTJs. Ic is the clock-
current and IW1-4 are the word-currents for switching the MTJs. b) SEM image of the smallest 
tunnel junction employed in the FPGAs (elliptic, 200nm x 100nm). 
 
For the logic operations, current pulses are passed through the wordlines on two of the MTJs, 
which create a magnetic field able to switch the soft electrode of two MTJs connected in 
series. In fig. 11, we show the resulting resistance of this chain as a function of the applied 
current pulses in the two wordlines (IW1 and IW2 in fig. 10a, respectively).  
 

 
 
Fig. 11: Resistance of the series of  two 
(input) MTJs upon switching. The resistance 
takes the distinct values corresponding to 
the states RH/RH, RH/RL, RL/RL and RH/RL of 
the MTJs. 
 
 
 

b 
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The resistance changes according to the switching of the individual MTJs soft layers between 
a maximal value with both MTJs being in the high resistive state RH to a mixed state (RH / 
RL), the minimum resistance value (RL / RL), the next mixed state (RL / RH) and then back to 
the original state (RH / RH). If one identifies resistance values smaller than –in this case- 
320kΩ with logic 0 and larger than 340kΩ with logic 1, then this corresponds to an “AND” 
function relating the two (wordline-) inputs. This would be then the non-programmable 
operation of only two MTJs. For programming the function, the two other MTJs (connected 
also in series) are necessary. 
 
This mode of operation (as sketched in fig. 9) is demonstrated in fig.12: 

 
Fig. 12: Output voltage Vout of a complete 
FPGA (compare fig. 5) upon changing the 
reference MTJs from the state RL/RL to 
RL/RH corresponding to a programmed 
“NAND” and “NOR”, respectively.The 
function is veryfied by switching the input 
MTJs with appropriate word- and clock-
currents. The shaded area marks the gap 
necessary between Vout corresponding to 
logic 1 and 0. Note, that in this case the 
gap amounts to only 5mV. 
 
 
 

Here two functions (NAND and NOR) have been implemented by setting the two reference-
MTJs in fig. 9 to the states  (RL / RL) for the NAND function and  (RL / RH) for the NOR. 
As can be seen from fig. 12, the programming action changes the output of the logic gate 
array from one Boolean function to another. Because the programming action consists of 
magnetically switching the soft electrode of one of the reference MTJs, this is as fast as 
transferring the input from the current pulses to the resistance state of the input-MTJs. 
Moreover, the state of the logic gate array (i.e. inputs and output) are stored in a nonvolatile 
manner in the MTJs. 
 
Although these gates thus can provide very flexible field programmable logic gate arrays for 
reconfigurable computing, the scalability issue is critical: Simply spoken, the currents in the 
word- and clocklines are too large (some mA) to allow for a downscaling in the deep sub-µm 
range. 
 
The solution for this obstacle could be current induced magnetization switching [9] (CIMS), 
where, however, the area-resistance product of the barrier must not exceed around 50Ωµm², 
because only then enough current can be pressed through the MTJ without destroying it. We 
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have therefore tried to prepare low resistive MgO based tunneling elements. In fig. 13, we 
show a typical minor loop for this structure, where, the area resistance product is 6.5Ωµm² 
allowing for current density of up to around 1.3·107A/cm². Nevertheless, the TMR is around 
126%, i.e. well above the threshold of 100% for a reliable production. 
 
For these junctions, we carried out CIMS experiments, i.e. the voltage across the MTJ was 
pulsed to a certain value and then the resistance was measured at a low voltage of 20mV. The 
result of this attempt is shown in fig. 12, where the applied voltage pulse was already replaced 
by the corresponding value of the current density. 

 
 
 
Fig. 13: A minor loop of a tunnel 
junction taken by current induced 
switching. Here, a current pulse 
was applied to the junction and the 
resistance was subsequently 
determined at low bias voltage 
(20mV). The junction switches 
from RL to RH (antiparallel state) 
at 9·106A/cm² and back to RL at 
13·106A/cm². 
 
 
 
 
 

Pulsing a current density between 8·106A/cm² and 13·106A/cm² through these MTJs leads to 
switching back and forth the magnetization of the soft layer between parallel and antiparallel 
alignement, respectively. 
 
Because this switching current in CIMS scales down in parallel with the area of the tunneling 
junctions, these MgO based tunnel junctions seem to be the ideal candidates for the 
realization of working and economically producable field programmable logic gate arrays. 
 
Because these junctions also are extremely stable at high temperature, they could open a way 
to also switch the hard magnetic layer by thermally changing the exchange bias direction. 
Moreover, for Heusler materials as magnetic electrodes19 it was found, that a change of the 
sign of the TMR can be found if the bias voltage is changed from low to high values [10]. 
Thus, using these effects as new ways for changing the functions of the FPGAs, new degrees 
of freedom can be introduced which can be used to further increase their variability. 
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5 Summary 
 
Conventional microelectronic technology has relied on shrinking transistors to produce 
increasingly smaller, faster and more powerful computers. However, because the laws of 
physics prevent conventional devices from working below a certain size, that method is 
nearing its physical limits. 
 
In this lecture, we have discussed three approaches to overcome the limits of traditional 
downscaling by using the spin of the electrons rather than their charge for processing 
information. 
 
The Quantum Cellular Automata molecular chip could contain as many as 1 trillion 
devices, as opposed to the 6 million devices in the most advanced conventional chip. And 
since it does not rely on flowing electrons to transmit a signal, no electric current is produced 
and heat problems are avoided. 
 
One of the most attractive features of Domain-Wall Logic is its great simplicity. Logical 
NAND is achieved in CMOS by using four transistors, whereas domain-wall logic uses two 
elements (NOT and AND). A logical AND function, usually requiring six CMOS transistors, 
can be achieved simply by bringing two magnetic nanowires together. Unlike Si CMOS 
architecture, a domain wall cross-over junction can be achieved in a single plane and without 
multilevel metallization, which means that in principle, extremely low-cost devices could be 
produced. Whereas most applications of magnetic logic (and indeed the wider field of 
spintronics) will involve a hybrid system on a chip that includes silicon-based CMOS, certain 
applications such as biomedical implants or wearable computing hardware would benefit from 
the ability to fabricate devices on, for example, flexible polyimide substrates. One could 
imagine nanowires constructed into three-dimensional (3D) neural networks or hugely dense 

3D nonvolatile memories. The ability to supply power, clock, master reset, and serial input 
with a single externally applied magnetic field, is particularly attractive in the 3D case, where 
signal access is limited. There may also be potential for interfacing domain-wall logic with 
emerging dilute ferromagnetic semiconductors that allow electrical control and sensing of 
magnetization. 
 
The perspective of the Magnetic Tunnel Junction Logic is the integration with the universal 
MRAM memory on one technological platform and its ability to form field programmable 
logic circuits with all basic logic functions and additional operations such as XOR, which 
today require a large number of transistors. Because the logic function can be programmed at 
the same speed as the logic operation, reconfigurable computing schemes could be realized in 
this technique. In high performance computing, such schemes could accelerate the operation 
of processing units by a factor of 100 if the program optimizes the functions of the processor 
during operation. At the same time, the power dissipation, which is one of the most critical 
issues in nowadays high performance computing, could be reduced by orders of magnitude 
enabling an even better scalability of this approach. 
 



Magnetic Logic  F3.17 

Acknowledgements 
 
We thank W. Maass, B. Ocker and J. Langer from Singulus Technologies for supplying MgO 
based MTJs and valuable discussions. The work and results reported were obtained partly 
with research funding from the European Community (6. Framework, Contract Number 
510993). The views expressed are solely those of the authors, and the other Contractors 
and/or the European Community cannot be held liable for any use that may be made of the 
information contained. 
 

References 
 

[1] [1]  See, e.g., R. C. MINNICK, P. T. BAILEY, R. M. SANDFORT, W. L. SEMON,  
Proceedings of the December 5-7, 1972, fall joint computer conference, Anaheim, 
California, part II, page 1279 ff 

[2] [2]  R.P. Cowburn, M. E. Welland, Science 287, 1466 (2000) 
[3] [3]  D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, R. P. Cowburn, Science 

309, 1688 (2005) 
[4] [4]  R. Richter,  L. Bär, J. Wecker, G. Reiss, Appl. Phys. Lett., 80, 1291 (2002) 
[5] [5]  I. Amlani, A. O. Orlov, G. Toth, G.H. Bernstein, C. S. Lent, G. L. Snider, Science 284, 

289 (1999) 
[6] [6]  R. D. McMichael, M. J. Donahue, IEEE Trans. Magn. 33, 4167 (1997) 
[7] [7]  M. Tsoi, R. E. Fontana, S. S. P. Parkin, Appl. Phys. Lett. 83, 2617 (2003) 
[8] [8]  A. Ney, C. Pampuch, R. Koch, and K.H. Ploog, Nature 418, 509 (2002) 
[9] [9]  J.C. Slonczewski,  J. Magn. Magn. Mater. 159, L1 (1996) 

[10] A. Thomas, D. Meyners, D. Ebke, N.-N. Liu, M.D. Sacher, J. Schmalhorst, G. Reiss,  
 H. Ebert, A. Hütten, Appl. Phys. Lett  89, 012502 (2006) 
 
 



Index

Symbole
90o type-coupling, B1.7
2-dimensional electron gas, B3.12,

B5.2
3Q-state, A3.35
3d-metals, B1.6

A
absorption of spin current, D3.5
addition energy, C6.7
adiabatic STT term, D3.26
Aharanov-Bohm measurements, C5.6
AMR, I1.4
Anderson model, C6.10
anholonomy angle, A7.2
anisotropic magneto-resistance (AMR),

F1.16
anisotropic magnetoresistance, I1.4
anomalous g factor, A7.26
anomalous Hall conductivity, C2.3,

C2.11, C2.22, C2.25
anomalous Hall effect, A7.17, C2.2,

C2.5, C2.25
anomalous velocity, A7.20, C2.2, C2.10
anti-Stokes scattering, D2.7
antiferromagnetic giant magnetore-

sistance (AGMR), D3.27
antiferromagnetic interlayer exchange,

B1.11
antiferromagnetic orders: AFM-A,

AFM-G and AFM-E, A5.9
antiferromagnetism, A2.11
antisymmetric exchange interaction,

A5.6
antivortex, D1.23

asymmetric Bloch wall, D1.24

B
backward volume (BV) geometry,

D2.5
balanced function, E4.3
ballistic system, C5.12
bandstructure, A1.6
Bardeen’s approach, B2.10
Bells inequality relation, B1.5
Berry connection, A7.5, C2.5, C2.7
Berry curvature, A7.5, C2.7, C2.10,

C2.12, C2.14, C2.20
Berry phase, A7.4, C2.8, C2.9, C5.6
bilinear coupling, B1.7, D2.9
biquadratic coupling, B1.7, D2.9
Biquadratic exchange, A3.9
Bir-Aronov-Pikus mechanism, B6.7
Bloch functions, B5.2
Bloch point, D1.8
Bloch wall, D1.19
Bloch’s theorem, A1.4
Bloch-equation, C6.16
Bohr-Sommerfeld quantization, A7.21
Bohr-van Leeuwen theorem, A2.2
Boltzmann equation, B6.20, C2.4,

C2.6, C2.8, C2.10, C2.15,
C2.20

Breit-Wigner resonance, C5.11
Brillouin light scattering (BLS), D2.6
Brillouin zone, B1.11, B3.6

C
C-state, D1.29
Ca2−xSrxRuO4, A4.9

1



caliper of the Fermi surface, B1.10
called giant magnetoresistance (GMR),

B3.2
canonical quantization, A7.24
carbon, C5.2
carbon nanotubes, C5.2
Carr-Purcell, E3.16
charge and spin currents, C1.7
charge quantization, C6.3
charge transfer salts, A4.20
charge-degeneracy point, C6.7
charging energy, C6.4
chemical potential, B3.12, C1.4
Chern number, A7.6
circularly polarized photons, B3.7
cluster DMFT, A4.20
coercive field, D3.12
coherent control of spins, D4.9
coherent laser cooling of magnons,

D4.10
competing interactions, D1.3
complex bandstructure, B2.15
complexity classes, E4.2
conductance quantization, C4.8
conduction band, B3.6
conduction electrons, B1.12
conductivity mismatch, B3.8, C1.15
confinement, B1.9
constrained density functional, A2.14
contact resistance, C1.6
controlled NOT gate, E1.12
controlled rotation (CROT), E1.14
Coulomb blockade, C6.4
Coulomb diamonds, C5.11
critical current, D3.8
cross-tie wall, D1.23
crystal field splitting, A4.10
crystal symmetry, A1.3

Curie temperature, A3.10
Curie-Weiss, A6.5
current density, B2.4
current polarization, D3.6
current-driven domain wall motion,

D3.25
current-induced magnetization switch-

ing, D3.3
current-induced spin-density wave,

D3.27
current-induced torque, D3.6, D3.28

D
D’yakonov-Perel’ mechanism, B6.6,

B6.19
Damon-Eshbach mode, D2.5
damping, D1.16
Datta-Das transistor, C4.2
decoherence, E1.15, E2.18
decoherence time, B3.15
demagnetization factor, D1.13
density functional theory, A1.10
Deutsch’s algorithm, E4.3
DFT bandgap, A1.11
diamagnetism, A2.3
diamond structure, D1.27
diffusive transport, D3.7
dilute magnetic semiconductors, I1.12
diluted magnetic semiconductors, B3.4,

B3.8
Dipole-dipole energy, A3.14
Dirac, C5.4
Dirac equation, A1.29, A2.4, E2.15
Dirac Hamiltonian, C2.23
Dirac point, C5.12
direct band gap, B3.6
displacive phase transitions, A6.7

2



DiVincenzo criteria, E1.16, E2.2,
E3.2

Domain theory, D1.8
domain wall logic, F3.8
domain walls, D1.18
doping, A4.14
double exchange mechanism, A5.6
double pump excitation, D4.9
Dresselhaus term, B5.7
Dresselhaus-effect, C4.2
dynamical mean field theory, A4.3,

A4.4
Dyson equation, A4.5
Dzyaloshinskii-Moriya interaction,

A3.18, A5.6, D4.6

E
e-beam lithography, D3.5, D3.19
edge states, C4.6
effective field, D1.15, D3.10
effective magnetic field, D2.3, D4.3
effective mass equation, B5.2
effective spin polarization, B1.7
Einstein-Podolsky-Rosen (EPR) para-

dox, B1.2
electric current, B2.5
electric field, A2.2
electric polarization, A7.12
electrical resistivity, B1.12
electrical spin injection, B3.4, B3.8
electrically detected magneticreso-

nance (EDMR), E3.16
electrochemical potential, C6.6
electroluminescence, B3.8
electromagnetic environment, C6.4
electron spin, E3.4
Elliott relation, B6.16
Elliott-Yafet mechanism, B6.6, B6.15

energy minimization, D1.9
entangled photons, B1.4
entangled state, E1.6
envelope-function, B5.5
epitaxial nanopillars, D3.17
equivalent circuit, C1.13
Europium chalcogenides, B4.6
exact diagonalization, A4.6
exchange bias, F1.18
exchange biasing, B1.12
exchange energy, D1.10
exchange field induced by tunnel-

ing, C6.16
exchange length, D1.22
exchange splitting, D3.28
exchange spring media, F1.11
exchange-correlation potential, A1.16
extended Gilbert equation, D3.9, D3.11

F
Fabry-Perot interferometer, D2.8
factorization, E4.9
Faraday effect, I1.4
Faraday rotation, B3.11
Fe/MgO/Fe, B2.13
femtosecond time-scale, D4.5
Fermi level, B1.6
Fermi surface, A1.9
Fermi’s golden rule, E2.16
ferromagnet-semiconductor interfaces,

B3.5
ferromagnetic semiconductors, B3.8
ferromagnetism, A2.11
fiber bundle, A7.6
field programmable logic gate ar-

ray, F3.11
field-effect-transistors, C5.2
finite-size effects, D1.3

3



Flower state, D1.29
Four-spin exchange interaction, A3.9
fullerenes, C5.6

G
g-factor, E3.5
gap energy, B3.6
giant magnetoresistance, B1.11, I1.6
giant magnetoresistance effect (GMR),

D3.3
Gilbert, I1.2
Gilbert damping constant, D3.10
Gilbert equation, D1.16
GMR ratio, B1.13
Goodenough-Kanamori rules, A5.6
graphene, C5.2, I1.14
Grover’s algorithm, E4.4
GW approximation, A1.22
gyromagnetic ratio, D1.14
gyrotropic vortex motion, D1.33

H
Hadamard transformation, E1.9
halfmetallic ferromagnets, I1.11
Hall-bar geometry, C4.6
Hanbury-Brown-Twiss experiment,

C5.15
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Néel wall, D1.20

O
Oersted field, D1.38, D3.5
one-dimensional systems, C5.6
optical pulses, D4.2
optical seletion rules, B3.7
opto-magnetic switching, D4.13
opto-magnetism, D4.3
orbital ordering, A1.19
orbital polarization, A4.12

orbital-selective Mott transition, A4.10
order-disorder transitions, A6.8
oscillation period, B1.10
oscillatory coupling, B1.9

P
parallel transport, A7.2
paramagnetism, A2.3
Peierls substitution, A7.25
period, E4.9
periodic boundary conditions, D1.5
perovskite, B4.8
perpendicular standing spin waves,

D2.4
persistent charge current, A7.8
persistent spin current, A7.8
perturbation theory, B2.10
phase diagram, A4.2, A4.17, A4.20
phosphorus donors, E3.3
photon, B1.3
photon-assisted tunneling, E2.7, E2.10
point group, B5.3
Poisson equation, D1.11
polarization of light, D4.3
pole avoidance principle, D1.26
precession, D1.14
precessional switching, D1.32
proper phase transition, A6.12
pulse shaping, D4.11

Q
quality factor, D1.13
quantization of the spin wave mode,

D2.13
quantized Hall conductance, C4.3
quantum algorithm, E1.16
quantum bit, E1.3
quantum cellular automata, F3.7

6



quantum charge pump, A7.14
quantum computation, E3.2
quantum dot, C6.5
quantum dots, C5.21
quantum gate, E1.7
quantum Hall effect, A7.14
quantum Hall effect (QHE), C4.2
quantum impurity, A4.5
quantum interference, D4.12
quantum of conductance, C6.3
quantum oracle, E4.4
quantum point contact, E2.3
quantum register, E1.5
quantum spin Hall effect, C2.24, C4.2,

I1.9
quantum transport, C6.12
quantum well, B1.9, B3.8, B4.14,

C4.4
quantum-well states (QWS), B1.10
quantum-wires, B5.2
quasi-antiferromagnetic resonance ,

D4.8
quasi-ferromagnetic resonance, D4.8
qubit, C5.21, E2.2, E3.8

R
racetrack memory, D3.26
Random phase approximation, A3.11
random telegraph signal, E2.5
rare-earth orthoferrites, D4.6
Rashba constant, B5.7
Rashba effect, A1.26, A3.19
Rashba-effect, C4.2
reentrant behavior, A4.21
resonant tunneling, B4.14
rigid band model, B1.6

S
S-state, D1.29

Savtchenko switching mode, D1.32
scanning electron microscopy with

spin analysis (SEMPA), B1.9
scattering matrix, C2.16
scattering rate, C2.15
Schottky barrier, B3.4, B3.9
self-energy, A4.4
semiclassical dynamics, C2.4, C2.7,

C2.8
semiconductor heterointerfaces, B3.5
semiconductor spintronics, B3.3
Shape anisotropy, A3.13
shape anisotropy, D1.13
Shor’s algorithm, E4.7
side jump, C2.6, C2.7, C2.15, C2.16,

C2.18, C2.19, C2.22
silicon, E3.3
Silsbee-Johnson spin-charge coupling,

C1.16
single electron tunneling, C6.4
single spin precession, B3.14
single-domain ferromagnetic parti-

cle, A7.10
single-qubit gate, E1.8
skew scattering, A7.18, C2.5, C2.7,

C2.21, C2.22, C2.25, C2.27
Slater determinant, A1.13
Slater-Pauling curve, A2.12, B1.6
spatial quantization, B1.2
spectrum of discrete energy levels,

B1.10
speed of light, B1.3
spin accumulation, D3.7, D3.20
spin blockade, C6.18, E2.10
spin bottleneck, C1.14
spin centers, C5.13
spin coherence times, B3.5
spin coherent state, A7.10

7



spin dephasing, B3.15
spin extraction, C1.13
spin field-effect transistor (spin FET),

B3.3
spin filter, B4.6
spin filter tunnel junction, B4.10,

B4.13
spin filter tunneling, B4.3
spin filtering, D3.6
spin Hall effect, A7.26, C2.2, C2.3,

I1.8
spin Hamiltonian, E3.4
spin injection, B4.16, C1.2, C4.9,

C5.11, I1.8
spin injection efficiency, C1.12
spin LED, B3.5, B3.8
spin oscillations, D4.7
spin polarisation, B5.2
spin polarization, C1.2
spin polarized tunneling, B4.4
spin precession, B5.2
spin precession of a spin ensemble,

B3.15
spin quantum computation, B3.5
spin quasichemical potentials, C1.26
spin relaxation, B6.2
spin relaxation length, B6.2, B6.3
spin relaxation time, B6.2
spin transfer, I1.10
spin transistor, B5.11
spin transport, B3.5, C5.8
spin valve system, B1.12
spin waves, D2.2
spin-accumulation, C6.16
spin-based electrons, C5.2
spin-charge coupling, C1.10
spin-dependent reflectivity, B1.9
spin-dependent scattering, B1.12

spin-energy relaxation, E2.15
spin-flip length, B6.3
spin-flip process, D4.4
Spin-flip scattering at impurities,

B6.7
spin-flip scattering length, D3.8
spin-orbit (SO), C4.2
spin-orbit coupling, A1.24, A2.16,

B3.3, B6.9, C5.6, D4.4
spin-orbit coupling constant, B3.6
spin-orbit interaction, B3.6, E2.15
spin-orbit interaction in semicon-

ductors, B5.2
spin-polarization, B1.2, C6.14
spin-polarized currents, B3.2
spin-polarized transport, B2.5, C1.4
spin-precession, C6.16
spin-relaxation, C6.16
Spin-spiral state, A3.9
spin-split density of states, D3.6
spin-torque nano-oscillator (STNO),

D3.16
spin-transfer torque, D3.3
spin-transfer torque dynamics, D3.3
spin-valve effect, C6.14
spin-valve structures, B3.2
spinel ferrite, B4.8
spinor, B5.9, D3.5
spintronics, B3.2, C5.6, D3.2
SQUID, B1.8
Sr2RuO4, A4.3
SrVO3, A4.12
stability-diagram, C6.7
standing electron waves, B1.10
standing wave resonances, D2.13
Stark effect, C5.21
stationary vectors, B1.11
steady-state oscillatory modes, D3.12

8



Stern-Gerlach experiments, B1.2
STM lithography, E3.12
Stokes-process, D2.6
Stoner, A6.6
Stoner criterion, A2.10
Stoner model, A2.7, A3.4
strongly correlated electron systems,

A4.2
Structure inversion asymmetry, A3.2
STT effect, D1.37
STT efficiency function, D3.11, D3.21
super-paramagnetic limit, F1.11
super-paramagnetism, F1.10
superexchange mechanism, A5.5
susceptibility, A2.10
SWASER, D3.29
synchronization of STNOs, D3.17

T
tetrahedral symmetry, B5.3
time-reversal symmetry, E2.17
TKNdN theory, A7.15
TMR, B2.2, C5.11, C6.15, D3.16
transition metal oxide, B2.19
transverse spin dephasing time, B3.15
tunnel contacts, C1.21
tunnel magneto-resistance) (TMR),

F1.18
tunnelbarrier, B2.2
tunneling, B2.3
tunneling magnetoresistance, B2.2,

I1.7
tunneling magnetoresistance (TMR),

B3.3
two resistor model, B2.5
two-current model, B1.13, I1.4
two-qubit gate, E1.12
two-step switching process, D3.21

U
ultrafast laser pulses, B3.15
ultrafast laser sources, D4.2
ultrafast time-scales, D4.11
uncertainty principle of quantum me-

chanics, B1.3
unified description of GMR and STT,

D3.19

V
V2O3, A4.15
valence band, B3.6
Van den Berg Scheme, D1.27
visibility, E2.7, E2.8
vortex core, D1.33
vortex core switching, D1.33
vortex polarization, D1.34
vortex-antivortex pair, D1.35

W
wavepacket, C2.8, C2.10, C2.17
wavepacket dynamics, A7.19, C2.10

Y
Yafet relation, B6.17

Z
Zeeman polarization, B3.10
Zeemann effect, B3.11
Zener tunnel junction, B3.8

9



Founded in 1969, the scientific
reputation of the Institute of Solid
State Research (Institut für Fes-
tkörper-forschung – IFF) still owes
much to the conception of its
founders that new discoveries are
made at the boundaries of disci-
plines. This is as true today as it
was almost forty years ago. In this
spirit, the IFF has pioneered new
research fields and set trends
towards multi- and cross-discipli-
nary activities in both fundamental
research as well as technological
innovations. This is highlighted by
the 2007 Noble Prize in Physics,
awarded to Prof. Dr. P. Grünberg,
– jointly with Prof. Dr. A. Fert, Paris
– for the discovery of Giant Mag-
netoresistance (GMR), an activity
which triggered the new research
field of spintronics.  
Today, the IFF is engaged in inve-
stigating a multitude of condensed
matter phenomena with special
emphasis on three prime objecti-
ves:

• studies of fundamental physical
mechanisms and phenomena of
condensed matter, 

• the development and improve-
ment of experimental and theo-
retical analysis methods, as
well as 

• the elucidation and utilization of
new material properties in com-
plex systems. 

The corresponding research pro-
grams exploit the full scale of ana-
lytical and numerical methods to
elucidate relations between struc-
tural, electronic, magnetic and
functional properties of condensed
matter, and to achieve a descrip-
tion of the underlying physical
mechanisms. 

Research efforts are directed at
obtaining a detailed understanding
of phenomena, ranging from
microscopic and atomistic inter-
actions in the solid state to the
competition of entropic and ener-
getic forces in macromolecular
fluids. Research at the IFF rests
firmly on the two pillars of quantum
mechanics and statistical physics.
On a microscopic scale, we des-
cribe the interactions of electrons
and atomic building blocks and
determine how these entities
respond to external influences.
Particular strengths encompass
the theory of electronic structures,
clusters, micro-mechanics of lattice
imperfections, the dynamics of
structure formation and phase tran-
sitions, materials and phenomena

Institute for Solid State
Research (IFF)
52425 Jülich
Telefon +49 2461 61-4465
Fax +49 2461 61-2410
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of magneto- and nanoelectronics,
spintronics, spin dynamics, and
strongly correlated electron
systems. On the mesoscopic
scale, we study soft matter
systems, such as polymer soluti-
ons and melts, colloidal dispersi-
ons, surfactants, membranes,
vesicles, and cells. Important que-
stions concern self-assembly and
structure formation, the competi-
tion of entropic and enthalpic for-
ces, geometric and topological
interactions, the complexity of
multi-component systems, systems
far from equilibrium, as well as the
behavior under external fields. In
all cases, the instrumentation of
electron, neutron, and synchrotron
sources and their application is
essential to the study of conden-
sed matter.

The experimental portfolio toget-
her with an acknowledged exper-
tise enables the IFF to tackle com-
plex problems in close cooperation
with scientists and industry world-
wide. Special state-of-the-art labo-
ratories exist for thin film deposi-
tion and growth of bulk crystals, for
nanostructuring as well as for the
preparation of soft matter mate-
rials. In addition to standard
methods for materials characteri-
zation, highly specialized techni-
ques ranging from superconduc-
ting microscopy and spin-polarized
microscopies to femto-second
laser spectroscopy are available at
the IFF and are being constantly
improved in performance. 

The Jülich Centre for Neutron Sci-
ence (JCNS) operates advanced
neutron scattering instruments at
the worldwide most modern and
highest flux neutron sources. As a
complement to local research
opportunities, instruments are
designed and operated at external
national and international neutron
sources, such as the FRM-II in
Munich or the neutron spallation
source in Oak Ridge.

With the Ernst Ruska-Centre for
Microscopy and Spectroscopy with
Electrons (ER-C) the IFF operates
a national user facility housing
several of the world's most advan-
ced electron microscopes and
tools for nanocharacterization. In-
house research programs cover
topical issues in 

condensed matter physics and –
as a matter of course – future
developments of subångström and
sub-electronvolt microscopy. 

The newly founded Peter Grün-
berg Centre provides the compe-
tence and method platform for the
research on fundamentals of
future information technology. It is
operated jointly by the institutes
IFF and IBN in the framework of
the Jülich-Aachen Research Alli-
ance JARA. The Grünberg Centre
houses several units. The Helm-
holtz Nanoelectronic Facility (HNF)
provides manifold means to pre-
pare complex material systems and
nanoelectronic structures in com-
bination with an in-depth characte-
rization. In the Synchrotron Radia-
tion Laboratory (SRL) a broad
variety of spectroscopy, micros-
copy, and scattering experiments
at various synchrotron radiation
facilities are designed and reali-
zed. The lab also provides exper-
tise for the development of new
beamlines and experimental con-
cepts and, thus, acts as a valuable
partner for synchrotron radiation
laboratories throughout the world. 

The IFF puts particular emphasis
on the support of young scientists
and has successfully established a
number of Young Investigator
Groups in the fields of quantum
transport, spinelectronics, ther-
moelectrics, complex liquids and
multifunctional materials. 

Last but not least, the IFF has a
long tradition in teaching and trai-
ning of students, not only through
the approximately 30 IFF staff
scientists steadily giving lectures
at universities, but in particular
through the annual IFF Spring

Schools and Neutron Laboratory
Courses. Dissemination of know-
ledge to students and scientist is
provided through the organisation of
workshops and conferences, in par-
ticular the yearly Jülich Soft Matter
Days. In addition, the IFF is involved
in the German Research School for
Simulation Science (GRS) establis-
hed together with the RWTH Aachen
University.

The IFF is a department, which com-
prises six experimental and three
theoretical divisions as well as joint
service facilities. As part of the
Research Centre Jülich – a member
of the Hermann von Helmholtz
Association of German Research
Centres (HGF) – the IFF provides
key contributions to the strategic
mission of the HGF within three
research programs: 

• Fundamentals of Future Informa-
tion Technology (FIT)

• Research with Photons, Neutrons
and Ions (PNI)

• Molecular Systems and Biological
Information Processing (BioSoft)

The success of the IFF rests upon
the inventiveness and initiative of its
more than 300 members. The IFF
supports independent research by
encouraging the responsibility of
individual scientists – a philosophy
that contributes greatly to the stimu-
lating atmosphere in the depart-
ment. In order to sustain this level on
the long run, special encouragement
is given to young scientists.
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Schriften des Forschungszentrums Jülich 
Reihe Schlüsseltechnologien / Key Technologies 

1. Soft Matter 
From Synthetic to Biological Materials 
Lecture manuscripts of the 39th IFF Spring School March 3 – 14, 2008 
Jülich, Germany 
edited by J.K.G. Dhont, G. Gompper, G. Nägele, D. Richter, R.G. Winkler (2008), 
c. 1000 pages 
ISBN: 978-3-89336-517-3 

2. Structural analysis of diblock copolymer nanotemplates using grazing 
incidence scattering 
by D. Korolkov (2008), III, 167 pages 
ISBN: 978-3-89336-522-7 

3. Thermal Nonequilibrium 
Thermal forces in fluid mixtures 
Lecture Notes of the 8th International Meeting on Thermodiffusion, 
9 – 13 June 2008, Bonn, Germany 
edited by S. Wiegand, W. Köhler (2008), 300 pages 
ISBN: 978-3-89336-523-4 

4. Synthesis of CMR manganites and ordering phenomena in complex 
transition metal oxides 
by H. Li (2008), IV, 176 pages 
ISBN: 978-3-89336-527-2 

5. Neutron Scattering 
Lectures of the JCNS Laboratory Course held at the Forschungszentrum Jülich 
and the research reactor FRM II of TU Munich 
edited by R. Zorn, Th. Brückel, D. Richter (2008), c. 500 pages 
ISBN: 978-3-89336-532-6 

6. Ultrafast Magnetization Dynamics 
by S. Woodford (2008), 130 pages 
ISBN: 978-3-89336-536-4 

7. Role of Surface Roughness inTribology: from Atomic to Macroscopic Scale 
by C. Yang (2008), VII, 166 pages 
ISBN: 978-3-89336-537-1 

8. Strahl- und Spindynamik von Hadronenstrahlen in Mittelenergie-
Ringbeschleunigern 
von A. Lehrach (2008), II, 171 Seiten 
ISBN: 978-3-89336-548-7 

9. Phase Behaviour of Proteins and Colloid-Polymer Mixtures 
by C. Gögelein (2008), II, 147 pages 
ISBN: 978-3-89336-555-5 



Schriften des Forschungszentrums Jülich 
Reihe Schlüsseltechnologien / Key Technologies 

10. Spintronics – From GMR to Quantum Information 
Lecture Notes of the 40th IFF Spring School March 9 – 20, 2009 
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Vorlesungsmanuskripte des
17. IFF-Ferienkurses 1986
Dünne Schichten
und Schichtsysteme
Einführung in die modernen Methoden der Her-
stellung, Modifikation, Mikroanalyse und techni-
sche Anwendungen dünner Schichten und
Schichtsysteme.
Hauptthemen: Präparation · Haftung und 
innere Spannungen · Grenzflächen · Kohärente
Vielfachschichten · Mikroanalytik · Schichten für
Informationstechnik
744 Seiten, EUR 25,00

Vorlesungsmanuskripte des
18. IFF-Ferienkurses 1987
Synchrotronstrahlung
in der Festkörperforschung
Einführung in die Anwendung der Synchrotron-
strahlung zu Strukturuntersuchungen in der
Festkörperforschung.
Hauptthemen: Quellen · Elektronentheorie ·
Strukturuntersuchungen · Absorptionsspektro-
skopie · Photoelektronenspektroskopie · 
Lithographie · Mikroanalytik
812 Seiten, EUR 25,00

Vorlesungsmanuskripte des
19. IFF-Ferienkurses 1988
Supraleitung und
verwandte
Quantenphänomene
Einführung in die Supraleitung und verwandte
Quantenphänomene.
Hauptthemen: Supraleitung und Anwendungen ·
Supraflüssigkeit · Stark korrelierte Elektronen ·
Lokalisierung
786 Seiten, EUR 25,00

Vorlesungsmanuskripte des
20. IFF-Ferienkurses 1989
Computersimulation
in der Physik
Einführung in numerische Methoden zur
Simulation komplexer Systeme in der Physik.
Hauptthemen: Molekular-Dynamik-Methoden ·
Monte-Carlo-Methoden · Partielle Differential-
gleichungen
1011 Seiten, EUR 17,90
ISBN 3-89336-013-1

Vorlesungsmanuskripte des
21. IFF-Ferienkurses 1990
Festkörperforschung
für die Informationstechnik
Einführung in die materialphysikalischen
Grundlagen der modernen Informations-
technik. Schwerpunkte: Physik der Halbleiter ·
Physik der Magnetspeichermaterialien ·
Funktion typischer Bauelemente · Industrielle
Fertigung aktueller Bauelemente · Physika-
lische Aspekte zukünftiger Technik
1028 Seiten, EUR 17,90
ISBN 3-89336-033-6

Vorlesungsmanuskripte des
22. IFF-Ferienkurses 1991

Physik der Polymere
Einführung in die physikalischen Stoffeigen-
schaften von Polymeren und Kunststoffen.
Schwerpunkte: Struktur, Dynamik und Thermo-
dynamik · Konformation · Kristallisation und
Glasumwandlung · Gummi- und Viskoelasti-
zität   Molekulare Dynamik · Computersimu-
lation · Polymermischungen · Werkstoffe
900 Seiten, EUR 23,00
ISBN 3-89336-055-7

nicht mehr verfügbar

nicht mehr verfügbar

nicht mehr verfügbar
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Vorlesungsmanuskripte des
23. IFF-Ferienkurses 1992
Synchrotronstrahlung zur
Erforschung kondensierter
Materie
Einführung in die Anwendung von Synchrotron-
strahlung zur Bestimmung der geometrischen
und elektronischen Struktur von Festkörpern
und Grenzflächen.
Schwerpunkte: Erzeugung und Charakteristika
der Synchrotronstrahlung · Instrumentierung ·
Wechselwirkung von Licht und Materie · Elektro-
nische Struktur von Festkörpern, Oberflächen
und Grenzflächen; Theorie und Experiment ·
Spinauflösende Messungen und Magnetismus ·
Halbleiter-Oberflächen und Schichtsysteme ·
Adsorbate auf Oberflächen · Streuung und
Beugung von Röntgenstrahlung · Strukturanalyse
mit EXAFS · Mikroskopie und Lithographie
ca. 900 Seiten, EUR 28,00
ISBN 3-89336-088-3

Vorlesungsmanuskripte des
24. IFF-Ferienkurses 1993
Magnetismus
von Festkörpern
und Grenzflächen
Einführung in den Magnetismus von metalli-
schen Festkörpern und Grenzflächen.
Schwerpunkte: Konventionelle und moderne
Messmethoden · Theorie und Experimente zum
Band-magnetismus · Magnetische Domänen
und Abbildungsverfahren · Volumen- und Grenz-
flächenanisotropie · Spinwellen · Phasenüber-
gänge und kritische Exponenten ·  KKY-
Wechselwirkung · Kopplungsphänomene und
elektrischer Transport in Schichtsystemen · 
Werkstoffe
ca. 900 Seiten, EUR 28,00
ISBN 3-89336-110-3

Vorlesungsmanuskripte des 
25. IFF-Ferienkurses 1994

Komplexe Systeme
zwischen Atom und
Festkörper
Einführung in die bei komplexen Systemen auftre-
tende Phänomene und die zur Beschreibung ver-
wendeten Konzepte und Theoretischen Methoden.
Schwerpunkte: Moleküle, Cluster, Fullerene (Dichte-
funktional, Molekulardynamik, komplexe Energie-
flächen, Clusterspektroskopie) · Defekte in Quasi-
kristallen, Fluiden, Mustern (Topologische Methoden,
Energiefunktional) · Grenzflächen, Schichtsysteme
(Adsorption, Benetzung, Aufrauhung, Reibung, STM,
Kraftmikroskop, Heterostrukturen) · Komplexe Fluide
(Hydrodynamik, Polymere, Polyelektrolyte, Kolloide,
Membranen, Gläser) · Musterbildung, Chaos und
Turbulenz (in Flüssigkeiten, chemischen Reaktio-
nen und Biologie) · Poröse und granulare Medien
(Transport, Nichtmischbare Flüssigkeiten)
1022 Seiten, EUR 30,70
ISBN 3-89336-128-6

Vorlesungsmanuskripte des
26. IFF-Ferienkurses 1995

Elektrokeramische
Materialien
Grundlagen und Anwendungen
Einführung in die physikalischen und physikalisch-
chemischen Grundlagen elektrochemischer
Materialien, vor allem mit Perowskit- oder Perowskit-
ähnlicher Struktur, die sich durch außergewöhnliche
elektrische und dielektrische Eigenschaften auszeich-
nen.
Schwerpunkte: Kristallstruktur · Elektronenstruktur ·
Defekt-Physik und Chemie · Elektronische und ioni-
sche Transporteigenschaften · Mechanische
Eigenschaften
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Untersuchungs- und Präparationsmethoden: 
Impedanz-, dielektrische und mechanische
Relaxationsspektroskopie · Neutronenstreuung ·
Dünne Schichten · Sintern · Kristallzüchtung
Anwendungen: Dielektrische Schichten ·
Varistoren · PTC · Piezo- und pyroelektrische
Keramik · Ferroelektrika · Optische Bauelemente ·
Ionenleiter und Brennstoffzellen · Oxidische
Supraleiter
ca. 900 Seiten, EUR 33,20
ISBN 3-89336-146-4

Vorlesungsmanuskripte des
27. IFF-Ferienkurses 1996

Streumethoden zur
Untersuchung
kondensierter Materie
Einführung in die Wechselwirkung und Streuung
von Strahlung zur Untersuchung der atomaren
Eigenschaften von kondensierter Materie, insbe-
sondere in die Streutheorie zur Interpretation
der Meßdaten; Experimentelle Methoden der
Diffraktometrie zur Strukturanalyse, der Klein-
winkelstreuung, der Reflektometrie und der
Spektroskopie von Neutronen und Röntgen-
strahlen. Strahlungsquellen und Instrumen-
tierung. Relaxationsspektrometrie mit Licht.
Die Untersuchungsmethoden werden an den
wichtigsten Stoffklassen demonstriert, beispiels-
weise Metalle, Legierungen, magnetische Ver-
bindungen, Oxide, Gläser, Kunststoffe, Mem-
branen und Proteine sowie Schichtsysteme 
von Polymeren und Halbleitern.
ca. 850 Seiten, EUR 35,80
ISBN 3-89336-180-4

Vorlesungsmanuskripte des
28. IFF-Ferienkurses 1997

Dynamik und Strukturbildung
in kondensierter Materie
Einführung in dynamische Vorgänge und
Strukturbildung in verschiedenen Formen der
kondensierten Materie auf atomaren bis hin zu
makroskopischen Längen- und Zeitskalen.
ca. 900 Seiten, EUR 38,40
ISBN 3-89336-204-5

Vorlesungsmanuskripte des
29. IFF-Ferienkurses 1998

Physik der Nanostrukturen
Vorstellung der Methoden, die es erlauben, die
Nanostrukturen mit höchster Präzision herzu-
stellen und zu charakterisieren. Vorstellung von
Beispielen nanostrukturierter Festkörper und
Oberflächen aus der aktuellen Forschung, in
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denen es gelungen ist, neue Materialeigen-
schaften zu beobachten und auch teilweise
schon technologisch nutzbar zu machen.
Erforschung von Clustern, die entweder isoliert
im Molekularstrahl oder als Cluster-Materialien
vorgestellt und diskutiert werden.
ca. 1000 Seiten, EUR 40,90
ISBN 3-89336-217-7

Vorlesungsmanuskripte des
30. IFF-Ferienkurses 1999

Magnetische Schichtsysteme
Einführung in die Grundlagen der Wechselwir-
kungen, die zu kollektivem Magnetismus führen.
Dazu gehört eine Einführung in die Dichtefunk-
tionaltheorie und den Bandmagnetismus. Weiter-
hin wird eine Übersicht über verschiedene mag-
netische Materialklassen sowie relevante Mess-
methoden gegeben. Die Behandlung des Dünnfilm-
magnetismus beginnt mit der Einführung der
wichtigsten Präparationsmethoden und struktu-
rellen Charakterisierungsmöglichkeiten. Daran
schließt sich die Beschreibung der Eigenschaften
des Magnetismus in Einzelschichten an, sowie
deren Kopplungsphänomene in Multischichten.
Besondere Beachtung erhalten Transportphäno-
mene, die durch spinabhängige Elektronen-
streuung und Reflektivität an den Grenzflächen
oder einen spinabhängigen Tunneleffekt über
isolierende Zwischenschichten verursacht werden.
Auch die bereits in Einzelschichten auftretenden
Anisotropien, sowie die Magnetostriktion werden
theoretisch und experimentell behandelt, ebenso
die Magnetooptik und der Röntgendichroismus.

Die wichtigsten Themen sind: 
• Grundlagen von Magnetismus und magnetischen

Materialien
• Präparation magnetischer Schichtsysteme 
• Spinstrukturen in Schichtsystemen
• Zwischenschichtaustauschkopplung
• Magnetische Anisotropie und Magnetooptik
• Spinabhängiger Transport
ca. 1300 Seiten, zahlreiche z.T. farb. Abb., 
EUR 56,24
ISBN 3-89336-235-5

Vorlesungsmanuskripte des
31. IFF-Ferienkurses 2000

Femtosekunden und Nano-eV
Dynamik in kondensierter Materie
Die charakteristischen Längen- und Zeitskalen
der Dynamik kondensierter Materie erstrecken
sich über viele Größenordnungen: von ultra-
schnellen elektronischen Prozessen im Sub-
femtosekundenbereich über die Bewegung von
Makromolekülen im Nano- bis Mikrosekunden-
bereich bis hin zu langsamen kollektiven Relaxa-
tionsprozessen im Stundenbereich, wie sie etwa
bei Spingläsern auftreten. 
Diese extreme Bandbreite, die in anderen Dis-
ziplinen ihresgleichen sucht, erfordert einen gan-
zen Zoo von experimentellen Untersuchungs-
methoden, die auf der Wechselwirkung von
elektromagnetischer Strahlung und von Teilchen-
strahlung mit Materie beruhen. Durch revolutionä-
re Entwicklungen bei den Strahlungsquellen und
neue raffinierte experimentelle Verfahren wurden
in den letzten Jahren die Grenzen der
Festkörperspektroskopie zu extremen Werten der
Orts-, Zeit- und Energieauflösung verschoben. 
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So können heute Nanopartikel mit einer
Zeitauflösung im fs-Bereich bzw. Energieauf-
lösungen im neV-Bereich untersucht werden.
In dem IFF-Ferienkurs 2000 werden diese mo-
dernen experimentellen Verfahren vorgestellt,
wobei als Sonden elektromagnetische Strahlung
(von Infrarot- bis harter Röntgenstrahlung),
Neutronen und Elektronen diskutiert werden.
Viele Experimente wurden erst durch neue
Strahlungsquellen realisierbar, wie Synchrotron-
strahlungsquellen der dritten Generation oder
Spallationsneutronenquellen.
Es werden die Eigenschaften dieser Quellen
diskutiert, wobei Begriffe wie Kohärenz und
Zeitstruktur eine zentrale Rolle spielen, und ein
Ausblick auf Großprojekte im neuen Jahrtausend
gegeben. Moderne experimentelle Verfahren wie
fsec-Laserspektroskopie, neV-Neutronen-spine-
chospektroskopie, Röntgenkorellations-spektro-
skopie oder mehrdimensionale Kern-spinreso-
nanz werden zusammen mit den wissenschaft-
lichen Anwendungsfeldern vorgestellt.
Die Dynamik der kondensierten Materie wird in
ihrer ganzen Breite behandelt: von elektroni-
schen Anregungen und Transport über die klas-
sische Elementaranregungen wie Phononen und
Magnonen hin zu diffusiven Bewegungen oder
die wesentlich entropisch getriebene Dynamik
weicher Materie z.B. von Polymeren,
Membranen und komplexen Flüssigkeiten.
Weitere Schwerpunkte bilden ultraschnelle
Prozesse in Molekülen, der zeitliche Ablauf 
chemischer Reaktionen, metallische und magne-
tische Systeme und schließlich die dynamischen
Prozesse an Oberflächen. Anwendungsnahe
Themen wie etwa die Magneto-elektronik 
werden ebenfalls angesprochen.
Die wichtigsten Themen sind:
• fsec-Spektroskopie
• inelastische Steuung von elektromagnetischer

Strahlung, Neutronen
• Elektronenelektronische Anregungen und

Transport
• Magnetisierungsdynamik und

Magnetoelektronik
• Oberflächendynamik
• chemische Reaktionen und transiente

Zustände
• Diffusion, Relaxationsprozesse,

Elementaranregungen.
ca. 1000 Seiten, zahlreiche z.T. farb. Abb.,
EUR 48,57 (Hardcover)

Vorlesungsmanuskripte des
32. IFF-Ferienkurses 2001

Neue Materialien für die
Informationstechnik
Die Möglichkeiten der heutigen Informations-
und Kommunikationstechnik werden zuneh-
mend bestimmt durch den Einsatz neuer elek-
tronischer Materialien - jenseits der klassischen
Siliziumtechnik. Dies betrifft sowohl die Erwei-
terung der konventionellen Mikroelektronik
durch neuartige Funktionen als auch den 
Einsatz in integrierten Hybridsystemen. Der
IFF-Ferienkurs 2001 behandelt alle Material-
klassen, die in modernen Systemen der Infor-
mationstechnik heute bereits eingesetzt werden
oder ein hinreichend großes Marktpotential für
zukünftige Anwendungen aufweisen.
Der Ferienkurs hat einen betont interdisziplinä-
ren Charakter. Er verbindet Aspekte der Fest-
körperphysik, der Kristall- und Molekülchemie
sowie der Biologie mit der Mikroelektronik. Der
Schwerpunkt liegt auf der Verknüpfung des
mikroskopischen Verständnisses der Materia-
lien und der Nutzung ihrer Eigenschaften in
Bauelementefunktionen.
Es werden materialübergreifende Konzepte der
Informationstechnik diskutiert und aufgezeigt, 
in wie großer Breite neue Materialien in Bauele-
mente und Systeme vordringen. Das Spektrum
der Vorlesungen umfasst u. a. folgende
Themen:
• dielektrische und ferroelektrische Oxide

für künftige Generationen schneller, nicht
flüchtiger Arbeitsspeicher und hochintegrierter
Logik-ICs,
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• ultradünne Metallschichten mit spin-abhängi-
ger Leitfähigkeit für magnetische Speicher und
Leseköpfe heutiger Festplattengenerationen,

• Phasenwechsel-Materialien für wiederbe-
schreibbare DVDs,

• photoadressierbare Polymere für hologra-
phische 3-D-Speicher,

• akusto-optische und elektro-optische Oxide
für die optische Datenübertragung,

• abstimmbare keramische Dielektrika für die
Mikrowellentechnik, komplexe organische
Verbindungen für hochauflösende Flüssig-
kristall-Displays und die künftige Molekular-
elektronik,

• Komponenten für Plasma- und Feldemissions-
displays,

• Materialien für die Verknüpfung der 
biologischen und der mikroelektronischen
Informationsverarbeitung.

ca. 800 Seiten, zahlreiche z. T. farb. Abb.,
EUR 61,36 (Hardcover)

Lecture manuscripts of the
33rd IFF Spring School

Soft matter:
complex materials on mesoscopic scale
In the last years, the traditional research areas of
polymers, biological macromolecules, colloids,
amphiphilic systems and membranes, as well as
liquid crystals have merged into a new 
research field - Soft Matter. This field combines
all materials, which are characterized by structu-
res on typical length scales between nanometers
and micrometers.  Due to the large structural

length scale, the number density of their transla-
tional degrees of freedom is many orders of
magnitude smaller than for an ordinary, molecu-
lar material. This and the weak interactions bet-
ween the structural units, which is typically on
the order of the thermal energy kBT, implies that
these materials are easily deformable by external
forces - they are soft. 
The growing together of the different, previously
disjoint areas of Soft Matter arises on one hand
from the recognition of the same under-lying
mechanisms in the structure and the 
properties of these systems, and on the other
hand from the combination of many of these
components in a single material. Examples are
polymer-colloid mixtures such as ink, or the cell
membranes of biological cells, in which a large
number of different, cooperative components
are involved.
Research in the field of Soft Matter is an inter-
disciplinary enterprise. This includes chemistry,
which, with the synthesis of increasingly complex
molecules, provides the building blocks for new
materials. Physics provides the methods to in-
vestigate the properties of soft materials, and
aims at reaching a detailed understanding of the
connection between the molecular units and
their interaction, and the observed macroscopic
properties. Some of the investigated questions
are derived from, or have implications, for exam-
ple, for pharmacology or cell and molecular bio-
logy. As far as applications are concerned,
material science is interested in 
finding materials with properties, which can be
custom-tailored and tuned over a wide range.
The book consists of four parts:
• Techniques, Methods and Synthesis.

Scattering, NMR, dielectric spectroscopy, com-
puter simulations and the synthesis of poly-
mers and colloids, including templating
methods, are discussed.

• Structure and Phase Behavior. After an 
introductory lecture on statistical mechanics,
the microstructural properties and phases of
many different systems are dealt with, like
polymers, polyelectrolytes, films and 
surfaces, amphiphilic systems, membranes
and colloids.

• Equilibrium and Non-equilibrium Dynamics.
This part discusses dynamics and kinetics 
of soft matter in- and out- of equilibrium, 
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like polymer and colloid dynamics, glassy poly-
mers and colloids, membrane and microemul-
sion dynamics, phase separation kinetics and
rheology.

• Industrial Applications. This part discusses
applications of soft matter systems in 
industrial processes.

c. 1000 pages, many partly coloured illustrations,
EUR 70,00 (Hardcover)

Lecture manuscripts of the 
34th IFF Spring School 

Fundamentals of
Nanoelectronics
Information technology stands today at the
edge of a revolutionary change: from microelec-
tronics to nano-electronics. The characteristic
structure sizes will soon fall below the 100 nm
mark and will continue to shrink to approxi-
mately 20 nm around the year 2015. On this
length scale quantum effects are decisive and
lead to completely new possibilities and
challenges.
As an alternative to the continually increasing
cost of conventional semiconductor technolo-
gies for manufacturing integrated circuits, new
strategies are examined in research, which are
based on fundamental principles of physics and
chemistry. For example, molecular self organi-
zation mechanisms are developed in order to
manufacture well defined nanostructures with
desired properties.

The IFF Spring School treats the basic princi-
ples of physics, chemistry and information tech-
nology that prepare the way into the new and
fascinating world of nanoelectronics.
The spectrum of the lectures covers, among
other subjects, the following topics:
• Fundamentals

Theory of electron scattering
Tunnelling processes
Coulomb blockade effects
Spin dependent transport
Quantum communication/computing

• Analyses
Scanning probe methods
Spectroscopy with atomic resolution
High resolution electron microscopy

• Technology
New lithography techniques
Atomic layer by layer deposition
Self organization techniques
Scanning probe manipulation

• Concepts for nanoelectronic devices
Limits of Si technology
Metallic nanowires
Spintronics
Electronics based on carbon nanotubes
Single electron devices
Concepts for QC devices
Molecular electronics

c. 500 pages, many partly coloured illustrations,
EUR 55,00 (Hardcover)

Lecture manuscripts of the 
35th IFF Spring School 

Physics meets Biology
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In the last two decades, we have witnessed
breathtaking advances in molecular biology. In
particular, the elucidation of several genomes
including humans, mice, worms, flies and plants
have provided the sequence of hundreds of
thousands of different genes and proteins. In
the years to come, it will be a formidable task to
elucidate the location, structure, function, and
interactions of these cellular components. Key
requirements for a successful investigation and
a detailed understanding of these enormously
complex systems are:
• The development and application of an array

of modern physical techniques to study the
structure and dynamics of macromolecules
and their assemblies over a wide range of
length and time scales. Such techniques
include scattering methods, nuclear magnetic
resonance (NMR), atomic force techniques,
singlemolecule fluorescence and electron
tomography,

• A detailed understanding of macromolecules
and their assemblies. Soft Matter physics
investigates the behavior of complex mixtu-
res consisting of several different compo-
nents of polymeric, colloidal or amphiphilic
cha~ racter with the aim to understand the
cooperative behavior of systems with a large
number of interacting degrees of freedom. A
profound understanding of the fundamental
mechanisms underlying biological function
and self organisation may be fostered by
investigations of simpler systems which are
composed of synthetic soft materials.

• Analytical and synthetic organic chemistry.
The principles of biological structure forma-
tion and function may be used to design and
build similar synthetic molecules with tunable
properties. Markers and labels have to be
attached to biological macromolecules to
visualize them and trace their motion. Finally,
synthetic chemistry is required to provide
model systems for macromolecular assem-
blies.

In order to cope with the enormous challenges
posed by understanding the structure and func-
tion of the cellular machinery, biologists and
physicists have to come together and to share
their expertise. Biologists have to master the
state of the art technologies required to study

and understand biological processes. In a simi-
lar vein, physicists and chemists have to learn
about and to be inspired by the large variety
and diversity of exciting biological problems,
and the immense research opportunities in the
Life Sciences in general, and Cell Biology in
particular.
With the IFF Spring School 2004, we want to
contribute to the integration process of soft mat-
ter physics, biophysics and biology of the cell.
The lectures are grouped into four topics: 
• General concepts and basic facts will provide

an overview that covers statistical mechanics,
Brownian motion, self assembly, and the
components of biological cells.

• Techniques and methods introduces several
modern experimental techniques as well as
computer simulations.

• Polymers, Biopolymers, and Proteins covers
a wide range of systems, including flexible
and semiflexible polymers, polyelectrolytes,
dynamics of proteins, protein crystallisation,
and the cytoskeleton.

• The lectures on Membranes range from the
statistical mechanics of fluctuating surfaces
to the complexity of membrane proteins,
endo  and exocytosis and cell adhesion.

c. 850 pages, many partly coloured illustrations,
EUR 55,00 (Hardcover)
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Lecture manuscripts of the 
36th IFF Spring School 

Magnetism goes Nano

trol magnetism and magnetic phenomena on very
small length scales and in reduced dimensions.
The relevant physical systems range from thin
films through quantum wires and quantum dots
down to individual clusters, magnetic molecules, or
even single magnetic atoms on a surface. 
Programme
The IFF Spring School 2005 will address these
new developments in magnetism on a graduate
student level. The lectures will first build a basis
for the understanding of the major phenomena
and aspects in magnetic systems, including the
theoretical framework for a quantitative descrip-
tion. The School will then advance to the peculiari-
ties of magnetism in systems of reduced dimen-
sions, covering thin films, quantum wires and dots,
and magnetic clusters. Finally, it will bridge the gap
to molecular magnetism and touch upon the major
principles of quantum information physics. 
The topics of the lectures cover:
� Theoretical Concepts in Magnetism 
� Magnetism in Reduced Dimensions 
� Electronic Correlations 
� Spin Transport
� Magnetization Dynamics 
� Novel Materials for Spintronics 
� Molecular Magnets 
� Quantum Information Physics 
� Preparation of Nanomagnetic Systems 
� Advanced Experimental Approaches
The IFF-Spring School is organized in close col-
laboration with universities, research institutions
and industry. 
The School offers about 50 hours of lectures plus
discussions, as well as the opportunity to take part
in practical courses and visits to the participating
institutes at the Research Centre Jülich. All lec-
tures will be given in English. The lecturers are
internationally renowned experts in their areas of
research. All registered participants will be given a
copy of the Lecture Notes (in English), which con-
tains all the material presented during the school.
Participants are expected to have a basic knowl-
edge of quantum mechanics and condensed
matter physics.
c. 850 pages, many partly coloured illustrations,
EUR 55,00 (Hardcover)

Magnetism has always been a fascinating phe-
nomenon and continues to be an exciting research
field. Even today it provides stunning scientific dis-
coveries combined with vast technological poten-
tial and economic impact. Recent years have seen
the advent of magnetoelectronics and spintronics,
fields in which magnetism and solid state electron-
ics are joining to exploit spin-dependent transport
processes. This creates novel electronic function-
alities that in part already have entered the mar-
ket, for example, in hard disk read heads and non-
volatile,magnetic random access memories
(MRAM). A pioneering work in magnetoelectronics
was the discovery of giant magnetoresistance
(GMR) by Peter Grünberg (IFF) and Albert Fert
(Université Paris Sud). This discovery was hon-
oured in 1998 by the prestigious "German Future
Award – awarded by the President of the Federal
Republic of Germany for a breakthrough in tech-
nology and innovation".
The continuing need to increase storage density
leads to smaller and smaller magnetic entities. But
the impact of these "nanomagnets" is not limited to
technology. In cutting edge research several new
phenomena, such as spin-torque transfer, spin-
current induced magnetic switching, or spin-cur-
rent induced microwave generation have been
found very recently. Their discovery was only pos-
sible on account of the ability to fabricate magnetic
nanostructures in the 100 nm regime. Clearly, the
challenge for the future is to understand and con-
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Computational Condensed
Matter Physik

atomistic scale of the solvent molecules and the
mesoscopic scale ot the embedded macromelecules.
• A similar problem occurs in the investigation of
macroscopic properties. The elementary processes
often happen on the atomic scale, which is separated
by many orders of magnitude from the macroscopic
lengths and times of day-to day experience, as in
solidification patterns of high-performance materials
or earthquake rupture. Multi-scale simulation tech-
niques have to be developed in Order to tackle this
problem.
The basic idea of quantum computing is to use linear
operations in Hilbert space to perform massively par-
allel calculations. While no quantum computer of any
substantial size has yet been built, quantum comput-
ing holds the promise of a qualitatively new way of
simulating physical systems.

Programme
The IFF Spring School 2006 addressed modern com-
putational approaches to condensed matter physics
at a graduate Student level. Introductory lectures will
build the basis for the understanding of the major
theoretical Methods and the phenomena they are
meant to describe. More advanced lectures will
address practical aspects of the methods and
demonstrate how computer simulations contribute 
to our understanding of physics. Highlighting exem-
plary applications will lead the audience from the
basic numerical methods to the frontiers of current
research.

The topics of the lectures cover:
• Simulations of Quantum Systems
• Density Functional Theory
• Correlated electrons
• Quantum Computing
• Complex Materials
• Supercomputing
• Mesoscopic Hydrodynamics
• Monte Carlo Simulations
• Biophysics
• Soft Matter
• Pattern Formation
• Friction & Fracture

The School offerd about 50 hours of lectures plus
discussions, as well as the opportunity to take part in
practical courses, visits to the participating institutes
and the supercomputer facilities at the Research
Centre Jülich.

During the last decades we have witnessed dramatic
advances in the simulation of physical systems on
the computer. This partly due to an impressive
growth in computer power. Equally or even more
important, however, has been the outstanding
progress in the development of new theoretical con-
cepts and computational methods: In the simulation
of condensed matter systems, the main challenge is
to find models, which capture the essential physics of
the real material, while still being susceptible to an
efficient treatment an a computer.
As a result, we are now seeing more and more areas
of condensed matter physics, where computer simu-
lations achieve predictive power. Hence, they are
becoming increasing important in identifying or
designing new materials with fascinating and advan-
tageous properties. Thus, computer simulations are
now an essential tool in nanoscience, materials sci-
ence, chemistry, and even biology. The important
challenges in these Fields are:
• Many characteristic properties ot transition-metal
oxides, nanostructures, and organic crystals are due
to the strong repulsion between the electrons. An
important focus of current research is the develop-
ment of new methods for an efficient simulation of
this quantum mechanical many-body problem.
• In Soft Matter Science – which studies the behavior
of polymer solutions and melts, membranes, colloidal
suspensions, and biological macromolecules – simu-
lation methods have to be developed which bridge
the large length – and time-scale gap between the
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Probing the Nanoworld
Microscopies, Scattering and
Spectroscopies of the Solid State

In recent years we
have witnessed dra-
matic improvements in
the capabilities of
experimental methods
involving the interac-
tion of electrons, neu-
trons and Synchrotron
radiation with the solid
State. This is partly
due to substantial
advances in the
Performance of sour-
ces, beamlines and
imaging lenses, detec-

tors as well as monochromators and spectrome-
ters all at roughly the same time. Equally impor-
tant, however, has been the outstanding progress
in the development of vitally new analysis con-
cepts together with concomitant numerical
methods, which allow deriving a more unmitigated
benefit from advanced instrumentation.
As a result, we are now seeing more and more
areas of solid State research where state-of-the-
art analysis techniques, e.g. aberration corrected
electron microscopy, high energy or resonant
Synchrotron X-ray scattering, neutron scattering
with spherical polarization analysis or with neV
energy resolution, as well as high-resolution elec-
tron spectroscopy and spectromicroscopy, permit
conceiving macroscopic material properties epi-
stemologically from microscopic observations.
Hence, this basic approach is becoming increa-
singly important in identifying material imperfec-
tions and designing new materials with fascinating
and likewise advantageous properties. All of the
above probing techniques - irrespective of the use
of electrons, neutrons or Synchrotron radiation -
are nowadays essential tools to probe the nano-
world of complex materials in both, bulk and redu-
ced dimensions.
Therefore, this is also the ideal time to appraise
when, how, and why appropriate techniques
should be used for specific Problems to gain dee-
per scientific insights to Condensed matter pheno-

mena as well as to optimize processing Steps in
solid State technology. Consistently, the 38th IFF
Spring School 2007 will focus on both, essential
fundamentals and the latest developments in pro-
bing the solid State by application of advanced
microscopy, scattering and spectroscopic techni-
ques. Lecturers will address late-breaking aspects
of experimental analysis techniques in tandem
with materials science related applications.
Programme
The IFF Spring School 2007 will address both,
advanced experimental techniques and theoretical
fundamentals at a graduate Student level.
Introductory lectures will focus on the structural
and electronic properties of the solid State in bulk
and in reduced dimensions, and, thus, build the
basis for the understanding of prime techniques
and major methodical concepts. Supplementary
lectures will address
basic excitation mechanisms and the interaction
of radiation with matter.
More specialized lectures will exemplify a multitu-
de of techniques in electron microscopy, neutron
and Synchrotron scattering in tandem with solid
State related applications. Highlighting selected
applications will lead the audience from basic
methods to the frontiers of current research.
The main topic areas to be covered are as fol-
lows:
•   Electron Excitations & Interaction of Radiation

with Matter
•   Scanning Probe Microscopy & Spectroscopy
•   Aberration Corrected Transmission Electron

Microscopy
•   Electron Holography & Tomography
•   Electron Energy Loss Spectroscopy
•   Photoemission Spectroscopy & Microscopy
•   Synchrotron Radiation & Neutron Scattering
•   X-ray Absorption Spectroscopy & Resonant 

Scattering
•   Magnetic Fluctuations & Lattice Excitations
•   Soft Matter Structure & Dynamics
The School offered about 50 hours of lectures,
discussions and a variety of laboratory courses. 

Ca. 1000 pages, many partly coloured illustrations,
ISBN 978-3-89336-462-6; EUR 69,90 (Hardcover)
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Soft Matter – From Synthetic
to Biological Materials 

Soft matter is ubiq-
uitous in a vast
range of technolo-
gical applications
and is of fundamen-
tal relevance in such
diverse fields as
chemical, environ-
mental, and food
industry as well as
life sciences. Over
the past years, soft
matter science has
been largely extend-
ed in its scope from
more traditional

areas such as colloids and polymers to the study
of biological systems, soft nanoscale materials,
and the development of novel composites and
microfluidic devices. Soft and biological materials
share fundamental structural and dynamical fea-
tures including a rich variety of morphologies and
non-equilibrium phenomena, self-organisation, an
unusual friction-dominated flow dynamics, and a
high sensitivity to external fields. These properties
emerge from the cooperative interplay of many
degrees of freedom, with spatio-temporal correla-
tions that can span a huge range from nano- to
millimetres and nanoseconds to days. The key
requirements for the advancement in the field of
these highly complex soft materials are: 
• The development of novel experimental tech-

niques to study properties of individual compo-
nents in processes and the cooperative behavior
of many interacting constituents. The synthesis
of complex materials, self-organized and bio-
mimetic systems with novel or unusual proper-
ties will broaden the spectrum of applications. 

• The exploration of advanced theoretical and
computer simulation methods that span the large
range of time and length scales and allow to
cope with an increasing complexity of molecular
constituents. Existing methods need to be
extended and new approaches are required to

describe systems far from equilibrium, e.g., in
life sciences and material processing. 

• Structural and novel functional properties of soft
and biological materials need to be studied
invoking self-organization and hierarchical struc-
ture formation, entropic particle interactions and
fluid-like aspects of biological materials such as
vesicles and cells. 

• The unusual dynamics of complex fluids requires
special approaches to gain insight into diffusion
transport properties, rheology and mesoscopic
flow behavior, which are influenced by a delicate
interplay of hydrodynamic interactions, thermal
fluctuations, and external fields. 

The IFF Spring School 2008 at the Forschungs-
zentrum Jülich, Germany, addressed advanced
experimental techniques and applications, and
theoretical and computer simulation methods on
an undergraduate and graduate student level.
Introductory lectures provided the basis of impor-
tant experimental and theoretical tools. More
advanced lectures explained practical aspects of
various methods and lead the participants from
basic methods to the frontiers of current research. 
The lectures covered the following topics: 
• Scattering Techniques 
• Single Molecule Techniques 
• Equilibrium- and Non-equilibrium

Statistical Physics 
• Microfluidics 
• Computer Simulations 
• Synthesis 
• Self-Organisation 
• Flow Properties and Rheology 
• Biomechanics 
• Macromolecules and Colloids 
• Membranes and Interfaces 
• Biomimetic Systems 
• Glasses and Gels 

The school offered about 50 hours of lectures plus
discussions, as well as the opportunity to partici-
pate in practical courses and visits to the partici-
pating institutes at the Forschungszentrum Jülich. 

Ca. 1000 pages, many partly coloured illustrations,
ISBN 978-3-89336-517-3; EUR 69,90 Hardcover).
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